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Experimental studies on the
effects of bolt parameters on the bearing
characteristics of reinforced rock
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Abstract

Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway,
referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing
characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experi-
mental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The
stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading applica-
tion, and decreases or remains constant in the later stage of the loading application. The change in displacement of
the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated
growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in
the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support
and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its
strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and

the deterioration of the surrounding rock decreases with the distance between the bolt supports.
Keywords: Bolt, Surrounding rock, Roadway, Reinforced rock, Stress, Displacement

Background

Since the time bolting was determined to be an effec-
tive method for securing rocks surrounding a roadway,
a number of studies examined the performance of rock
bolts both in the laboratory and in the field (Aydan 1989;
Farmer 1975; Peng and Tang 1984; Stille et al. 1989; Sun
1984; Kang et al. 2015; Zhang et al. 2015). Analytical
studies were also conducted to examine the influence of
relevant parameters and to understand the interaction
between the rock and the bolt (Dight 1982; Indraratna
and Kaiser 1990; Holmberg 1991; Li and Stillborg 1999;
Bobet 2002; Cai et al. 2004; Carranza-Torres 2009; Bobet
and Einstein 2011). And there have been many investi-
gations on bolting mechanisms, ranging from the initial
suspension theory to the subsequent composite beam
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and indicate if changes were made.

theory, compound arch theory, strength hardening the-
ory and maximum horizontal principal stress theory
(Hou and Gou 2000; Mark et al. 2007), and loosing-circle
theory of surrounding rocks (Dong et al. 1994). The con-
clusion that bolting improves the load-bearing capability
of the surrounding rock has been stated and confirmed
in many studies. For roadways supported by bolts in
the rock, different support structures for the surround-
ing rock have been suggested: e.g., the surrounding rock
bearing circle proposed by Kang (1996, 1997), the inter-
nal and external bearing circle proposed by Li (2008),
the support structure inside the roadway’s coal roof pro-
posed by Zhang and Li (1999), the compound arch bear-
ing structure by Yu et al. (2010), and reinforced rock by
Song and Mu (1997), among others (Wu and Chai 1997;
Zhu et al. 2000; Zhang et al. 2015; Cheng et al. 2015).
However, few studies have investigated the load-bearing
characteristics of a structure formed from both bolts
and the surrounding rocks and the effect of the structure
on the overall load-bearing capacity of the surrounding
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rocks. There are even fewer studies considering the effect
of the bolt parameters on the load-bearing characteristics
of such a structure.

The equilibrium stress inside a roadway changes after
excavation. The stress in the shallow surrounding rock
transforms from a triaxial stress state to a biaxial one,
and the surrounding rock often contains many fracture
zones. To maintain road stability, rock bolts can be used
to support the roof and the two sides of the roadway.
The pre-tightening force is applied overtime. With many
bolts of appropriate length and separation distance, the
bolt groups work together to create a load-bearing struc-
ture with a certain degree of strength, even with frac-
tured, loose, or soft rocks. This load-bearing structure is
referred to as a “composite rock-bolt bearing structure”
in this study Song and Mu (1997). Bolting improves the
internal stress state of the surrounding rock in this com-
pound structure and increases the cohesion and internal
friction angle, thus preventing the spread of the elastic
zone in the rock surrounding the roadway and signifi-
cantly decreasing rock deformation.

Through simulation of a physical model, the present
study investigates the effect of different bolt parameters
(i.e., the length and diameter of the bolts and the distance
between the bolts) and the effect bolt parameters have
on the structure’s load-bearing characteristics when sub-
jected to gradual increased load.

Experimental methods and measurements

Design of experiments

Most rock bolt roadways used in engineering are coal
roadways; therefore, coal was used in the present study to
simulate the surrounding rock. The coal mass density is
1.35 x 10° kg/m?>. The cross section of the actual roadway
was rectangular with a width of 3600 mm and a height of
3000 mm. The actual burial depth was 400 m, the vertical
stress of the surrounding rock was 10 MPa.

The size of the model was 600 x 500 x 100 mm. The
cross section of the designed roadway was rectangular,
with a width of 120 mm and a height of 100 mm. There-
fore the geometrical similarity ratio between the model
and its prototype was 1:30. The density of the model rock
was 1.5 x 10° kg/m® and hence the geometrical similarity
ratio between the model and its prototype was 1:27. The
load was applied to the top of the model and the bottom
and two sides were immobilized.

The model material is concrete which comprised of
sand, cement, gypsum powder, and water. The rela-
tive mass ratio was 8:0.7:0.3:0.1 when constructing the
model. The compressive strength, cohesion, and internal
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friction angle of the model material were 0.97, 0.07, and
40 MPa respectively by averaging the test values, which
were tested in China University of Mining and Technol-
ogy. The test method followed Chinese standard GB/
T23561. The test equipment was SANS servo mechani-
cal press. The mass ratio of the sample was the same
as that of the model material and the sample size was
70 x 70 x 70 mm. In the compressive test three samples
were tested. In the shear test nine samples were tested
with three different shear angles of 30°, 45°, 60° and each
test of one angel contained three samples.

The fuse wires were used to simulate the bolts in the
model. Two types of the fuse wires were used in the
experiments. The breaking force of the two types of fuse
wires were 22 and 66 N respectively according to a pull-
out force test. The breaking forces of the bolt in the pro-
totype were 534kN and 1604kN, respectively.

The experimental process was as follows: (1) Simulation
model building and pre-burying bolts; (2)Twelve hours
after the model was built, the channel steels were removed,
dried for 24 h, and painted, and the line was drawn; (3)
Polymethyl methacrylate (PMMA) panels were used to
immobilize the model. A jack was used to apply a pressure
of 0.1 MPa to the roof of the model for 12 h; (4) Unloading
the pressure, roadway excavation, and installment of tray;
(5) Loading: An increase of 0.05 MPa was applied every
half hour by the jack until the roadway was damaged.

Experimental observation
The layout of the stress sensors is shown in Fig. 1. Sen-
sor 1 measures the roof stress of the reinforced rock,
and sensor 2 measures the stresses on the side of the
structure.

The displacement of the rock surrounding the road-
way is the most straightforward and easy-to-measure
variable that yields information on the load-bearing

Sensor 1
Sensor 2
Fig. 1 Layout of the measurement points
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characteristics for roadways. In this study, the rock defor-
mation was measured using measuring rulers.

Experimental layout and kinetic pressure

A single-variable method was used for the test. The
scheme and the maximum kinetic pressure coefficient
for the model are shown in Table 1. The parameters in
Table 1 are used with prototype parameters because it is
familiar to the engineering staff.

Kinetic pressure means the applied load in the model.
The kinetic pressure is variable but not dynamic. Kinetic
pressure coefficient is equal to the applied load divided
by the vertical stress. And the vertical stress is 10 MPa in
the prototype and 0.37 MPa in the model.

It can be seen from Table 1 that increasing the density
of the bolt support and the length and diameter of the
bolts increases the maximum load coefficient for the sur-
rounding rock.

The location of rock bolts with different distance
between bolts is as shown in Fig. 2. The distance between
bolts is used as prototype parameters because it is very
similar to engineering staff.

The experimental equipment is shown in Fig. 3.

Table 1 Experimental layout
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Pre-burying
bolts

Model building: pre-burial of bolts and
installation of steel channels

Secured frame

Jack

Hydraulic pillows

p— . Polymethyl
| methacrylate

Roadway
Rib plate

Simulated model

Fig. 3 The experimental equipment

Test Distance Distance  Length/ Diam- Maximum
number between between mm eter/mm kinetic A . de of lvvinvl chlorid be of
bolts/mm  two rows/ pressure stress sensor is made of a polyvinyl chloride cube o
mm coefficient 5 x 5x5 mm and two strain gauges (Ji et al. 2013). The
1 No bt 3 rigidity of polyvinyl chloride cube is equal to that of
O DOITS . . .
model material. One strain gauge was stuck on the upper
2 800 800 1800 18 242 . . . . .
side of the polyvinyl chloride to monitor the vertical
3 600 800 1800 18 2.89 .
stress and the other one was stuck on the lateral side to
4 1000 800 1800 18 147 . .
monitor the horizontal stress.
5 800 600 1800 18 2.89
6 800 1000 1800 18 1.90 . . .
7 400 400 5000 8 Ss8 Discussion of experimental results
’ Once the data were obtained, the curves for the relation-
8 800 800 2400 18 2.70 . . . .
ship between stress and the kinetic pressure coefficient
9 800 800 1600 18 1.95 . .
for the measuring points of each group are plotted, as
10 800 800 1600 30 2.80 . .
shown in Fig. 4.
1000{1000{1000 4 o [800]800[800[800] o sod ™1 Bodkodsodsodeod 5 ¢
—‘—1000 ar 3000 800 | 800 50 899 500
| 600 600
1000 1000
) 800 800 600 600
/7 T~
3600 3600 3600
Fig. 2 The location of rock bolts with different distance between bolts (prototype parameters)
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Fig. 4 Relationship between stress and kinetic pressure coefficient. a Vertical stress at Sensor 1; b Vertical stress at Sensor 2; ¢ Horizontal stress at
Sensor 1; d Horizontal stress at Sensor 2

It can be seen from Fig. 4 that increasing the density of
the bolt support and the length and diameter of the bolts
increases the internal peak stress inside the reinforced
rock. The characteristics of the variation of the meas-
ured stress with the kinetic pressure are also obtained:
the stress increases slowly when the load is first applied,
displays accelerated growth in the middle of the loading
application, and decreases or remains constant in the
later stage of the loading application.

The curve for the relationship between the surrounding
rock displacement and the kinetic pressure of each group
is plotted in Fig. 5.

The following observations can be made from Fig. 5.

1. The displacement of the roadway roof and sides
increases as the kinetic pressure increases. In real
applications, if the rock around the roadway is affected
by the kinetic pressure, the securing of the surrounding
rock must be enhanced, including the reinforced sup-
port in the initial stage of the roadway and correspond-
ing remedial measures for the kinetic pressure effects.

2. The variation of the surrounding rock displacement
with the kinetic pressure exhibits the following char-
acteristics: it increases slowly in the beginning, dis-
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Fig. 5 Relationship between the surrounding rock displacement and kinetic pressure. a Vertical closure; b Rib convergence

plays accelerated growth in the middle stage, and
grows extremely quickly in the later stage. Increasing
the density of the bolt support and the length and
diameter of the bolts decreases roadway deforma-
tion.

The analysis of the data in Figs. 4 and 5 reveals a gen-
eral variation trend that is divided into three stages, as
shown in Fig. 6.

1. First stage

In this stage, the measured stress and the corresponding
displacement of the surrounding rock grows slowly. Dur-
ing the initial loading, the measured stress around the
roadway increases very slowly, and the surrounding rock
displacement is very small. Regardless of the roadway
support, the bolts showed little effect on both the stress

First Second Third
stage

stage  stage

The measured stress of the composite
rock -boltbearing structure

o Surrounding rock displacement

Kinetic Pressure

Fig. 6 The variation trend of the measured stress and the surround-
ing rock displacement

and the surrounding rock displacement. This is because
the surrounding rock in the first stage remains almost
undamaged with a certain degree of load-bearing capac-
ity. The bolt only weakly reinforces the surrounding rock.
The kinetic pressure in this stage is 0-0.50;.

2. Second stage

In this stage, the measured stress and the correspond-
ing displacement of the rock surrounding the reinforced
rock exhibits much larger growth than the first stage. The
peak values are reached with the increased kinetic pres-
sure. As the kinetic pressure for the roadway increases
above 0.50;, the surrounding rock displacement increases
and the stress of the bolt increases. The stress state of the
reinforced rock improves and the load-bearing capac-
ity of the bolt-supported surrounding rock is evidently
increased compared to the rock without bolt support.
As such, the load-bearing performance of the rock sur-
rounding the roadway is improved with bolt support.
Comparing the change in internal stress when the
surrounding rock is and is not supported by bolts, the
bearing capacity of the bolted surrounding rock shows
considerable reinforcement. The maximum applied load
increase of twofold to threefold is observed, indicating
that a load-bearing structure is formed inside the sur-
rounding rocks after the bolt support is installed, namely
the reinforced rock, which is formed from the bolt and
surrounding rock. The inherent properties of the sur-
rounding rock, the excavation radius of the roadway, and
the parameters of the bolt support (such as the diameter,
length, material quality of the bolts, and the separation
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distance between the bolts) all affect the bearing perfor-
mance of the reinforced rock.

3. Third stage

In this stage, the measured stress inside the reinforced
rock declines after reaching the peak values. The struc-
ture is gradually damaged after the measured stress
inside the reinforced rock reaches the peak value, at
which point the stress decreases although the rate is slow.
The stress remains constant near certain values, sug-
gesting that the structure experiences a certain degree
of damage but still retains some strength. However, the
roadway deformation rate versus load in the third stage is
much larger than that in the first/second stage.

Discussion of the effect of bolt parameters on

the characteristics of the reinforced rock

The roadway deformation rate versus load

Because the effect of time is not taken into account in
this study, an “roadway deformation rate versus load” is
proposed in order to investigate the relationship between
the displacement of the surrounding rock and the applied
load. The formula is shown as # = AU/AP, in which 7 is
the roadway deformation rate in a certain stage (mm/
MP); AU is the surrounding rock displacement in a cer-
tain stages (mm); and AP is the difference in the applied
pressure in a certain stage (MPa).

The roadway deformation rate versus load reflects the
capability of the reinforced rock to resist deformation
under load. It includes the accelerated displacement of
roof to floor and the sides.

Because the bolts only slightly reinforce the reinforced
rock in the first stage, the effect of the bolt parameters
on the measured stress and the roadway deformation rate
versus load was only investigated in the last two stages.

The effect of the distance between the bolt rows on the
characteristics of the reinforced rock
The measured stress inside the reinforced rock and the
roadway deformation rate versus load at different dis-
tance between bolts are listed in Table 2. The bearing
characteristics of the reinforced rock at different distance
between bolts are obtained is shown in Fig. 7.

The following observations can be made from Fig. 7:
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1. The data for the four models with different distance
between bolts show that, under loading, the hoop
stress of the rock surrounding the roadway is much
larger and concentrated than the radial stress. Addi-
tionally, the side stress is more concentrated than
the stress in the roof.

2. The load-bearing capacity of surrounding rock
is increased with bolt support. Smaller distance
between bolts produce larger kinetic pressures.

3. Decreasing the distance between bolts increases the
reinforcing effect on the surrounding rock.

4. The residual load-bearing capacity of the surround-
ing rock after damage increases for the models with
bolt support. The reinforcing effect is more pro-
nounced with decreased distance between bolts.

5. Bolt support can strengthen the bearing capacity
of the surrounding rock after the peak values are
reached.

6. As the distance between bolts decreases, the road-
way deformation rate versus load of the roof to floor
also decreases. In other words, the ability to resist
deformation increases with decreasing distance
between bolts. After the peak stress is reached, the
ability to resist deformation is lower than before the
peak value was reached. The roadway deformation
rate versus load at the sides display similar charac-
teristics.

Because the distance between the rows of bolts had a
similar effect on the load-bearing characteristics of the
reinforced rock as the distance between bolts, it will not
be discussed here.

The effect of bolt length on the load-bearing
characteristics of the reinforced rock

The measured stress inside the reinforced rock and the
roadway deformation rate versus load for different bolt
lengths are listed in Table 3. From Table 3, the load-bear-
ing characteristics of the reinforced rock for different bolt
lengths are obtained, as shown in Fig. 8.

From Fig. 8, it can be seen that as the bolt length
increases, the internal stress of the reinforced rock shows
similar behavior as the decreased distance between bolts.
However, some unusual behaviors also appear. As the
bolt length increases, the maximum kinetic pressure
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Table 3 The measured stress of the composite rock-bolt bearing structure and acceleration rate of surrounding rock dis-

placement

Bolt length/mm

Second stage

Third stage

Kinetic pressure
coefficient range

Peak stress/MPa

Vertical closure
acceleration rate
of displacement/

Kinetic pressure
coefficient range

Residual stress/MPa

Vertical closure
acceleration rate
of displacement/

mm/MPa mm/MPa
(a) Vertical stress at Sensor 1
No bolts 0.50-1.00 0.008 144 1.00-1.23 0.004 252
1600 0.50-147 0.019 85 1.47-1.95 0.018 15.0
1800 0.50-1.95 0.049 72 1.95-2.42 0.029 14.9
2000 0.50-1.95 0.062 6.8 1.95-2.58 0.057 10.8
2400 0.50-2.35 0.072 6.8 235-2.70 0.065 10.2
Bolt length/mm Second stage Third stage
Kinetic pressure Peak stress/MPa Rib convergence Kinetic pressure Residual stress/MPa  Rib convergence
coefficient range closure accel- coefficient range closure accel-
eration rate eration rate
of displacement/ of displacement/
mm/MPa mm/MPa
(b) Vertical stress at Sensor 2
No bolts 0.50-1.00 0114 12.0 1.00-1.23 0.052 15.2
1600 0.50-1.71 0.461 6.7 1.71-1.95 0353 14.6
1800 0.50-1.71 0.505 44 1.71-242 0452 12.7
2000 0.50-1.95 0.530 43 1.95-2.58 0.364 9.5
2400 0.50-1.95 0.536 43 1.95-2.70 0.365 6.8
Bolt length/mm Second stage Third stage
Kinetic pressure Peak stress/MPa Vertical closure Kinetic pressure Residual stress/MPa  Vertical closure
coefficient range acceleration rate coefficient range acceleration rate
of displacement/ of displacement/
mm/MPa mm/MPa
(c) Horizontal stress at Sensor 1
No bolts 0.50-1.00 0.060 144 1.00-1.23 0.012 252
1600 0.50-1.71 011 9.6 1.71-1.95 0.090 15.8
1800 0.50-1.95 0.150 7.2 1.95-242 0.100 14.9
2000 0.50-2.35 0.150 7.0 2.35-2.58 0.126 12.2
2400 0.50-2.35 0.152 6.8 235-2.70 0.133 10.2
Bolt length/mm Second stage Third stage
Kinetic pressure Peak stress/MPa Rib convergence Kinetic pressure Residual stress/MPa  Rib convergence
coefficient range closure accel- coefficient range closure accel-
eration rate eration rate
of displacement/ of displacement/
mm/MPa mm/MPa
(d) Horizontal stress at Sensor 2
No bolts 0.50-1.00 0.009 12.0 1.00-1.23 0.006 15.2
1600 0.50-1.71 0.024 6.7 1.71-1.95 0.022 14.6
1800 0.50-1.95 0.080 56 1.95-2.42 0.058 132
2000 0.50-1.95 0.080 43 1.95-2.58 0.064 9.5
2400 0.50-2.35 0.086 43 2.35-2.70 0.075 89
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coefficient also increases but the increasing rate of load
decreases, as shown in Table 4.

From Table 4 and the load-bearing characteristics
for different bolt lengths, once the bolt length reaches
a certain value, any further increase of the bolt length
will have only a limited effect on the reinforcement of
the rock. This is because the deeper surrounding rock
is stable and has a good stress state, the effect of bolt
is diminished. Therefore, once the bolt length reaches
a certain value, simply increasing the bolt length does
not effectively improve the strength of the reinforced
rock.

The effect of bolt diameter on the load-bearing
characteristics of the reinforced rock

The measured stress inside the reinforced rock and the
roadway deformation rate versus load for different bolt
diameters are listed in Table 5. From Table 5, the load-
bearing characteristics of the reinforced rock for different
bolt diameters are obtained, as shown in Fig. 9.

From Fig. 9, it can be seen that using large-diameter
bolts in the roadway bolt support can produce larger
working resistance while the same displacement is pro-
duced in the surrounding rocks. Similarly, with the same
load, the displacement is much smaller when large-diam-
eter bolts are used compared to smaller-diameter bolts.
The measured data also confirm this trend. For example,
the increasing rate vertical closure was 14.4 mm/MPa
without support; that value decreases 33.3 % to 9.6 mm/
MPa when bolts of 18 mm diameter were used, and the
value decreased 66.7 % to 4.8 mm/MPa when bolts of

Table 4 The maximum loading coefficient and acceleration
loading at different bolt lengths

Bolt length/ Maximum loading Accelerated

mm coefficient loading coefficient
o0 1.23 -

1600 1.95 0.72

1800 242 047

2000 258 0.16

2400 2.70 0.12

Page 12 of 15

30 mm diameter were used. This suggests that the use of
large-diameter bolts has a pronounced effect on the con-
trol of the deformation of the surrounding rock.

Conclusion

1. There is a good correlation between the variation
of the measured stress inside the reinforced rock
and the variation of the surrounding rock displace-
ment. In the early stage of the load, the stress and
the surrounding rock displacement increase; in the
middle stage, with the synergistic effect between the
bolt and the surrounding rocks, the stress increases
rapidly to the peak stress. The load-bearing ability
is obtained for the reinforced rock, and the road-
way displacement also increases. When the exter-
nal load reaches critical values, the stress inside the
reinforced rock reaches its peak load-bearing capac-
ity and the surrounding rock is damaged, resulting
in a rapid decrease of stress to the residual stress. At
this stage, the deformation of the roadway drastically
increases.

2. The roadway deformation rate versus load can
reflect the ability of the surrounding rock to resist
deformation due to external load. The variation of
the roadway deformation rate versus load exhibits
the following trends: it is small in the load-bearing
stage before the peak stress is reached, it is smaller
for higher-density bolt supports, it is smaller for
longer bolt lengths, and it is smaller for larger-diam-
eter bolts.

3. Increasing the density of the bolt support and
the length and diameter of the bolt improves the
load-bearing performance of the composite rock
bolt/load-bearing structure, including its internal
peak stress and residual stress. However, when the
length of the bolts reaches certain values, a further
increase of the bolt length has only a limited effect
on the load-bearing capacity of the reinforced
rock.

4. The bolt support improves the inner structure of the
surrounding rock and the deterioration decreases as
the distance between bolts decreases.
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