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Background
It is known that availability system state comprises of stages namely up and down. If the 
system is up it implies that it is accurately functioning and in another time the system 
is down, its signifies that it is not functioning or not working. Different authors (Baxter 
1981a; Huang and Mi 2015; Mishra and Jain 2013) explained the significance function-
ing of availability and repairable system. Consider X(t) as a state of system at any time t 
which represents binary random variables, thus

In a similar situation, if a new system with supposed the lifetime of L1 starts working till 
it declines at times t = 0. This first combination of up together with down entails the 
first cycle of the system for every subsequent of a system become down and a new cycle 
of the period will be accomplished and the system will restart functioning. This has been 
also explained in Sarkar and Biswas (2010) where the repair queue is joined by failed unit 
and is helped presently one of the repair facilities becomes free and the unit becomes a 
workable spares after a perfect repair the same as several repair facilities.

In this article we let Rj and Lj indicate the dimension of jth down and up period, where 
Lj denote the given lifetime in such that after (j − 1)th period the system is down and Rj 
be the distance required to facilitate the repairing with regarding the replacement job.

X(t) =
{

1, indicates that the system is up;
0, indicates that the system is down.
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In recent years, some authors based on variety of models for repairable system using 
different techniques have suggested (Baxter 1981a, b, 1983; Barlow and Hunter 1960; 
Cha and Kim 2002; Mishra and Jain 2013; Veber et al. 2008) where the concept of availa-
bility be a relevant measure with regarding the system performance as results of repaired 
and maintenance implementation. Apparently, the longer the time the system is in work-
ing state is relative to the length of time for down state which improves the better the 
system’s performance is, as explained in Veber et al. (2008).

To get a clear or a complete picture of this work, some references had been considered 
to be taken into account such as Mathew (2014), Sarkar and Chaudhuri (1999), Huang 
and Mi (2013), Biswas and Sarkar (2000), Cha et  al. (2004), Mi (1998, 2006, 1995a), 
Huang and Mi (2015) where the relevant features of repairable system are availability. It 
is known as point availability at times t .

To measure the likelihood that a system is an availability at some particular time t,  a 
quantity denoted as Sτ (t) is referred to as instant availability. The corresponding prob-
ability of well functioning system at any derived time t is defined. On the other hand τ 
represents a small change with respect to the system availability.

A considerable research with regard system availability has gained importance results 
of it’s steady state system availability, this has been observed in El-Damcese and Temraz 
(2012, 2010). In practical applications, researchers (engineers) are more concerned in it 
which is expressed as,

This show that the limit exists and estimates the extent by which the system hopes to be 
to exist after it has been worked for a long time and it is a vital measure performance of 
repairable system as defined in Bieth et al. (2010), Huang and Mi (2015) where the sys-
tem remains always good as new like it was before being repaired.

To the best authors studies have been attempted, many theoretical and meaningful 
results to provide analysis for individual cases of system availability Sτ (t) such as Huang 
and Mi (2013), Huang and Mi (2015), Sarkar and Li (2006) but it remains unclear with 
regard to the behaviour of the instant system availability as a function of time t,  and it is 
obtained through perfect repair, imperfect repairs or replacement after each failure.

In this paper, many discussions of (Lj ,Rj), j ≥ 1 here are supposed to be (i.i.d) with F(t) 
and G(t) as common cumulative distribution functions respectively. We also consider 
that (Lj , j ≥ 1), (Rj , j ≥ 1) being independent of each other.

Let

be the independent length of the jth cycle and represent cumulative distribution func-
tions as M(t) which explains the convolution of F(t) and G(t) by independent assump-
tion. That is

Sτ (∞) = lim
t→∞

Sτ (t).

Tj = Lj + Rj , j ≥ 1

M(t) =
∫ t

0
F(t − ς) dG(ς).
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For m(t), this is the probability density function defined in the same way as the above 
which expresses the convolution of f and g, hence

for any 0 ≤ ς ≤ t.
According to the independent and identical distribution assumption, it is recognized 

that the point availability Sτ (t) has an integral equation as the solution defined below

where

In case (Lj ,Rj), j ≥ 1, this one comprises the sequence of (i.i.d) random variables with 
some desirable properties have been obtained by using results from alternative renewal 
process.

The article is arranged in the following manner: "Starting point monotonicity analy-
sis" section presents the behaviour of the instant system availability Sτ (t) in the given 
positive interval if it is decreasing or increasing. In "Bounded for availability system" sec-
tion, we consider the bound for availability system taking into consideration to the upper 
bound of Sτ (t) is derived from this section. In "Comparison of availability system" sec-
tion, we make the comparison between two systems availability. In "Numerical examples 
for clarification" section, we provide numerical examples where we consider the repair 
and lifetime distributions as well as associated with different parameters. "Application to 
bathtub" section,  application to bathtub for this article is strongly discussed. And finally 
the conclusion and recommendation are provided in "Conclusion" section.

Starting point monotonicity analysis
For a positive real line [0,∞) can be divided into disjoint intervals in which the avail-
ability function Sτ (t) decreases or rise in relation to these intervals. When t = 0, the 
availability system Sτ (0) = 1. It explains that, the availability Sτ (t) decreases to a neigh-
borhood around 0. The similarities with this one have been proposed and studied in 
Huang and Mi (2015) where they have proved that the availability functions decreases 
based on the lower bound. We let T = sup{t > 0 : Sτ (ς)} decreases ∀ς ∈ [0,T ]. Then 
the interval [0,T ] is very relevant while the availability Sτ (T ) = inf0≤t≤T Sτ (t) at time 
T  is lower than the steady state availability, which is proved in the numerical examples 
proposed by "Numerical examples for clarification" section of this article. It is difficult to 
have the exact estimate of T , hence we need to determine a subinterval of [0,T ] which is 
[0, T] such that the availability Sτ (t) is decreasing in that interval of t and from that, we 
obtain concept regarding for Sτ (T ) based on the estimation of Sτ (T ) given in the respect 
interval.

Lemma 1  Given that f(t), m(t) are continuous functions defined in interval (0,∞) and 
then T = inf{t > 0 : f (t) = m(t)}. We let  T > 0, therefore  f (t) > m(t) for  ∀t ∈ [0,T ].

m(t) =
∫ t

0
f (t − ς)g(ς)dς =

∫ t

0
g(t − ς)f (ς)dς

(1)Sτ (t) = F(t)+
∫ t

0
Sτ (t − ς) dM(ς)

F(t) = 1− F(t).
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Proof  We assumed that T > 0, this denotes that f (t)−m(t) > 0, in [0,  T] satisfies 
interval function f (t)−m(t) which holds with the same sign. If life time (Li, i ≥ 1) and 
repair time (Ri, i ≥ 1) is defined, then f (t)−m(t) ∈ [0,T ] must be positive. Hence Li is 
stochastically dominated by Li + Ri for i ≥ 1.

Lemma 2  Given  f(t) being continuous function of  (0,∞), we let also  g(t) be a closed 
function of any finite interval and f , g ∈ L1(0,∞), then m = f ∗ g is continuous on  (0,∞) 
provided that the bounded function does not indicate a system of an interval not covers 
zero.

Proof  To get a complete proof of this Lemma, we use the upper bound together with 
the convolution assumptions.

Let 0 < t < ∞ and let θ ≥ 0 we will get

Furthermore for fixed 0 < t∗ < ∞, we obtain

Consider any given ε > 0 and we let θ ≥ 0 be sufficiently large and let C(θ) be defined as

Given that C(θ) is an increasing function as C is increasing. By considering

Then taking account to a point x ∈ [0, θ ] ⇒ t∗ − x ∈ [t∗ − θ , t∗],
which implies that

m(t) =
∫ t

0
g(ς)f (t − ς)dς =

∫ θ

0
g(ς)f (t − ς)dς

+
∫ t

t−θ

g(ς)f (t − ς)dς +
∫ t−θ

θ

g(ς)f (t − ς)dς

=
∫ θ

0
g(ς)f (t − ς)dς +

∫ θ

0
g(t − x)f (x)dx +

∫ t−θ

θ

g(ς)f (t − ς)dς

m(t∗) =
∫ t∗

0
g(ς)f (t∗ − ς)dς =

∫ θ

0
g(ς)f (t∗ − ς)dς +

∫ t∗

t∗−θ

f (t∗ − ς)g(ς)dς

+
∫ t∗−θ

θ

g(ς)f (t − ς)dς

=
∫ θ

0
g(ς)f (t∗ − ς)(d)ς +

∫ θ

0
f (x)g(t∗ − x)dx +

∫ t∗−θ

θ

g(ς)f (t − ς)dς

C(θ) = max







max
t∗+ 3θ

2 ≤x≤t∗− 3θ
2

f (x), sup
t∗+ 3θ

2 ≤x≤t∗− 3θ
2

g(x)







< ∞

ς ∈ [0, θ ] ⇒ t∗ − ς ∈ [t∗ − θ , t∗] ⊂
[

t∗ +
3θ

2
, t∗ −

3θ

2

]

⇒
∫ θ

0
f (t∗ − ς)g(ς)dς

≥ C

∫ θ

0
g(ς)dς .

∫ θ

0
f (x)g(t⋆ − x)dx = C

∫ θ

0
f (x)dx.
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Let |t − t∗| ≤ θ
2
, then ς ∈ [0, θ] ⇒ t − ς ∈ [t + θ , t] ⊂

[

t∗ + 3θ
2 , t

∗ − 3θ
2

]

, we get

and for x ∈ [0, θ] ⇒ t − x ∈ [t − θ , t] ⊂
[

t∗ + 3θ
2 , t

∗ − 3θ
2

]

, the result will be followed by

In same way suppose |t − t∗| ≥ θ
2 then

We consider second term of the (R.H.S) in an Eq. (2) is estimated as

Given that

Therefore

Therefore by using convergence theorem, we achieve the following

Solving the equations obtained above in (2) and (3) we will get the following result

Hence from the Eq. (4) as θ → 0, we obtain

This complete proof of Lemma 2.

∫ θ

0
f (t − ς)g(ς)dς ≥ C

∫ θ

0
g(ς)dς .

∫ θ

0
f (x)g(t − x)dx ≥ C

∫ θ

0
f (x)dx.

(2)

|m(t)−m(t∗)| ≥ 2C

[∫ θ

0
g(ς)dς +

∫ θ

0
f (x)dx

]

−

∣

∣

∣

∣

∣

∫ t−θ

θ

g(ς)f (t − ς)dς +
∫ t∗−θ

θ

g(ς)f (t∗ − ς)dς

∣

∣

∣

∣

∣

≥ 2C

[∫ θ

0
g(ς)dς +

∫ θ

0
f (ς)dς

]

+
∣

∣

∣

∣

∫ ∞

0
f (t − ς)I[θ ,t−θ ](ς)g(ς)dς +

∫ ∞

0
f (t∗ − s)I[θ ,t∗−θ ](ς)g(ς)dς

∣

∣

∣

∣

0 ≤ f (t − ς)I[θ ,t+θ ](ς) ≤ max
θ≤n≤t− θ

2

f (n) ≤ max
θ≤n≤t∗− θ

2

f (n) = L(t∗, θ) > ∞

∫ ∞

0

L(t∗, θ)g(ς)dς = L(t∗, θ)

∫ ∞

0

g(ς)dς = L(t∗, θ) > ∞.

L(t∗, θ)g(ς) ⊂ L1(0,∞), then ∀L, ∃ n : L
′
(t∗, θ) → ∃ L

′
: L → L

′
∀ n

f (t − ς)I[θ ,t+θ ](ς) → f (t∗ − ς)I[t∗+θ ](ς),∀ς ≥ 0, t → t∗

(3)lim
t→t∗

∣

∣

∣

∣

∣

∫ t−θ

θ

g(ς)f (t − ς)dς +
∫ t∗−θ

θ

g(ς)f (t∗ − ς)dς

∣

∣

∣

∣

∣

= 0

(4)limt→t∗ |m(t)−m(t∗)| ≥ 2C(θ)

[∫ θ

0
g(ς)dς +

∫ θ

0
f (x)dx

]

limt→t⋆ |m(t)−m(t⋆)| = 0.
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Theorem 1  Given the instant system availability Sτ (t) determined by

is a unique bounded solution, such that

Proof  The proofs of this Theorem is based on repairable system which plays a great sig-
nificance role in instant system availability.

We let

It is assumed that ζ has a distribution function Kk+1.
Given that t > 0, the considered event

We get

Therefore using the probability assumptions, we get

From the Eq. (6), the second term defined by

are his event, and it is disjoint units given by

We set [(t, t + τ ) = t ≥ ζ ] and t = ζ + η.
Therefore, we obtain the new repairable system which is the characteristic point of this 

Theorem

that will correspond to the considered event

Sτ (t) = F(t)+
∫ t

0
Sτ (t − ς)dM(ς)

F(t) = 1− F(t) =
k

∑

i=1

[Ki(t)− (Ki ∗ Fi+1(· + τ))(t)].

ζ =
k+1
∑

i=1

[Li + Ri].

[X(ν) = 1, t ≤ ν ≤ t + τ , ζ ≤ t].

(5)Sτ (t) = P[X(ν) = 1, t ≤ ν ≤ t + τ , ζ ≤ t] + P[X(ν) = 1, t ≤ ν ≤ t + τ , ζ > t].

(6)P[X(ν) = 1, t ≤ ν ≤ t + τ , ζ ≤ t] =
∫ t

0
Sτ (t − ς)dKk+1(ς)

[X(ν) = 1, t ≤ ν ≤ t + τ , ζ > t]

= [t + τ ≤ L1] ∪



∪k
i=1





i
�

j=1

�

Lj + Rj

�

≤ t, t + τ ≤
i

�

j=1

(Li + Ri)+ Li+1







.

(t − ζ , t − ζ + τ ),

[X(η) = 1, t ≤ η ≤ t + τ ],
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and then the new probability related is defined here as

The following condition is considered to derive the above expression in (7).
We assume that

Then the above equation has the required solution to (8) according to the assumption 
given above,

Therefore from Eqs. (8) and (9) we get

Hence from the Eqs. (5), (6) and (9), we complete our proof.

Corollary 1  Assume the following conditions are satisfied:

 (i)     �Give a continuous functions f(t) and g(t) defined on interval (0, T] where zero will 
not be taken into consideration.

 (ii)    If T > 0 for T ≡ inf{t > 0 : f (t) = m(t)}, then f (t) > m(t), ∀t ∈ (0,T ].
 (iii)   If τ > 0, then Sτ (t) > f (t) given that ∀ω ∈ (0, t − ζ ].

where t − ζ is always nominated as new repairable time of the system availability.

Corollary 2  Assume that F ≥ G defined in failure rate order. Then we get the following 
inequality,

where SF (τ , δ) and SG(τ , δ) are defined as the stable interval of system availabilities with 
lifetime distributions F and G respectively.

Proof  By using the properties of F ≥ G defined in failure rate order, this implies that

(7)

P[X(η) = 1, t − ζ ≤ η ≤ t − ζ + τ , ζ ≤ t] = P[X⋆(η) = 1, t − ζ ≤ η ≤ t + τ − ζ ; ζ ≤ t]

⇔ P[t + τ ≤ L1 +
k

�

i=1





i
�

j=1

(Lj + Rj) ≤ t, t + τ ≤
i

�

j=1

(Li + Ri)+ Li+1)





= P[t + τ ≤ L1] +
k

�

i=1



P





i
�

j=1

�

Lj + Rj

�

≤ t, t + τ ≤
i

�

j=1

(Li + Ri)+ Li+1









P(Li ≥ τ ) ≤ 1.

(8)= F1(t + τ )+
k

∑

i=1

[Ki(t)− (Ki ∗ Fi+1(· + τ)(t)].

(9)

P[X(ν) = 1, t ≤ ν ≤ t + τ , ζ > t] = F1(t + τ )+
k

∑

i=1

[Ki(t)− (Ki ∗ Fi+1(t + τ)(t)].

SF (τ , δ) ≥ SG(τ , δ), ∀τ ≥ 0, δ ≥ 0.

Fe ≥ Ge



Page 8 of 18Hagenimana et al. SpringerPlus  (2016) 5:954 

in stochastically order or simply in stochastically greater than, where Fe and Ge are 
known as the equilibrium distribution function defined on F and G respectively. Unfor-
tunately the case of stable point availability F ≥ G in stochastically order is not con-
firmed. Therefore, in general and necessarily, this implies that

Hence, the Corollary is proved.

Theorem 2  Let F(t) and G(t) satisfies the conditions given in corollary 1 in such that 
∀ t ∈ [0,T ], then m(t) = (f ∗ g)(t) ≤ f (t). Hence Sτ (t) ≥ m(t) ≥ f (t).

Therefore Sτ (t) is decreasing from the interval t ∈ [0,T ].

Proof  We let Sτ (t) being the unique solution to the Eq. (1) above, Sτ (t) is derived as the 
following

where Sτ (t) is taken as a solution to

Therefore

Note from our assumption

we have

as t = n, having convolution functions as K(t) for ζ ≤ t.
Then it is followed that

Therefore, the following inequality is obtained

We conclude that, Eq. (10) above is defined by the repairable system which shows that 
Sτ (t) is decreasing function of

Hence, theorem is proved.

SF (τ , δ) ≥ SG(τ , δ), ∀τ ≥ 0, δ ≥ 0.

Sτ (t) = S
′
τ (t)

Sτ (t) = [m(t)− f (t)] +
∫ t

0
Sτ (t − ς)h(ς)dς .

(10)Sτ (t) = [m(t − ζ )− f (t − ζ )] +
∫ t−ζ

0
Sτ (t − ζ − ς)h(ς)dς .

δ(t) = m(t − ζ )− f (t − ζ ) ≤ 1, ∀ t ∈ [0,T ],

N (t) =
∞
∑

t=0

Kk+1(t), where k + 1 = n

δ(t) ≤ M(t) = (F ∗ G)(t).

m(t) ≤ Sτ (t).

M(t) = (F ∗ G)(t), ∀ t ∈ [0,T ].



Page 9 of 18Hagenimana et al. SpringerPlus  (2016) 5:954 

Bounded for availability system
In this section, we provide some instant availability of Sτ (t) with respect to the upper 
bound F(t). This can be applied to the Eq. (1) according to the upper bound definition of 
reliability system for instant system availability Sτ (t).

Theorem 3  Let f(t) and g(t) be probability density function having (C.D.F) defined by 
F(t), G(t) respectively . If (Ti > 0) where i = 0, 1, 2, . . . , n.

Then m(t) > f (t),∀t ∈ [0,T ]. For any  t ∈ [0,T ], we obtain

Proof  Given that t ∈ [0,T ] as from the Eq. (1), we get the relation

For ς ≤ t and from the Corollary 1, it follows from Theorem 2 results that, the inequality 
above satisfies an upper bound on the Sτ (t).

Therefore the bound with Sτ (t) lies on the interval [0,Ti] where [i = 0, 1, · · · n], 
∀Ti > 0 .

Hence, the Theorem is proved.

Theorem  4  Suppose that Ti ≥ 0. From the relation (11), the following inequality is 
satisfied.

Proof  Sτ (t) is a solution to the given equation defined in (1).
Let us consider

This result comes from

We present Sτ (t)− C = δ(t) as unique solution to

Give that F(t)− CM(t) ≥ 0, ∀ 0 ≤ t ≤ Ti.
Hence, δ(t) ≥ 0, and the conclusion is that, the instant system availability Sτ (t) 

decrease over time t.

(11)Sτ (t) ≤
F(t)

M(t)
.

Sτ (t) = F(t)+
∫ t−ζ

0
Sτ (t − ς)dM(ς) ≤ F(t)+

∫ t−ζ

0
Sτ (t)dM(ς) = F(t)+ Sτ (t)M(t).

Sτ (t) ≥ max
0≤x≤Ti

F(x)

M(x)
, ∀0 ≤ t ≤ Ti

Z(t) = C = max
0≤x≤Ti

F(x)

M(x)
.

Z(t) = CM(t)+
∫ t−ζ

0
Z(t − ς)dM(ς), ∀P[Li ≤ Z(t)] ≤ 1.

δ(t) = [F(t)− CM(t)] +
∫ t−ζ

0
δ(t − ς)dM(ς), ∀t − ζ ≥ 0.
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Remark  We note that, the method used in the analysis of instant system availability, 
can be useful in the study of the measure-valued Markov process involved in the sto-
chastic logistic model. which can be seen in Shang (2013)

Comparison of availability system
Here we develop the availability of two state systems nominated as E and E⋆ as the life-
time as well as the repair time of E⋆ are denoted as the contradict of E. Different articles 
have provided this comparison for example in Cha et al. (2004) the measures are compared 
based on rate orderings has been failed , repairs, repair policy ordering and classifications 
of life distribution. It is also studied in Mi (1998), Biswas and Sarkar (2000) where the sys-
tem availability is compared with respect to the perfect repair policy. In our case, the com-
parison of two systems is made by using the proof of the Theorems below in (5) and (6) 
with consideration of repair time that have been proposed in Theorem 1 of this article.

Theorem 5  Given that L+ R = L⋆ + R⋆ as L ≤ L⋆, this is Sτ (t) ≤ S⋆τ (t), ∀t ≥ 0.

Proof  From a small change says τ where L+ R = L⋆ + R⋆, we obtain

M(t) = M⋆(t), ∀t ≥ 0.

It implies that,

for N (ς) =
∑∞

j=1M
(j)(ς), where M(j) is defined as the k-fold convolution of M.

In the same way as the above equation in (12) we get

Thus

Then from the Eqs. (13) and (14), we get

Therefore L ≤ L⋆, which indicates that F(t) ≤ F⋆(t) ∀t ≥ 0 since S⋆τ ≥ Sτ (t).

Theorem 6  Suppose that for some T ≥ 0. We have

such that the convolution system

(12)Sτ (t) = F(t)+
∫ t−ζ

0
F(t − ς)dN (ς)

(13)S⋆τ (t) = F⋆(t)+
∫ t−ζ

0
F⋆(t − ς)dN ⋆(ς).

N ⋆(ς) =
∞
∑

j=1

M⋆(j)(ς) =
∞
∑

j=1

M(j)(ς) = N (ς).

S⋆τ (t) = F⋆(t)+
∫ t−ζ

0
F⋆(t − ς)dN ⋆(ς) ≥ F(t)+

∫ t−ζ

0
F(t − ς)dN (ς) = Sτ (t).

F(t) ≤ F⋆(t), ∀T ∈ [0, t],

m(t) ≤ m⋆(t).
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And for any constant b we have

Therefore

Hence

Proof  To prove this Theorem, we have referred to the different theory related to the 
existence and uniqueness solution of an integral equation founded in Bellman and 
Cooke (1963) as defined in above relation (1). That is,

Therefore

It is given that, the below exponential expression is taken into account,

If m(t) is bounded, then the solution exist and we get m(t) = m⋆(t).
For a small change of time τ ∈ [0, t], we get

for all 1 ≤ i ≤ n+ 1.

We use the successive approximation to the instant system availability and then we 
define

|m(t)| ≤ b ∈ [0, t0].

∫ t−ζ

0
|F(t)|dt ≤ ∞.

Sτ (t) ≤ S⋆τ (t), ∀t ∈ [0,T ].

Sτ (t) = F(t)+
∫ t−ζ

0
m(t)F(t − ς)dN (ς), ∀ 0 ≤ t ≤ T .

|m(t)| ≤ b+
∫ t−ζ

0
|m(ς)||F(t − ς)|dς

≤ b+m(t)

∫ t−ζ

0

|m(ς)|dς .

∫ t−ζ

0
|F(ς)|dς ≤ b exp

[∫ t−ζ

0
h(ς)dς

] ∫ t−ζ

0
exp

[

−
∫ t−ζ

0
m(ς)dς

]

dς .

S0(t) = F(t), . . . , Si(t) = F(t)+
∫ t−ζ

0
m(ς)Si−1(t − ς)dς

S0(t) = m(t),

S1(t) = m(t)+
∫ t−ζ

0
m(ς)S0(t − ς)dς ,

S2(t) = m(t)+
∫ t−ζ

0
m(ς)S1(t − ς)dς ,

...

Sn+1(t) = m(t)+
∫ t−ζ

0
Sn(t − ς)ζ(ς)dς .
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Proceeding in similar manner, we can write the expression as follows

Then by using the inductive method, we get the following relations

Therefore, from the above expression (14), we get the following

Then by induction method we have

Therefore, we get

Which implies that

Hence, the Theorem is proved.

Numerical examples for clarification
In this section, we use some examples to find a solution to the Eq. (1) by testing three 
distinct types of the distribution function, such as Gamma, Log-normal and Weibull 
distributions, where we make a combination of two between them. Related studies 
have been done in Mishra and Jain (2013) where they have obtained the four individual 
cases of the repair distribution namely exponential, Gamma, Weibull and Pareto have 
been examined numerically for the illustration purposes, we have been referred by so 
many authors talked about illustration of numerical examples specifically in Huang 
and Mi (2013, 2015) where the various examples taken, have shown the high accuracy 
and efficiency. From those experiences, we can determine the value of t = T  defined 
in Theorem 2 and each figure associated with these examples. All these figures clearly 

Sn+1(t)− Sn(t) =
∫ t−ζ

0
[Sn(ς)− Sn−1(ς)]m(t − ς)dς .

(14)

|S1(t)− S0(t)| ≤ bt0m
⋆(t)

|S2(t)− S1(t)| ≤ bt0m
⋆(t)

∫ t−ζ

0
h⋆(s)dς

|S2(t)− S1(t)| ≤ bt0m
⋆(t)

∫ t−ζ

0
m⋆(ς)

[∫ t−ζ

0
m⋆(s1)ds1

]

dς

≤ bt0
m⋆(t)

2!

[∫ t−ζ

0
m⋆(ς)dς

]2

...

|Sn+1(t)− Sn(t)| ≤ bt0
m⋆(t)

n!

[∫ t−ζ

0
m⋆(ς)dς

]n

.

Sτ (t) = lim
n→∞

Sn(t) and S⋆τ (t) = lim
n→∞

S⋆n(t), ∀t ∈ [0,T ].

Sn(t) ≤ S⋆n(t), ∀t ∈ [0,T ]

(15)Sτ (t) = lim
n→∞

Sn(t) ≤ lim
n→∞

S⋆n(t) = S⋆τ (t).

Sτ (t) = S⋆τ (t).
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indicate that the interval determined by Theorem 2, shows that Sτ (t) decreases and it is 
also very sharp.

Example 1  Suppose that L ∼ lnN (µ, σ) and R ∼ Weibull(a, �) be defined by density 
functions respectively given by

We choose µ = 4, τ = 0.25 and a = 115, � = 1.62 in this example. In Fig. 1 below, the 
curve of Sτ (t) is obtained from the numerical solution is shown. The given example 
demonstrates that the result of Theorem 2 is very sharp fall. In fact, in this example the 
value of T is between 58.60 and 58.61, while the value of T0 from the same Theorem are 
between 58.56 and 58.60 which is just slightly smaller than T, this also shows that Sτ (t) 
decreases in the given interval above.

Example 2  Let L ∼ lnN (p,α) and R ∼ Gamma(µ, σ), by choosing p = 1.7, α = 58, 
µ = 4 and σ = 0.25, we compare Sτ (t) with the lower bound F(t)

H(t)
 given in Theorems 3 

and 4. The functions Sτ (t) and F(t)
H(t)

 is plotted in Fig. 2 below. When t < T = 58.6, they 
are looking almost same.

Example 3  Given that the lifetime L and repair time R have cumulative distribution 
functions F and G respectively. We extend the availability of the system as SF (t) in order 
to make an accent it dependance on distribution functions F. It is well interested to 
state that SF (t) would be expended on high value if the lifetime L ∼ Gamma(p,α) and 
R ∼ Weibull(a, �) with having density function respectively given by

f (t) =
1

tσ
√
2π

e−
(ln t − µ)2

2σ 2
and g(t) =

a

�

(x

�

)a−1
e−

(x

�

)a
.

f (t) =
αp

√
p
e−αt tp−1 and g(t) =

a

�

(x

�

)a−1
e−

(x

�

)a
.

Fig. 1  Example1 : L ∼ Lognormal, R ∼ Weibull. This Figure show that Sτ (t) decrease in the given interval
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From the Fig. 3 below, it is observed that the two curves of system availabilities present 
the corresponding value which is p = 1.7 and p = 3.4 cross each other at least two times 
even if Gamma(1.7,α) ≤ Gamma(3.4,α), this emphasizes that the instant system avail-
ability Sτ (t) is well decreasing.

Application to bathtub
From the different literature review, many different schemes and practical examples, 
the estimation was carried out by assuming that, the sequence of failure and repair time 
are two independent sequences of i.i.d random variables. The details applications of 
this article have been found in Rausand and Høyland (2004), Barlow and Hunter (1960) 
Wong et al. (1999).

Fig. 2  Example2 : L ∼ Lognormal, R ∼ Gamma. This Figure compare Sτ (t) with the lower bound F(t)
H(t)

 given in 
Theorems 3 and 4

Fig. 3  Example3 : L ∼ Gamma, R ∼ Weibull. This Figure emphasizes that the instant system availability Sτ (t) 
is well decreasing
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However, the given assumption need not hold in many situations while the repair 
times may depend on the previous failure time due to the influence of the operation 
environment of the system is applied.

This simple article has found the applications for a variety of some fields such as Reli-
ability Engineering, Industrial economic systems, Maintenance management system, 
mechanical engineering. And it is may specially useful application in Measure-valued 
Markov process involved in the stochastic logistic model in Shang (2013) as noticed 
above in bounded availability system section.

In this part of application, we assume that the lifetime distribution of the instant sys-
tem availability has bathtub-shaped failure rate function of t1 ≤ t2 as its change points, 
this has been referred in Mi (1995b, 1998).

Frequently we can apply a burn-in procedure to improve the availability of the instant 
system, and it has been observed that the burn-in times that optimise different availabil-
ity or reliability characteristics never go beyond to the first change point t1.

For more details of bathtub-shaped failure rate function and optimal burn-in times 
are discussed here (Lai and Xie 2006; Block et al. 1994). From the definition of bathtub-
shaped failure rate distribution function said that, a failure rate distribution function r(t) 
is said to have a bathtub-shaped with change point t1 ≤ t2 if r(t) is strictly decreases in 
t ∈ (0, t), is a constant on (t1, t2) and strictly increasing to t ∈ (t1,∞). Using this definition 
together with the combination of the above previous comparison and examples results 
sections respectively, the following Theorem 7 below is a useful application of this article.

Theorem 7  Given that the lifetime distribution function F of a system has a bathtub-
shaped failure rate function r(t) with its change point t1 ≤ t2. Assume that Fb, Fb where 
F = 1− F  is the distribution and survival function of the instant system surviving burn-
in time b. This means that

Therefore for each of the following maximization problems, the optimal burn-in can not 
exceed t1 such as:

(i)	 maxb≥0Sb(τ , δ) = maxb≥0(
µ(b)

(µ(b)+δ)
), where µ(b) =

∫∞
0 Fb(t)dt

(ii) 	 maxb≥0Sb(τ , δ) = maxb≥0(
1

(µ(b)+δ)
)
∫∞
τ

Fb(t)dt for any τ ≥ 0 and δ ≥ 0.

(iii)	 maxb≥0Sb = maxb≥0((
∫∞
0 Fbp(t)dt + µX

∫∞
0 q(t)Fbp(t)dt + µY )) where Fbp

is defined as the following situation

this is known as the failure rate function of Fb(t) and where 0 ≤ p(t) < 1 is assumed as an 
increasing function satisfying

Fb(t) =
F(b+ t)

F(b)
, ∀t ≥ 0.

Fbp(t) = exp

{

−
∫ t

0
p(u)rb(u)du

}

,

rb(t) = r(b+ t),

∫ ∞

0
p(t)r(t)dt = ∞.



Page 16 of 18Hagenimana et al. SpringerPlus  (2016) 5:954 

Proof  The proof of (i). Let us express the burn-in time which maximizes the mean 
residual lifetime µb by b⋆. Therefore it is positively observed that,

is required. From this and the fact that the following given expression of

is known as a strict increasing function of ς , this immediately implies the given proof of 
(i).

The proof of (ii) is obtained as the following. By the assumptions and properties that 
the failure rate r(t) is a bathtub-shaped and having t1 as its first change point as defined 
above, it implies the following inequality defined as

Refer to the given above Corollary 2, we conclude that

is satisfied.
Hence

is well verified.
Therefore, for any given parameters τ > 0 and δ > 0, the function of the burn-in times 

b, Sb(τ , δ) is always tested as continuous on the given interval of [0, t1].
Also, the burn-in times b⋆ satisfies

Which is entirely less than t1. Hence, the relation (ii) is proved.
Refer to the above proof of the relation (ii) given in Theorem 7, the proof of (iii) in the 

same Theorem  7 is obtained by using the same method. Therefore the relation (iii) is 
true.

Hence, the Theorem is proved.
Briefly, many statistical ageing concepts have been applied to describe the instant sys-

tem availability component ages with time, it have observed that with the probability 
sense, the lifetime of the scheme component tends to decrease accordingly. By the above 
example of the application to the bathtub, this have also been covered by the monotonic-
ity condition as well as numerical examples section respectively discussed above in this 
article has shown that the instant system availability Sτ (t) decrease.

Consequently, the given results provided above by this article are adjusted and 
justified.

b⋆ ≤ t1

ς

(ς + δ)

rt1(t) ≤ rb(t), ∀b ≥ t1, ∀t ≥ 0.

Ft1 ≥ Fb, ∀b ≥ t1

SFt1 (τ , δ) > SFb(τ , δ), ∀τ > 0, ∀δ ≥ 0, b > t1

Sb⋆ (τ , δ) = max0≤b≤t1Sb(τ , δ) = maxb≥0Sb(τ , δ).
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Conclusion
Instant System availability denoted as Sτ (t) of a repairable system is considered as the 
relevant estimate measure of it system performance. It is the case that Sτ (t) does not 
have closed form of expression of the literature attention focuses on the steady-state 
availability Sτ (∞). Different from the most literature, this article provide analysis of vari-
ous properties of the instant system availability Sτ (t) as a function of time instead of 
the steady state availability. An interval where Sτ (t) monotonically decreases is obtained, 
upper bound to Sτ (t) is derived, both of them have been well clarified in the numerical 
examples and some comparison results regarding availabilities of different systems are 
proved. Several examples which validate the analytically derived properties of Sτ (t) are 
also shown above. The details applications of this article are also strongly discussed in 
"Application to bathtub" section. We have studied the instant system availability by using 
the univariate (i.i.d) sequence, from this if the failure and repair times form a bivari-
ate (i.i.d) sequence, the estimation of availability measures, point availability, average 
availability and interval reliability is interesting research issue which can be taken to be 
addressed. Further more, the inspection is very essential for keeping away a system com-
ponents from damage. Hence different conditions based on maintenance will be taken as 
a suitable to investigate in future research. Certainly some given possible generalization 
could be explored for instance many questions regarding to the mechanism of choosing 
a complete or a minimal repair are still open and further research can be considered as 
principal.
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