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Introduction
The unlicensed use of ultra-wideband (UWB) set by the United States Federal Commu-
nications Commission requires the satisfaction of −41.3 dBm/MHz noise strength at a 
frequency band ranging between 3.1 and 10.6  GHz, along with 25  % fractional band-
width and at least 500 MHz frequency bandwidth (Dullaert and Rogier 2010).

For UWB antennas, proposals have been developed to reduce interference from other 
UWB bands and for realizing a wide bandwidth with a stable radiation pattern (Kim and 
Min 2009; Kim and Kim 2010). To satisfy these requirements, a variety of structures for 
UWB antennas have been proposed, such as bow-tie antennas (Kiminami and Hirata 
2004; Dadgarpour et  al. 2009) that are easy to mount inside systems, elliptical anten-
nas (Jang and Hwang 2008), Vivaldi antennas (Hood et al. 2008), and fractal antennas 
(Oraizi and Hedayati 2011).

Two bands coexist in the unlicensed use of UWB: IEEE 802.16 WiMAX (3.3–3.8 GHz) 
and IEEE 802.1a WLAN (5.15–5.85  GHz). However, these two bands are known to 
degrade the performance as a result of their interference with UWB communication 
systems.

Thus, this paper proposes the insertion of a λg/4 resonator and a C-shaped slit into an 
antenna in order to reject both WiMAX and WLAN bands. To reject WiMAX, a pair of 
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λg/4 resonators is centered on the microstrip line, and a C-shaped slit is inserted into an 
elliptical patch. The proposed antenna satisfied the required bandwidth for UWB com-
munication systems specified by the Federal Communications Commission, while main-
taining dual-band rejection to prevent interference between bands.

The remainder of the paper is organized as follows: the “Background” section briefly 
introduces the proposal and design of the tapered slot antenna. The section, “Method-
ology and analyses of experimental data,” deals with the characteristics of the antenna, 
which were analyzed through a simulation and measurement process. The “Result 
and discussion” section presents the comprehensive results for the proposed antenna. 
Finally, in the “Conclusion”, we draw conclusions regarding the proposed antenna.

Background
Antenna design

For the structure of the proposed antenna, a λg/4 resonator and a C-shaped slit were 
inserted into an antenna. The antenna was designed with an elliptical patch structure, 
in order to reject both WiMAX and WLAN. It was fabricated using the Taconic TRF-
45 substrate, which is 1.62 mm in thickness and offers a relative permittivity of 4.5 and 
a loss tangent of 0.0035. The structure of the antenna is compact, with a total size is 
40 × 35 mm2.

The design and analysis of the antenna were facilitated with HFSS, a commercial simu-
lator tool available from Ansys. Its structure and design parameters are shown in Fig. 1 
and Table 1 (Weng et al. 2010a, b).

Two bands coexist for unlicensed use in the UWB:WiMAX (3.3–3.8 GHz) and WLAN 
(5.15–5.85 GHz). The proposed antenna rejects both of these bands using a λg/4 resona-
tor and a C-shaped slit (Sarkar et al. 2014; Wu et al. 2013).

The equivalent circuit for the proposed λg/4 resonator is shown in Fig. 2.

Fig. 1  Structure of the proposed UWB monopole antenna with dual-band rejection
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The capacitance C0 is the coupling generated between the microstrip line and the λg/4 
resonator. The capacitance C1 is derived from the voltage gradient between the λg/4 
resonator and the ground plane, whereas inductance L1 is generated due to the current 
flowing through the pin. The rejection frequency is derived as follows (Trinh-Van and 
Dao-Ngoc 2011).

In order to reject WiMAX, the following equation is used:

where Lc1_1 is the length of the resonator, and λg is a guided wavelength.

For the guided wavelength λg, an effective dielectric constant εeff must first be deter-
mined, along with a suitable length for the microstrip line. Here, f denotes the frequency, 
and c denotes the speed of light in a free space. An effective dielectric constant εeff can be 
derived with the following equation:
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Table 1  Parameters of the proposed antenna (mm)

L 35 W 40

Lf 13.05 Wf 2

r1 12 r2 10

Lc1 6.8 Wc1 3.2

Lc2 3.2 Lc1_1 11.6

Wc1_1 2 W_gnd 12

Gap1 0.6 Gap2 7.5

Fig. 2  The mechanism of the proposed λg/4 resonator
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where εr is the relative permittivity of the substrate, and h and w denote the substrate 
thickness and the width of the microstrip, respectively. Next, Lc1 and Lc2 are calculated 
such that the C-shaped slits reject WLAN, and these are derived as follows (Xu et  al. 
2012; Hong and Lancaster 2004):

Figure 3 depicts the size and look of the proposed UWB monopole antenna with dual-
band rejection.

Methodology and analyses of proposed antenna
The antenna is expressed by the reflection coefficient Γ, which is the amount of reflected 
signal due to the impedance mismatch between the source and the antenna.

The VSWR is calculated as follows (Chang 2000):

When |Γ| = 0, optimal VSWR is obtained. This means that all power is transmitted to 
the antenna, and that there is no reflection. The impedance bandwidth of the antenna 
is defined at VSWR ≤ 2, and it is the reflected value of approximately 11 % input power 
(Chang 2000). Therefore, the proposed antenna has wide impedance bandwidth and 
powerful rejection-band characteristics.

We analyzed the characteristics of the proposed antenna in terms of its ability to per-
form dual-band rejection by simulating its current distribution, as shown in Fig. 4.

Figure 4 shows the field distribution pattern on the patch, along with its modification 
with a C-shaped slit and λg/4 resonators. The proposed antenna had a concentrated cur-
rent at the λg/4 resonator over the 3.5 GHz band (WiMAX), and a further concentra-
tion at the C-shape slits over the 5.5 GHz band (WLAN). The dual-band rejection and 
impedance bandwidth for the proposed antenna were analyzed for each structure using 
the voltage standing-wave ratio (VSWR). All three structures and their corresponding 
VSWR are shown in Figs. 5 and 6, respectively.
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2
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1+ |Ŵ|
1− |Ŵ|

Fig. 3  Size and look of the proposed antenna. a Front side, b Rear side
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As shown in Fig. 6, Structure-1 converged with a VSWR ≤ 2 over the 3.27–10.48 GHz 
band, thereby satisfying the impedance bandwidth for standard UWB communication 
systems. Structure-2 successfully rejected the 3.27–3.87 GHz band, and its impedance 

Fig. 4  Simulated analysis of the current distribution for the proposed antenna. a 3.5 GHz band (WiMAX), b 
5.5 GHz band (WLAN)

Fig. 5  Three structuresfor the proposed antenna. a Structure-1, b Structure-2, c Structure-3

Fig. 6  VSWR analysis using a simulationof the proposed antenna
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bandwidth converged with a VSWR ≤  2 at the 2.99–9.50 GHz band. Structure-3 suc-
cessfully rejected both the 3.28–3.85  GHz band and the 4.7–6.03  GHz band, and its 
impedance bandwidth converged with a VSWR ≤ 2 at the 2.94–9.63 GHz band. There-
fore, we demonstrated that dual-band rejection is feasible, and we verified that the pro-
posed structure offers suitably high bandwidth for UWB communications.

Either the WLAN band or the WiMAX band can be rejected with physical changes to 
the C-shape slits or the λg/4 resonator of the proposed antenna, respectively. Thus, the 
WiMAX band can be rejected through physical changes to the λg/4 resonator, as shown 
in Fig. 7.

Figure 7 shows that, as the length of the λg/4 resonator increased from 9.6 to 13.6 mm, 
the rejected band shifted to a higher frequency. At 11.6  mm, the WiMAX band was 
exclusively rejected.

The WLAN band can likewise be rejected by making physical changes to the C-shaped 
slits, as shown in Fig. 8.

Fig. 7  VSWR analysis of the λg/4 resonator

Fig. 8  VSWR analysis of the C-shaped slit
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Figure 8 shows that, as the length of the C-shaped slit increased from 6.4 to 7.4 mm, 
the rejected band shifted to a lower frequency. At 6.8 mm, the WLAN band was exclu-
sively rejected.

In order to confirm the reliability of the band rejections with the proposed antenna, we 
analyzed the gaps between the antenna and the λg/4 resonator and between the antenna 
and the C-shaped slit. Our analysis showed that a higher VSWR resulted in superior 
band rejections, owing to an impedance mismatch. We performed this analysis by vary-
ing the gap between the λg/4 resonator and the antenna to 1.2 mm, the results for which 
(i.e., exclusively rejecting WiMAX) are shown in Fig. 9.

As shown in Fig. 9, as the gap narrowed between the antenna and the λg/4 resonator, 
the VSWR increased and antenna gain reduced to below −10 dBi.

We then modified the gap between the C-shaped slit and the antenna to 1 mm, and the 
results of this modification (i.e., exclusively rejecting WLAN) are shown in Fig. 10.

As shown in Fig. 10, as the gap narrowed between the antenna and the C-shaped slit, 
the VSWR increased and antenna gain reduced to below −8 dBi.

The overall characteristics of the proposed antenna in terms of its ability to reject 
WLAN and WiMAX are provided in Table 2.

Fig. 9  Analysis of the WiMAX-band rejection. a VSWR, b Antenna gain
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Table  2 shows that, for WiMAX, the antenna gain was −10.7  dB when Gap 1 was 
0.6 mm. For WLAN, the antenna gain was −8.7 dB when Gap 2 was 0.75 mm. These 
results confirm the feasibility of the proposed antenna with dual-band rejection.

Fig. 10  Analysis of the WLAN-band rejection. a VSWR, b antenna gain

Table 2  Analysis of the antenna’s band rejection

VSWR Gain (dB)

WiMAX

 Gap 1: 0.6 mm 37.5 −10.7

 Gap 1: 1.8 mm 16.2 −4.8

 Gap 1: 3.0 mm 8.6 −0.1

 Gap 1: 4.2 mm 5.5 1.5

WLAN

 Gap 2: 0.75 mm 44.9 −8.7

 Gap 2: 1.75 mm 13.5 −0.2

 Gap 2: 2.75 mm 5.3 1.9

 Gap 2: 3.75 mm 4.0 2.8
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The UWB monopole patch antenna was also evaluated using a simulation, and these 
results are shown in Fig. 11.

As shown in Fig. 11, the impedance bandwidth of the proposed antenna satisfied dual-
band rejection at two bands: 3.3–3.85 and 4.8–6.1 GHz. Its impedance bandwidth con-
verged with a VSWR ≤ 2 over the 2.9–9.3 GHz band. Therefore, the simulation results 
are consistent with the measurement results.

To further evaluate the proposed antenna, we used a simulation to analyze the radia-
tion pattern along the E-plane (XZ-plane) and H-plane (YZ-plane) over two bands, 4 
and 7 GHz, the results for which are shown in Fig. 12.

As shown in Fig.  12, the analysis of the radiation pattern of the proposed antenna 
demonstrated its omnidirectional characteristics at the 4 and 7 GHz bands.

The antenna gain of the proposed antenna over all bands was also analyzed, and the 
results from this analysis are shown in Fig. 13.

As shown in Fig. 13, the analysis of the proposed antenna’s gain revealed that the simu-
lation and measurement results were similar. However, the simulation analysis results 
and measurement results at 5.5  GHz were different by approximately 6 dBi. This was 
because of the loss in the physical size of the C-shaped slot during the production pro-
cess. However, the band-rejection proceeded downward below 0 dBi, which is a suitable 
value.

Results and discussion
The overall analysis results in Table 3 show that the proposed antenna offers the appro-
priate bandwidth for UWB communication systems, coupled with dual-band rejection 
to avoid interference between communication systems. These results also show that the 
radiation pattern of the antenna is omnidirectional.

A mismatch was observed between the simulation results and the measured results for 
the proposed antenna. This occurred in two forms: the first pertained to errors during 
the manufacturing process, and the second to loss between the antenna and the connec-
tor. However, this mismatch is not a major problem with the proposed performance. On 
this basis, the impedance bandwidth was achieved with a VSWR ≤ 2, and the rejected 
band proceeded downward below 0 dBi.

Fig. 11  VSWR analysis of the proposed antenna
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Fig. 12  Analysis on the radiation pattern of the proposed antenna. a E-plane of 4 GHz (XZ-plane), b H-plane 
of 4 GHz (YZ-plane), c E-plane of 7 GHz (XZ-plane), d H-plane of 7 GHz (YZ-plane)

Fig. 13  Analysis on the antenna gain of the proposed antenna



Page 11 of 12Kim and Choi ﻿SpringerPlus  (2016) 5:883 

The proposed antenna is compared to other antennas with rejected-band characteris-
tics in Table 4. The advantage of the proposed antenna lies in its compact design and the 
fact that it has a dual-band rejection characteristic.

Conclusion
In this paper, we proposed a UWB monopole patch antenna with dual-band rejection. 
The impedance bandwidth of the proposed antenna satisfied VSWR ≤ 2 at the 2.9–9.3 
GHz band and dual-band rejection from an impedance mismatch at the 3.3–3.85 and 
4.8–6.1 GHz bands. Furthermore, we demonstrated that the antenna’s radiation pattern 
is omnidirectional, and that the antenna gain proceeded downward to below 0 dBi for 
dual-band rejection. Furthermore, the proposed antenna offers the advantage of dual-
band rejection and a compact design, compared with different antennas.

The design of the proposed antenna was optimized through HFSS, a commercial elec-
tromagnetic simulator provided by Ansys. The antenna was designed using the Taconic 
TRF-45 substrate, which is 1.62 mm thick with a relative permittivity of 4.5 and a loss 
tangent of 0.0035.

Table 3  Overall analysis of the proposed antenna

Simulation results

 Impedance bandwidth 2.94–9.63 GHz

 Dual-band notched bandwidth 3.28–3.85 GHz

4.7–6.03 GHz

 Antenna gain [dBi] 3 GHz 2.53 dB

3.5 GHz −9.0 dB

5 GHz 2.50 dB

5.5 GHz −8.7 dB

7 GHz 5.09 dB

9 GHz 4.31 dB

Measurement results

 Impedance bandwidth 2.9–9.3 GHz

 Dual-band notched bandwidth 3.3–3.85 GHz

4.8–6.1 GHz

 Antenna gain 3 GHz 1.95 dB

3.5 GHz −8.4 dB

5 GHz 2.79 dB

5.5 GHz −1.5 dB

7 GHz 4.51 dB

9 GHz 3.50 dB

Table 4  Comparison of the proposed antenna and different antennas

Antenna Rejected band (GHz) Dimensions (mm2)

Trinh-Van and Dao-Ngoc (2011) 3.375–3.875 42.5 × 34

5.325–6.150

Dong et al. (2014) 4.96–5.42 38 × 44

5.71–5.91

Satyanarayana and Mulgi (2015) 3.2–4.2 38 × 50

Proposed antenna 3.2–3.85 40 × 35

4.7–6.03
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