
Han et al. SpringerPlus  (2016) 5:911 
DOI 10.1186/s40064-016-2604-8

RESEARCH

Relationship between the microbiota 
in different sections of the gastrointestinal tract, 
and the body weight of broiler chickens
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Abstract 

In the poultry industry, many efforts have been undertaken to further improve the growth performance of broilers 
and identification and modulation of body weight (BW)-related bacteria could be one of the strategies to improve 
productivity. However, studies regarding the relationship between microbiota and BW are scarce. The objective of 
the present study was to investigate the relationship between microbiota and BW in different sections of the gastro‑
intestinal tract (GIT). A total of twenty 18-day-old birds were selected based on the BW, and samples were collected 
from the three different sections of the GIT, which included the crop, ileum and cecum. Bacterial genomic DNA was 
extracted from the samples, and the V4 region of 16S rRNA gene were amplified. Amplicons were sequenced on 
Illumina MiSeq, and microbial communities were analyzed by using QIIME. In principal coordinate analysis, bacterial 
communities were clustered into three groups, based on the sections of GIT. Several BW-related bacterial groups were 
identified from linear regression analysis. At the genus level, Streptococcus from the ileum as well as Akkermansia in 
both ileum and cecum, were negatively related to BW, whereas Bifidobacterium in the ileum and Lactococcus in the 
cecum showed a positive correlation. The results from the present study showed that particular bacterial communi‑
ties in the GIT were related to BW, and the study has broadened the understanding of the intestinal microbial ecosys‑
tem in broiler chickens.
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Background
In the broiler industry, productivity such as feed conver-
sion ratio and growth rate has been improved for decades 
(Rubio et al. 2014); however, broiler chickens still seem to 
have a growth potential. Based on the consumer demand, 
strategies for increasing the market weight of broilers 
have been studied by many researchers, but an efficient 
approach has not yet been developed. Moreover, the use 
of antibiotics in animal feeds for growth promotion has 

been banned from January 2006 in the EU and from July 
2011 in Korea, and this restriction has led to the devel-
opment of efficient and safe antibiotic alternatives to 
enhance the growth performance of livestock animals, 
including broilers. In this current situation, develop-
ment of efficient and economic strategies to improve the 
growth performance of broiler chickens are an important 
task in broiler industry, and understanding of the host-
microbiota interaction is one of the possible strategies 
(Rinttila and Apajalahti 2013; Pedroso et al. 2012).

Development of high-throughput sequencing technol-
ogy enabled culture-independent analysis of microbial 
communities, and several studies revealed that intestinal 
microbiota affects the host metabolism and physiology, 
such as metabolic homeostasis (Shin et al. 2011; Caricilli 
et al. 2011), angiogenesis (Reinhardt et al. 2012), obesity 
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(Turnbaugh et  al. 2009; Backhed et  al. 2004), immune 
function (Ivanov and Littman 2011; Kuss et  al. 2011; 
Ichinohe et al. 2011) and brain development (Diaz Heijtz 
et al. 2011). In the past decade, many studies were con-
ducted to investigate the relationship between gut micro-
biota and body weight (BW). These studies revealed that 
in human and mice, certain phyla were positively cor-
related with BW (Delzenne and Cani 2011; Hildebrandt 
et al. 2009; Ley et al. 2006; Turnbaugh et al. 2009), while 
certain species were negatively correlated with BW 
(Everard et al. 2013; Santacruz et al. 2010; Everard et al. 
2011; Santacruz et  al. 2009). However, only a limited 
number of studies about relationship between intesti-
nal microbiota and BW were conducted in livestock, 
especially in young animals. Identification and modula-
tion of weight-related bacteria is one of the strategies to 
modulate BW, and it can potentially be a useful strategy 
to improve productivity in the broiler industry. There-
fore, the objective of the present study was to investigate 
the relationship between the BW of broiler chickens and 
microbiota in different sections of the gastrointestinal 
tract (GIT).

Results
Microbial communities at different sections of GIT
We compared the microbial communities in three sec-
tions of the GIT—crop, ileum and cecum. A total of 
950,771 (mean =  16,115 ±  6460) 16S rRNA reads were 
generated, with an average of 18,085 (±5788) reads per 
crop sample, 15,294 (±6676) reads per ileal sample and 
15,064 (±6733) reads per cecal sample. PCoA based on 
unweighted and weighted UniFrac distances of the 16S 
rRNA revealed that samples were clustered into three 
distinct groups (Fig.  1). In PCoA plot, microbial com-
munities were separated by sections of the GIT, and ileal 
samples were placed between the crop and cecal samples.

To determine which bacterial taxa contributed to 
separate microbial communities, relative abundance of 
taxa in each section is shown in Tables  1 and 2, and it 
is represented as a heat map (Additional file 1: Fig. S1). 
At the phylum level, Cyanobacteria and Proteobacteria 
were significantly more abundant in the crop, and Fir-
micutes was significantly more abundant in the ileum 
than in other sections (Additional file 1: Fig. S2). At the 
genus level, Bacillus was significantly more abundant in 
the crop (Additional file 1: Fig. S3A) and Prevotella was 
significantly more abundant in the ileum than in other 
sections (Additional file  1: Fig. S3F). Faecalibacterium, 
Ruminococcus and Akkermansia were significantly more 
abundant, and Lactobacillus and Streptococcus were 
significantly less abundant, in the cecum than in other 
sections (Additional file  1: Fig. S3). Especially, genus 

Bacteroides showed an incremental increase from the 
cranial to the caudal section (crop < ileum < cecum). 

Relationship between alpha diversity and BW
In this study, the observed OTUs was used as a param-
eter of microbial diversity within the samples (alpha 
diversity). Relationship between observed OTUs and BW 
in each section was analyzed by linear regression analy-
sis. Observed OTUs was positively correlated with BW 
in the crop (r = 0.75, P < 0.001) and the ileum (r = 0.39, 
P = 0.087) (Fig. 2a, b). Conversely, observed OTUs was 
negatively correlated with BW in the cecum (r = −0.67, 
P  =  0.001) (Fig.  2c). These results suggest that micro-
bial diversity positively correlates with BW in the crop 
and ileum, whereas it negatively correlates to BW in the 
cecum.

BW related bacteria at each section of the GIT
A linear regression analysis was performed to determine 
which bacterial taxa were related to BW at each section 
of the GIT in the chicks. The overall significant results (r 
and P values) of analysis at the three sections are repre-
sented in Table 3. First, in the crop, weight related bac-
terial groups were explored (Additional file 1: Table S2). 
At the phylum level, Bacteroidetes (r = 0.66, P = 0.002) 
and Euryarchaeota (r  =  0.52, P  =  0.023) were posi-
tively related with BW, while Actinobacteria (r = −0.65, 
P = 0.003) was negatively related with BW. At the genus 
level, Ruminococcus (r  =  0.72, P  <  0.001) and Faecali-
bacterium (r =  0.65, P =  0.002) were positively related 
with BW, while Bifidobacterium (r = −0.64, P =  0.003) 
and Lactobacillus (r = −0.39, P = 0.099) were negatively 
related with BW.

Next, in the ileum, weight related bacterial groups 
were explored (Additional file  1: Table S3). At the phy-
lum level, Euryarchaeota (r = 0.52, P = 0.018) and Spiro-
chaetes (r = 0.47, P = 0.035) were positively related with 
BW. At the genus level, Methanobrevibacter (r  =  0.56, 
P  =  0.010) and Bifidobacterium (r  =  0.49, P  =  0.029) 
were positively related with BW, while Akkermansia 
(r = −0.51, P =  0.023) was negatively related with BW 
(Fig. 3b). Especially, Streptococcus (r = −0.81, P < 0.001) 
showed a strong negative correlation with BW (Fig. 3a).

Finally, weight related bacterial groups were explored 
in the cecum (Additional file 1: Table S4). At the phylum 
level, Lentisphaerae (r = −0.50, P =  0.023) and Verru-
comicrobia (r = −0.41, P = 0.073) were negatively related 
with BW. At the genus level, Lactococcus (r  =  0.59, 
P  =  0.006) was positively related with BW (Fig.  3c), 
while Anaerovibrio (r  =  −0.81, P  <  0.001), Prevotella 
(r  =  −0.59, P  =  0.006) and Akkermansia (r  =  −0.55, 
P = 0.022) were negatively related with BW (Fig. 3d).
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Discussion
In this study, we observed that microbial communi-
ties were clearly separated in different sections of the 
GIT in broiler chickens. Similar results were suggested 

by several previous researchers (Looft et al. 2014; Kam-
ada et al. 2013; Sekelja et al. 2012; Videnska et al. 2013); 
for example, Looft et  al. reported that ileum, cecum, 
mid-colon and feces have different microbial communi-
ties in swine at the phylum and genus level (Looft et al. 
2014). Sekelja et al. also reported that a clear separation 
of microbial composition was seen between the upper 
gut (crop and gizzard), ileum and lower gut (cecum and 
colon) in broiler chickens (Sekelja et al. 2012). That these 
distinctions may be due to different nutrient require-
ments, is a critical factor for colonizing the commensal 
bacteria because each section has different nutrient fac-
tors (Deusch et al. 2015). The crop flora may be affected 
mainly by the microbial composition in the feed because 
the crop temporarily stores feed before digestion and is 
related to the breakdown of starch, whereas the ileal flora 
may be affected mainly by the nutrient composition of 
the ingested feed because ileum has a role involving the 
nutritional absorption of digested feed. The cecum is an 
anaerobic environment and plays an important role in 
recycling urea, absorption of water and digestion of plant 
structural carbohydrates, such as cellulose and hemicel-
lulose. These varied features of each section of the GIT 
may result in the microbial community distinction.

Previous studies have revealed that the intestinal 
microbial diversity was negatively related with BW gain 
(Clarke et al. 2014; Turnbaugh et al. 2009). In our study, 
similar results were observed in the cecum, although the 

Fig. 1  Principal coordinate analysis of unweighted and weighted UniFrac. Beta diversity patterns of crop samples (n = 19), ileal samples (n = 20) 
and cecal samples (n = 20) were explored using the principal coordinate analysis (PCoA). Subject color coding: blue crop samples; yellow ileal 
samples and red cecal samples

Table 1  Relative abundance of phyla found in each section 
of the GIT

One-way ANOVA with Tukey’s post hoc test was used. Within a row, different 
superscript letters indicate significant difference (P < 0.05)
1  Pooled standard deviation

Phylum Abundance (%) SD1 P value

Crop Ileum Cecum

Cyanobacteria 12.89a 3.41b 1.34b 3.27 <0.001

Bacteroidetes 13.93a 22.15b 30.49c 5.82 <0.001

Proteobacteria 7.89a 4.26b 3.06b 2.18 <0.001

Tenericutes 0.85a 0.94a 1.63b 0.51 <0.001

Firmicutes 59.62ab 64.15a 58.37b 6.85 0.027

Euyarchaeota 0.08a 0.19b 0.16ab 0.12 0.033

Verrucomicrobia 0.09 0.06 0.22 0.21 0.057

Synergistetes 0.02 0.03 0.06 0.06 0.095

Lentisphaerae 0.02 0.04 0.03 0.02 0.118

Actinobacteria 1.18 0.95 1.05 0.35 0.133

Fibrobacteres 0.02 0.03 0.01 0.04 0.271

Spirochaetes 0.37 0.43 0.46 0.24 0.500

Fusobacteria 0.08 0.08 0.09 0.05 0.842

n 19 20 20
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reverse was seen in the crop and ileum. Several studies 
suggested that reduced gut microbial diversity is corre-
lated with several diseases such as inflammatory bowel 
disease and obesity-associated diabetes (Chang et  al. 
2008; Michail et  al. 2012; Murri et  al. 2013; Turnbaugh 
et  al. 2009). While several other studies concluded that 
microbial diversity is not related with these diseases 
(Mejia-Leon et  al. 2014; de Goffau et  al. 2014; Walters 
et al. 2014), these results are controversial as of now, and 
thus, more studies are needed.

Several weight related bacterial groups in various 
region of the GIT were explored in this study. Especially, 
the genus Streptococcus showed a significant negative cor-
relation with BW in the ileum. The genus Streptococcus 
can be divided into six groups, on the basis of 16S rRNA 
gene sequences—S. anginosus group, S. bovis group, S. 
mitis group, S. mutans group, S. pyogenes group and S. 
salivarius group (Kawamura et al. 1995). Many species of 
Streptococcus are known normal gut flora, however, some 
species are responsible for many diseases. For example, 

the S. anginosus group bacteria are associated with infec-
tions at multiple body sites, and abscess formation (Ruoff 
1988; Belko et al. 2002; Bert et al. 1998). S. mutans group 
bacteria (Loesche 1986; Simon-Soro and Mira 2015) and 
S. mitis group bacteria (Mitchell 2011; Catto et al. 1987) 
are known pathogens of the buccal cavity. In humans, S. 
acidominius is a known pathogen that causes invasive 
diseases (Wu et al. 2014) such as pneumonia (Baker and 
Carlson 2008; Akaike et al. 1988), meningitis (Finkelstein 
et al. 2003) and brain abscess (Cone et al. 2007). Our data 
is consistent with the hypothesis that pathogenic Strep-
tococcus might affect BW yet a more detailed analysis of 
the Streptococcus community is needed.

Recently many researchers revealed that Akkermansia 
muciniphila, the mucin degrading bacterium belong-
ing to the genus Akkermansia, was negatively related to 
weight gain and obesity in mice and humans (Everard 
et  al. 2013; Santacruz et  al. 2010; Everard et  al. 2011). 
Shin et  al. also, reported that A. muciniphila has anti-
diabetic potential against type 2 diabetes in high-fat diet 
fed mice (Shin et al. 2014). Similar results were obtained 
in our study. Akkermansia was inversely correlated with 
BW in the ileum and cecum, in spite of all birds having 
ingested the same feed. This suggests that the abundance 
of Akkermansia is more related to the BW, than the feed 
composition.

Many researchers reported that Firmicutes/Bacte-
roidetes (F/B) ratio increases when body mass index 
is increased, and F/B ratio is higher in the obese group 
than in the lean group (Delzenne and Cani 2011; Hilde-
brandt et  al. 2009; Ley et  al. 2006), although Clarke 
et al. suggested an opposing result (Clarke et al. 2014). 
In our study however, F/B ratio showed no significant 
relationship with BW in the ileum and cecum, although 
a negative relationship was observed in the crop (Addi-
tional file 1: Fig. S4). Moreover, Firmicutes and Bacte-
roidetes showed no significant correlation with BW in 
all parts of the GIT. More studies about the relationship 
between F/B ratio and BW are needed to explain these 
results.

Conclusions
In this study, microbial communities were explored in 
various regions of the GIT, and several weight related 
bacterial groups were identified from linear regres-
sion analysis, such as the genus Streptococcus and genus 
Akkermansia. These results broaden our understanding 
of the microbial ecosystem and show that certain bacte-
rial groups affect the BW of broiler chickens. Although 
more studies about the relationship between microbiota 
and BW are needed, these bacterial groups will be initial 
targets for improving the growth performance of broiler 
chickens.

Table 2  Relative abundance of  genera found in  each sec-
tion of the GIT

One-way ANOVA with Tukey’s post hoc test was used. Within a row, different 
superscript letters indicate significant difference (P < 0.05)
1  Pooled standard deviation

Genus Abundance (%) SD1 P value

Crop Ileum Cecum

Bacillus 4.34a 1.50b 1.37b 0.85 <0.001

Bacteroides 4.22a 7.54b 12.59c 2.66 <0.001

Oscillospira 1.00a 1.34a 2.38b 0.49 <0.001

Faecalibacterium 1.14a 1.47a 4.62b 1.30 <0.001

Blautia 0.22a 0.27a 0.44b 0.10 <0.001

Dorea 0.21a 0.30a 0.45b 0.12 <0.001

Ruminococcus 0.99a 1.24a 1.85b 0.43 <0.001

Desulfovibrio 0.09a 0.22b 0.13a 0.07 <0.001

Lactobacillus 28.62a 30.81a 18.12b 7.77 <0.001

Bilophila 0.03a 0.04a 0.10b 0.04 <0.001

Coprococcus 0.17a 0.23a 0.34b 0.11 <0.001

Staphylococcus 1.56a 1.18a 0.67b 0.60 <0.001

Streptococcus 1.18a 1.11a 0.75b 0.32 <0.001

Clostridium 0.96a 0.79ab 0.60b 0.27 <0.001

Pediococcus 0.07a 0.06a 0.04b 0.02 0.001

Prevotella 3.94a 5.66b 4.26a 1.55 0.003

Akkermansia 0.05a 0.04a 0.20b 0.20 0.033

Methanobrevibacter 0.08a 0.16b 0.15ab 0.11 0.045

Selenomonas 0.10a 0.09ab 0.06b 0.05 0.046

Bifidobacterium 0.84 0.61 0.77 0.33 0.077

Enterococcus 0.50 0.84 0.47 0.53 0.077

Lactococcus 0.09 0.05 0.03 0.16 0.489

n 19 20 20
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Methods
Birds and sample preparation
A total of 545, day-old, male, Ross 308 broiler chicks (ini-
tial mean body weight =  38.5  g) were purchased from 
a local hatchery (Yangji hatchery, Pyeongtaek, Repub-
lic of Korea). The protocol for this experiment was 
reviewed and approved by the Institutional Animal Care 
and Use Committee at Chung-Ang University (IACUC 
#: 14-0005). Birds were provided with water and feed 
ad libitum from day 0 to day 17, housed in battery cages 

(76 cm × 78 cm × 45 cm = width × length × height for 
each cage). The cages were environmentally controlled, 
with continuous light. On day 0, birds were weighed and 
tagged, and fed the standard commercial starter diet 
until day 17 (Table 4). On day 17, a total of 20 birds were 
selected out of the 545 birds. For the selection, each of 
the five heaviest and lightest birds were selected, and 
from the remaining 535 birds, 10 birds were selected by 
BW spaced at equal intervals, with the BW ranging from 
482 to 700 g (Additional file 1: Table S1). The total BW 

Fig. 2  The relationship between BW and observed OTUs in chickens. The relationship was assessed by Pearson’s correlation coefficient (r) and P 
values from simple linear regression in the crop (a), ileum (b) and cecum (c)
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ranged from 385 to 734 g (mean ± SD = 575.9 ± 134.7 g) 
for the 20 selected chicks.

On day 17, the 20 selected birds were euthanized by 
CO2 asphyxiation, and the digesta of the crop, ileum, and 
ceca were collected. The ileal digesta were collected from 
the distal two-third section of ileum from the Meckel’s 
diverticulum, to about 2  cm proximal to the ileocecal 
junction, through squeezing of the intestinal tract. All the 
samples collected from the birds were kept in a freezer at 
−20 °C for further analysis.

DNA extraction and sequencing
DNA was extracted from the crop (n =  19, one sample 
was missing), ileal (n =  20) and cecal (n =  20) digesta 
(~250  mg) using NucleoSpin®Soil Kit (Macherey–
Nagel, Düren, Germany), according to the manufac-
turer’s instructions, and stored at −20  °C. In this study, 
the V4 region of bacterial 16S rRNA gene was ampli-
fied from the total extracted DNA, because this region, 
which is commonly used in microbial community analy-
sis, provides sufficient phylogenetic richness (Zhao et al. 
2013; Caporaso et al. 2011). PCR amplification was per-
formed using the Takara Ex-taq polymerase (Takara 
Bio, Shiga, Japan) and universal primers (forward: 

5′-GGACTACHVGGGTWTCTAAT-3′, reverse: 
5′-GTGCCAGCMGCCGCGGTAA-3′). The amplifica-
tion program consisted of one cycle of 94  °C for 3 min; 
40 cycles of 94 °C for 45 s, 55 °C for 1 min, and 72 °C for 
1.5 min; and finally one cycle of 72 °C for 10 min. Ampli-
cons were separated by gel electrophoresis and purified 
using QIAquick Gel Extraction Kit (Qiagen, CA, USA).

For Illumina sequencing, DNA library was constructed 
using NEBNext Ultra DNA Library Prep Kit for Illumina 
(New England BioLabs, MA, USA), with some modi-
fications of the manufacturer’s instructions. The size 
selection of adaptor-ligated DNA and cleanup of PCR 
amplification steps were replaced with PCR purification 
using a QIAquick PCR Purification Kit (Qiagen, CA, 
USA). Adaptor ligation and index primer addition were 
performed using NEBNext Multiplex Oligos for Illumina 
(New England BioLabs, MA, USA). DNA library con-
struction was confirmed by agarose gel electrophoresis, 
and amplicons were purified using QIAquick Gel Extrac-
tion Kit. They were then sequenced on Illumina MiSeq 
platform (NICEM, SNU, Seoul, Republic of Korea). The 
16S rRNA gene sequences obtained from MiSeq were 
deposited into NCBI’s Sequence Read Archive (SRA) 
database with accession number SRP065823.

Table 3  The relationship between BW and bacterial relative abundance in each section of the GIT

r is Pearson’s correlation coefficient 
a  Three outliers were identified using Grubb’s test and removed from the cecum data 

Crop Ileum Cecum

Abundance (%) r P Abundance (%) r P Abundance (%) r P

Phylum

 Actinobacteria 1.18 −0.65 0.003 0.95 0.08 0.729 1.05 0.00 0.990

 Bacteroidetes 13.93 0.66 0.002 22.15 0.30 0.192 30.49 <0.01 0.990

 Euryarchaeota 0.08 0.52 0.023 0.19 0.52 0.018 0.16 0.14 0.558

 Firmicutes 59.62 −0.21 0.392 64.15 −0.36 0.119 58.37 0.06 0.812

 Proteobacteria 7.89 −0.17 0.482 4.26 0.10 0.672 3.06 −0.17 0.472

 Spirochaetes 0.37 0.33 0.172 0.43 0.47 0.035 0.46 0.23 0.323

 Verrucomicrobia 0.09 0.30 0.208 0.06 −0.10 0.690 0.22 −0.41 0.073

Genus

 Akkermansiaa 0.05 0.09 0.706 0.04 −0.51 0.023 0.08 −0.55 0.022

 Anaerovibrio 0.35 0.20 0.413 0.44 −0.20 0.398 0.29 −0.81 <0.001

 Bacteroides 4.22 0.54 0.016 7.54 0.05 0.834 12.59 −0.34 0.142

 Bifidobacterium 0.84 −0.64 0.003 0.61 0.49 0.029 0.77 0.01 0.981

 Faecalibacterium 1.14 0.65 0.003 1.47 0.23 0.335 4.62 0.32 0.164

 Lactobacillus 28.62 −0.39 0.099 30.81 −0.32 0.172 18.12 0.02 0.924

 Lactococcus 0.09 0.24 0.315 0.05 0.16 0.490 0.03 0.59 0.006

 Methanobrevibacter 0.08 0.52 0.024 0.16 0.56 0.010 0.15 0.18 0.435

 Prevotella 3.94 0.15 0.542 5.66 0.34 0.145 4.26 −0.59 0.006

 Ruminococcus 0.99 0.72 <0.001 1.24 0.08 0.746 1.85 −0.35 0.132

 Streptococcus 1.18 0.03 0.913 1.11 −0.81 <0.001 0.75 −0.06 0.787
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Microbial community analysis
Microbial community was analyzed by using Quantita-
tive Insights Into Microbial Ecology (QIIME) version 
1.9.0 (http://qiime.org). Raw sequence reads were qual-
ity filtered and demultiplexed. The sequence reads were 
clustered into operational taxonomic units (OTUs) at 
97  % similarity using the Greengene database. Microbial 
diversity was assessed within samples (alpha diversity) 

or between samples (beta diversity) using QIIME. Alpha 
diversity (observed OTUs) was calculated through rar-
efaction with ten iterations. Beta diversity was calculated 
on the sequence reads based on weighted and unweighted 
UniFrac distance matrices. Principal coordinate analysis 
(PCoA) was performed based on UniFrac distances and 
visualized with EMPeror Software (Vazquez-Baeza et  al. 
2013).

Fig. 3  Weight related genera in the chicken GIT. Streptococcus (a) and Akkermansia (b) were significantly correlated with BW in the ileum. Lactococ-
cus (c) and Akkermansia (d) were significantly correlated with BW in the cecum. d Three outliers were identified using Grubb’s test and removed 
from the dataset. The relationship between abundance of microbial taxa and BW was assessed by Pearson’s correlation coefficient (r) and P values 
from simple linear regression

http://qiime.org
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Statistical analysis
Statistical analysis was performed with R statistical pack-
age (version 3.0.3) (R Foundation for Statistical Com-
puting, Vienna, Austria). Abundance of microbial taxa 
was expressed as percentage of total 16S rRNA gene 
sequences. One-way analysis of variance (ANOVA) and 
post hoc Tukey’s HSD test for multiple mean comparisons 
were used to find significant differences in microbial taxa 
among each section of the GIT. Significance was assumed 
at P < 0.05. The relationship between abundance of micro-
bial taxa and BW was assessed by Pearson’s correlation 
coefficient (r) and P values from simple linear regression.
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