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Background
The study of fixed points for multivalued contractions and nonexpansive mappings using 
the Hausdorff metric was initiated by Markin (1973) and Nadler (1969). The existence of 
fixed points for multivalued nonexpansive mappings in convex metric spaces has been 
shown by Shimizu and Takahashi (1996), that is, they proved that every multivalued 
mapping T : X → C(X) has a fixed point in a bounded, complete and uniformly convex 
metric space (X, d), where C(X) is the family of all compact subsets of X.

Late, so many fixed point theorems for such mappings have applications in control 
theory, convex optimization, differential inclusion and economics (see Gorniewicz 1999 
and references cited therein).

Since then many authors have been published papers on the existence and con-
vergence of fixed points for multivalued nonexpansive mappings in uniformly convex 
Banach spaces and convex metric spaces.

The theory of multivalued nonexpansive mappings is more difficult than the corre-
sponding theory of single valued nonexpansive mappings. Different iterative algorithms 
have been used to approximate the fixed points of multivalued nonexpansive map-
pings (see Abbas et al. 2011; Khan and Yildirim 2012; Khan et al. 2010; Panyanak 2007; 
Shahzad and Zegeye 2009; Sastry and Babu 2005; Song and Wang 2008, 2009; Song and 
Cho 2011) in uniformly convex Banach spaces.
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On the other hand, in García-Falset et  al. (2011) introduced two new conditions on 
single valued mappings, are called condition (E) and (C�) which are weaker than nonex-
pansive and stronger than quasi-nonexpansive.

Recently, Abkar and Eslamain (2012) introduced an iterative process for a finite fam-
ily of generalized nonexpansive multivalued mappings and proved �-convergence and 
strong convergence theorems in CAT(0) spaces.

In the view of the fact, many researchers motivated towards to introduced various 
numbers of iterative processes for approximating fixed points and established �−con-
vergence and strong convergence theorems, not only for multivalued nonexpansve map-
pings but also its general class of multivalued mappings in CAT(0) spaces (see Abkar 
and Eslamain 2012; Dhompongsa et al. 2012; Eslamian and Abkar 2011; Khan et al. 2011; 
Laowang and Panyanak 2009; Nanjaras et al. 2010; Pathak et al. 2015) and in hyperbolic 
spaces (see Chang et al. 2014a, b, 2015; Khan and Abbas 2014).

The purpose of this paper is to establish existence of a fixed point for generalized non-
expansive multivalued mappings in the setting of hyperbolic spaces. Under suitable con-
ditions some �-convergence and strong convergence theorems for the iterative scheme 
proposed by Chang et al. (2014a) to approximate a fixed point for generalized nonexpan-
sive multivalued mapping are proved. Our results are the extensions and improvements 
of the recent well-known results announced in the current literature.

Preliminaries
Throughout in this paper we consider hyperbolic space which is introduced by Kohlen-
bach (2005) as follows:

A hyperbolic space (X, d, W) is a metric space (X, d) together with a convexity map-
ping W : X2 × [0, 1] → X satisfying

 (W1) d(u,W (x, y,α)) ≤ αd(u, x)+ (1− α)d(u, y);

 (W2) d(W (x, y,α),W (x, y,β)) = |α − β|d(x, y);

 (W3) W (x, y,α) = W (y, x, 1− α);

 (W4) d(W (x, z,α),W (y,w,α)) ≤ (1− α)d(x, y)+ αd(z,w),

for all x, y, z,w ∈ X and α,β ∈ [0, 1].
It should be pointed out that if a metric space (X,  d) with a mapping 

W : X × X × [0, 1] → X satisfies only condition (W1), then it coincides with the convex 
metric space which is introduced by Takahashi (1970) (see also Kim et al. 2007, 2008). The 
concept of hyperbolic spaces given here is more restrictive than the hyperbolic type defined 
by Goebel and Kirk (1972), since the conditions (W1)− (W3) together are equivalent to 
(X, d) being a space of hyperbolic type in Goebel and Kirk (1972). But it is slightly more 
general than the hyperbolic space defined in Reich and Shafrir (1990). The class of hyper-
bolic spaces contains normed linear spaces and convex subsets, therefore the Hilbert ball 
equipped with the hyperbolic metric Goebel and Reich (1984), R-trees, Hadamard mani-
folds as well as CAT(0) spaces in the sense of Gromov (see Bridson and Haefliger 1999).

If x, y ∈ X and � ∈ [0, 1], then we use the notation (1− �)x ⊕ �y for W (x, y, �). The fol-
lowing holds even for the more general setting of convex metric space Takahashi (1970), 
for all x, y ∈ X and � ∈ [0, 1],



Page 3 of 16Kim et al. SpringerPlus  (2016) 5:912 

A hyperbolic space (X, d, W) is said to be uniformly convex Leuştean (2007) if for any 
r > 0 and ε ∈ (0, 2], there exists δ ∈ (0, 1] such that for all a, x, y ∈ X ,

provided d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr.

A mapping η : (0,∞)× (0, 2] → (0, 1], which providing such a δ = η(r, ε) for given 
r > 0 and ε ∈ (0, 2], is called as a modulus of uniform convexity. We call the function η is 
monotone if it decreases with r (for fixed ε), that is η(r2, ε) ≤ η(r1, ε), ∀r2 ≥ r1 > 0.

In Leuştean (2007), proved that CAT(0) spaces are uniformly convex hyperbolic spaces 
with modulus of uniform convexity η(r, ε) = ε2

8  quadratic in ε. Thus, the class of uni-
formly convex hyperbolic spaces are a natural generalization of both uniformly convex 
Banach spaces and CAT(0) spaces.

A subset K ⊂ X �= φ is said to be proximal, if for each x ∈ X, there exists an element 
y ∈ K  such that

It is well known that each weakly compact convex subset of a Banach space is proxi-
mal, as well as each closed convex subset of a uniformly convex Banach space is also 
proximal.

Let CB(K) be the collection of all nonempty and closed bounded subsets, and P(K) be 
the collection of all nonempty proximal bounded and closed subsets of K, respectively.

Let H(·, ·) be the Hausdorff distance on CB(K) is defined by

Let T : K → 2K  be a multivalued mapping. An element x ∈ K  is said to be a fixed point 
of T, if x ∈ Tx. The set of fixed points of T will be denoted by F(T).

Definition 1  A multivalued mapping T : K → CB(K ) is said to be

(i)	 nonexpansive, if 

(ii) 	 quasi-nonexpansive, if F(T ) �= φ and 

Now we define the multivalued version of the condition (E) and (C�) in the following 
way (see Abkar and Eslamain 2012).

Definition 2  A multivalued mapping T : K → CB(K ) is said to satisfy condition (C�) 
for some � ∈ (0, 1) provided that

d(x, (1− �)x⊕ �y) = �d(x, y) and d(y, (1− �)x ⊕ �y) = (1− �)d(x, y).

d

(

1

2
x ⊕

1

2
y, a

)

≤ (1− δ)r.

d(x, y) = dist(x,K ) := inf{d(x, z) : z ∈ K }.

H(A,B) = max

{

sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}

, ∀ A,B ∈ CB(X).

H(Tx,Ty) ≤ d(x, y), for all x, y ∈ K ,

H(Tx,Tp)) ≤ d(x, p), for all x ∈ K , and all p ∈ F(T ).

�dist(x,Tx) ≤ d(x, y) ⇒ H(Tx,Ty) ≤ d(x, y), for all x, y ∈ K .
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Definition 3  A multivalued mapping T : K → CB(K ) is said to satisfy condition (Eµ) 
provided that

We say that T satisfies condition (E) whenever T satisfies (Eµ) for some µ ≥ 1.

We can easily prove the following proposition from the Definition 3.

Proposition 4  If T : K → CB(K ) is a multivalued mapping satisfying condition (E) 
with F(T ) �= φ, then T is a multivalued quasi-nonexpansive mapping.

Lemma 5  Abkar and Eslamain (2012) Let T : X → CB(X) be a multivalued nonexpan-
sive mapping. Then T satisfies condition (E1)

Now we provide an example of generalized nonexpansive multivalued mapping satis-
fying condition (C�) and (E).

Example 6  Consider X = {(0, 0), (0, 1), (1, 1), (1, 2)} with ℓ∞ metric

for all (x1, y1) and (x2, y2) in X. Define a mapping T on X by

Let x = (1, 2) and y = (0, 0). Then Tx = {(1, 1), (0, 0)}, Ty = {(0, 1)},

for � ∈ (0, 1) and

Hence, T satisfy condition (C�).

On the other hand, T satisfy condition (Eµ) for some µ ≥ 1. In fact, take x = (1, 2) and 
y = (0, 0), then Ty = {(0, 1)} and Tx = {(1, 1), (0, 0)}. Hence we have

(1)dist(x,Ty) ≤µdist(x,Tx)+ d(x, y), for all x, y ∈ K .

d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|},

T (a, b) =

{

{(1, 1), (0, 0)}, if (a, b) �= (0, 0)
{(0, 1)} if (a, b) = (0, 0).

�dist(x,Tx) = �dist((1, 2), {(1, 1), (0, 0)})

= � ≤ d((1, 2), (0, 0)) = d(x, y),

H(Tx,Ty) =H({(0, 1)}, {(1, 1), (0, 0)})

= dist((0, 1), {(1, 1), (0, 0)})

= 1

≤ 2

= d((0, 0), (1, 2)) = d(x, y).

dist(x,Ty) = dist((1, 2), {(0, 1)})

= 1

≤ µ+ 2

= µdist((1, 2), {(1, 1), (0, 0)})+ d((1, 2), (0, 0))

= µdist(x,Tx)+ d(x, y),
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for some µ ≥ 1. This implies that T satisfies the condition (C�) and (Eµ) and it is 
observe that T has unique fixed point (1,  1) in X. Therefore, from Proposition 4, T is 
quasi-nonexpansive.

Now, we recall the concept of �-convergence besides collecting some of its basic prop-
erties in hyperbolic spaces.

Let {xn} be a bounded sequence in a hyperbolic space (X, d). For x ∈ X, we define a 
continuous functional ra(·, {xn}) : X → R

+ defined by

The asymptotic radius r({xn}) of {xn} is given by

The asymptotic center ACK ({xn}) of a bounded sequence {xn} with respect to K ⊂ X is 
the set

This shows that the asymptotic center ACK ({xn}) of a bounded sequence is the set of 
minimizers of the functional ra(·, {xn}) on K. If the asymptotic center is taken with 
respect to X,  then it is simply denoted by AC({xn}).

It is known that each uniformly convex Banach space and each CAT(0) space enjoy the 
property that each bounded sequence has a unique asymptotic center with respect to 
closed convex subsets. This property also holds in a complete uniformly convex hyper-
bolic space. This can be proved by Leuştean (2010) and ensures that this property is also 
holds in a complete uniformly convex hyperbolic space.

Lemma 7  (Leuştean 2010, Proposition 3.3) Let (X, d, W) be a complete uniformly con-
vex hyperbolic space with monotone modulus of uniform convexity η. Then every bounded 
sequence {xn} in X has a unique asymptotic center with respect to any nonempty closed 
convex subset K of X.

Recall that, a sequence {xn} in X is said to be �-convergent to x ∈ X , if x is the unique 
asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we write �-
limn→∞ xn = x and call x the �-limit of {xn}.

Lemma 8  (Khan et al. 2012) Let (X, d, W) be a uniformly convex hyperbolic space with 
monotone modulus of uniform convexity η and x ∈ X. Let {tn} be a sequence in [a, b] for 
some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that

for some c ≥ 0 and x ∈ X, then limn→∞ d(xn, yn) = 0.

ra(x, {xn}) = lim sup
n→∞

d(xn, x), x ∈ X .

r({xn}) = inf{ra(x, {xn}) : x ∈ X}.

ACK ({xn}) = {x ∈ X : ra(x, {xn}) ≤ ra(y, {xn}), for all y ∈ K }.

lim sup
n→∞

d(xn, x) ≤ c, lim sup
n→∞

d(yn, x) ≤ c,

lim
n→∞

d(W (xn, yn, tn), x) = c,
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Lemma 9  (Chang et al. 2015) Let (X, d, W) be a complete uniformly convex hyperbolic 
space with monotone modulus of uniform convexity η. Then X has the Opial property, i.e, 
for any sequence {xn} ⊂ X with �-limn→∞ xn = x and for any y ∈ X with x �= y, we have

Lemma 10  (Chang et al. 2014a) Let (X, d, W) be a complete uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η and let {xn} be a bounded 
sequence in X with AC({xn}) = {p}. If {un} is a subsequence of {xn} with AC({un}) = {u}, 
and the sequence {d(xn,u)} is convergent, then we have p = u.

The following lemma is a generalization of Abkar and Eslamain (2012, Theorem 3.4) 
from CAT(0) space to hyperbolic space.

Lemma 11  Let (X, d, W) be a complete uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η, K be a nonempty closed convex subset of X, and 
T : K → P(K ) satisfies the condition (E) with convex values. If {xn} is a sequence in K 
such that �− limn→∞ xn = z and limn→∞ dist(xn,Txn) = 0, then z is a fixed point of T.

Proof  By the assumption that Tz is a convex and proximal subset of K. Hence, for each 
{xn} for n ≥ 1, there exists a point uzn ∈ Tz such that

Taking x = xn and y = z in (1), we have

Since {unz } is a bounded sequence in Tz, by Lemma 7, there exists a subsequence 
{uznk

} ⊂ {uzn} such that �− limk→∞ uznk
= uz ∈ Tz. Since T satisfies the condition (E), 

we have

Taking the superior limit on the both sides of the above inequality, we have

Hence by Lemma 9 uz = z ∈ Tz and the proof is completed. � �

Main results
In this section, we established �-convergence and strong convergence theorems for the 
iterative sequence introduced by Chang et al. (2014a) (see the single valued version, Kim 
et al. 2015; Kim and Dashputre 2015; Agarwal et al. 2007).

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

d(xn,un) = dist(xn,Tz), for all n ≥ 1.

(2)dist(xn,Tz) ≤µdist(xn,Txn)+ d(xn, z).

d(xnk ,uz) ≤ d(xnk ,uzn)+ d(uzn ,uz)

≤µdist(xnk ,Txnk )+ d(xnk , z)+ d(un,uz).

lim sup
n→∞

d(xnk ,uz) ≤ lim sup
n→∞

{

µdist(xnk ,Txnk )+ d(xnk , z)+ d(un,uz)

}

< lim sup
n→∞

d(xnk ,uz).
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Theorem  12  Let (X,  d,  W) be a complete uniformly convex hyperbolic space with 
monotone modulus convexity η and K be a nonempty closed convex subset of X. Let 
T : K → P(K ) be a multivalued mapping satisfying the condition (E) with convex values. 
Suppose that F(T ) �= φ and Tp = {p} for each p ∈ F(T ). For arbitrarily chosen x0 ∈ K , 
sequence {xn} is defined by

where vn ∈ Tyn,un ∈ Txn, {αn} and {βn} are real sequences satisfying the following 
condition:

(C1)	� There exists constants a, b ∈ (0, 1) with 0 < b(1− a) ≤ 1
2 such that {αn} ⊂ [a, b] 

and {βn} ⊂ [a, b]. Then the sequence {xn} defined by (3) is �-convergent to a point 
in F(T).

Proof  The proof of Theorem 12 is divided into three steps as follows:

Step-I. First, we prove that limn→∞ d(xn, p) exists for p ∈ F(T ).
In fact, from Proposition 4, T is a multivalued quasi-nonexpansive mapping. Hence for 

each p ∈ F(T ), by (3), we have

Again from (3) and (4), we have

This shows that sequence {d(xn, p)} is decreasing and bounded below. Hence the 
limn→∞ d(xn, p) exists for each p ∈ F(T ).

Step-II. Next, we prove that

From the Step-I, we know that for each p ∈ F(T ), limn→∞ d(xn, p) exists, Let 
limn→∞ d(xn, p) = c. If c = 0, then we have

(3)

{

xn+1 = W (un, vn,αn),
yn = W (xn,un,βn),

(4)

d(yn, p) = d(W (xn,un,βn), p)

≤ (1− βn)d(xn, p)+ βnd(un, p)

≤ (1− βn)d(xn, p)+ βndist(un,Tp)

≤ (1− βn)d(xn, p)+H(Txn,Tp)

≤ (1− βn)d(xn, p)+ βnd(xn, p)

≤ d(xn, p).

(5)

d(xn+1, p) = d(W (un, vn,αn, p))

≤ (1− αn)d(un, p)+ αnd(vn, p)

≤ (1− αn)dist(un,Tp)+ αndist(vn,Tp)

≤ (1− αn)H(Txn,Tp)+ αnH(Tyn,Tp)

≤ (1− αn)d(xn, p)+ αnd(yn, p)

≤ (1− αn)d(xn, p)+ αnd(xn, p)

≤ d(xn, p).

lim
n→∞

dist(xn,Txn) = 0.
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Hence, the conclusion holds for c = 0. If c > 0. Letting n → ∞ and taking superior limit 
to the both sides of inequality (4), we have

In addition, we have

Letting n → ∞ and taking superior limit to the both sides of above inequality, we have

In similar lines, we have

Since limn→∞ d(xn+1, p) = c, it follows from (7) and (8) and using Lemma 8, we have

Further, by (3), we have

or

Letting n → ∞ and taking inferior limit to the both sides of the above inequality, we 
have

Hence, from (6) and (10), we have

dist(xn,Txn) ≤ d(xn, p)+ dist(Txn,Tp)

≤ d(xn, p)+H(Txn,Tp)

≤ 2d(xn, p)

→ 0, as n → ∞.

(6)lim sup
n→∞

d(yn, p) ≤ c.

d(un, p) = dist(un,Tp) ≤ H(Txn,Tp) ≤ d(xn, p).

(7)lim sup
n→∞

d(un, p) ≤ c.

(8)lim sup
n→∞

d(vn, p) ≤ c,

(9)lim
n→∞

d(un, vn) = 0.

d(xn+1, p) = d(W (un, vn,αn), p)

≤αnd(un, p)+ (1− αn)d(vn, p)

≤αndist(un,Tp)+ (1− αn)dist(vn,Tp)

≤αnH(Txn,Tp)+ (1− αn)H(Tyn,Tp)

≤ (1− αn)d(yn, p)+ αnd(xn, p)

(1− αn)d(xn+1, p) ≤ (1− αn)d(yn, p)+ αn
{

d(xn, p)− d(xn+1, p)
}

≤ d(yn, p)+
b

1− b

{

d(xn, p)− d(xn+1, p)

}

.

(10)c ≤ lim inf
n→∞

d(yn, p).

lim
n→∞

d(yn, p) =c.
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By using (6) and apply Lemma 8, then we have

it implies that

Step-III. Finally, in order to show that the sequence {xn} is �-convergent to a point in 
F(T), we prove that

and W�({xn}) consists of exactly one point.
Let u ∈ W�({xn}). Then there exists a subsequence {un} of {xn} such that 

AC({un}) = {u}. Then by Lemma 7, there exists a subsequence {vn} of {un} such that 
�− limn→∞ vn = v ∈ K . Since limn→∞ dist(vn,Tvn) = 0, from Lemma 11, we have 
v ∈ F(T ). Since {d(un, v)} converges, from Lemma 10, we have u = v. This shows that 
W�(xn) ⊂ F(T ).

Next, we claim that W�({xn}) is a singleton set. Let {un} be a subsequence of {xn} with 
AC({un}) = {u} and AC({xn}) = {x}. We have already seen that u = v and v ∈ F(T ) . 
Finally, since {d(xn, p)} is convergent, from Lemma 10, we have x = v ∈ F(T ). This 
shows that W�({xn}) = {x} and completes the proof. � �

Theorem  13  Let (X,  d,  W) be a complete uniformly convex hyperbolic space with 
monotone modulus convexity η and K be a nonempty compact convex subset of X. Let 
T : K → CB(X) be a multivalued mapping satisfying the condition (E) with nonempty 
convex values. Let F(T ) �= φ and Tp = {p} for each p ∈ F(T ). Then the iterative process 
{xn} defined by (3) converges strongly to a point in F(T).

Proof  By the assumption, we know that each x ∈ K  and Tx is a bounded closed and 
convex subset of K. Since K is compact, Tx is a nonempty compact convex subset and 
a bounded proximal subset in K, i.e., T : K → P(K ). Therefore all the conditions of 
Theorem 12 are satisfied. Hence, it follows from Theorem 12 that

Furthermore, since K is compact, there exists a subsequence {xnk } of {xn} such that 
limn→∞ xnk = ω ∈ K . By condition (E), we have, for some µ ≥ 1

(11)lim
n→∞

d(un, xn) =0,

lim
n→∞

dist(xn,Txn) = 0.

W�({xn}) :=
⋃

{un}⊂{xn}

AC({un}) ⊂ F(T )

lim
n→∞

d(xn, p) exists, and lim
n→∞

dist(xn,Txn) = 0.

dist(ω,Tω) ≤ d(ω, xnk )+ dist(xnk ,Tω)

≤µdist(xnk ,Txnk )+ 2d(ω, xnk )

→ 0, as k → ∞.
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This implies that ω ∈ F(T ). Since {xnk } converges strongly to ω and the limn→∞ d(xn,ω) 
exists from Theorem 12, the sequence {xn} converges strongly to ω. � �

Theorem  14  Let (X,  d,  W) be a complete uniformly convex hyperbolic space with 
monotone modulus convexity η and K be a nonempty compact convex subset of X. Let 
T : K → CB(X) be a multivalued mapping satisfying the condition (E) with nonempty 
convex values. Let F(T ) �= φ and Tp = {p} for each p ∈ F(T ). Then the iterative process 
{xn} defined by (3) converges strongly to a point in F(T) if and only if

Proof  Necessity is obvious. To prove the sufficiency, suppose that

From (4), we have

for all p ∈ F(T ). This implies that

Hence the limit limn→∞ dist(xn+1, F(T )) exists and limn→∞ dist(xn+1, F(T )) = 0. 
Therefore, we can choose a subsequence {xnk } of {xn} and a sequence {pk} in F(T) such 
that for all k ∈ N,

From (4), we have

Hence

Consequently, {pk} is a Cauchy sequence in K and it is convergent to some q ∈ K . Since

lim inf
n→∞

dist(xn, F(T )) = 0.

lim inf
n→∞

dist(xn, F(T )) = 0.

d(xn+1, p) ≤ d(xn, p)

dist(xn+1, F(T )) ≤ dist(xn, F(T )).

d(xnk , pk) ≤
1

2k
.

d(xnk+1
, pk) ≤ d(xnk , pk) <

1

2k
.

d(pk+1, pk) ≤ d(xnk+1
, pk+1)+ d(xnk+1

, pk)

<
1

2k+1
+

1

2k

<
1

2k−1
.

dist(pk ,Tq) ≤H(Tpk ,Tq) ≤ d(q, pk)
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and pk → q as k → ∞, it follows that dist(q,Tq) = 0 , and hence q ∈ F(T ) and {xnk } 
converges strongly to q. Since limn→∞ d(xn, q) exists, it follows that {xn} converges 
strongly to q.  � �

Theorem  15  Let (X,  d,  W) be a complete uniformly convex hyperbolic space with 
monotone modulus convexity η and K be a nonempty compact convex subset of X. Let 
T : K → CB(X) be a multivalued mapping satisfying the condition (E) with nonempty 
convex values. Let F(T ) �= φ and Tp = {p} for each p ∈ F(T ). Let {xn} be the iterative pro-
cess defined by (3). Suppose that there exists an increasing function f : [0,∞) → [0,∞) 
with f (0) = 0, where f (r) > 0 for all r > 0 such that

Then the sequence {xn} converges strongly to a point of F(T).

Proof  By Theorem 12, we have dist(xn,Txn) = 0. Hence from the assumption, we have

Therefore, we have

Since f : [0,∞) → [0,∞) is an increasing function with f (0) = 0, we we obtain 
limn→∞ dist(xn, F(T )) = 0. The rest of the proof follows in the lines of Theorem 14.

We need the following lemma for the proof of the �-convergence theorem. We can 
easily prove this lemma from the definition of PTx.  � �

Lemma 16  Let (X,  d,  W) be a complete uniformly convex hyperbolic space, K be a 
nonempty closed convex subset of X. Let T : K → P(K ) be a multivalued mapping with 
F(T ) �= φ and let PT : K → 2K  be a multivalued mapping defined by

Then the following conclusions are hold:

(1) 	 F(T ) = F(PT );

(2) 	 PTp = {p}, for each p ∈ F(T );

(3) 	 For each x ∈ K , PTx is a closed subset of Tx and so it is compact;
(4) 	 d(x,Tx) = d(x,PTx), for each x ∈ K ;

(5) 	 PT is a multivalued mapping from K to P(K).

Theorem 17  Let (X, d, W) be a complete uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η and K be a nonempty closed convex subset of X. Let 

dist(xn,Txn) ≥ f (dist(xn, F(T )).

lim
n→∞

f (dist(xn, F(T )) ≤ lim
n→∞

dist(xn,Txn) = 0.

lim
n→∞

f (dist(xn, F(T )) = 0.

(12)PTx ={y ∈ Tx : d(x, y) = dist(x,Tx)}, x ∈ K .
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T : K → CB(K ) multivalued mapping with convex values and F(T ) �= φ. Let PT be a 
multivalued mapping satisfying the condition (E). Let for arbitrarily choose x0 ∈ K , {xn} 
be a sequence defined by

where un ∈ PTxn, vn ∈ PTyn = PT ((W (xn,un,βn)), let {αn} and {βn} be real sequences 
satisfying the condition (C1). Then the sequence {xn} defined by (13) is �-convergent to a 
point in F(T).

Proof  In the view of Lemma 16, we know that the mapping PT defined by (12) has the 
following property, that is, for each p ∈ F(T ), we have

Replacing mapping T by PT in Theorem 12, then all the conditions in Theorem 12 are 
satisfied. Therefore the conclusion of Theorem 17 can be obtained in the same line of 
Theorem 12. � �

Theorem 18  Let (X, d, W) be a complete uniformly convex hyperbolic space and K be a 
nonempty closed convex subset of X with monotone modulus of uniform convexity η. Let 
T : K → CB(K ) be a multivalued mapping with convex values and F(T ) �= φ. Let PT be 
a multivalued mapping satisfying the condition (E). For arbitrarily x0 ∈ K , let {xn} be a 
sequence in K defined by (13). Then the sequence {xn} converges strongly to p ∈ F(T ) if 
and only if

Proof  If {xn} converges to p ∈ F(T ), then limn→∞ d(xn, p) = 0. Since 
0 ≤ dist(xn, F(T )) ≤ d(xn, p), we have

Conversely, if we assume that lim infn→∞ dist(xn, F(T )) = 0. Let p ∈ F(T ). Then we 
have

Moreover, by the same method as given in the proof of Theorem 12, we can see that

(13)

{

xn+1 = W (un, vn,αn),
yn = W (xn,un,βn),

PTp = {y ∈ Tp : d(p, y) = dist(p,Tp) = 0} = {p}.

lim inf
n→∞

dist(xn, F(T )) = 0.

lim inf
n→∞

dist(xn, F(T )) = 0.

PTp = {y ∈ Tp : d(p, y) = d(p,Tp) = 0} = {p}.

dist(xn+1, F(T )) ≤ d(xn, F(T )),
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it implies that limn→∞ dist(xn, F(T )) exists. Hence from hypothesis, we have 
lim infn→∞ dist(xn, F(T )) = 0. Therefore, we can choose a subsequence {xnk } of {xn} and 
a sequence {pk} in F(T) such that for all k ∈ N

As in proof of Theorem 14, we show that {pk} is a Cauchy sequence in K and hence con-
verges to some q ∈ K . By the virtue of the definition of mapping PT , we have PTq ⊂ Tq. 
Hence from (12), we have

pk → q as k → ∞, it follows that dist(q,Tq) = 0. Hence q ∈ F(T ) and {xnk } converges 
strongly to q. Since limn→∞ d(xn, p) exists, we conclude that {xn} converges strongly to 
q  . This completes the proof.� �

Theorem 19  Let (X, d, W) be a complete uniformly convex hyperbolic space and K be 
a nonempty closed convex subset of X with monotone modulus of uniform convexity η. 
Let T : K → CB(K ) multivalued mapping with convex values and F(T ) �= φ. Let PT be a 
multivalued mapping satisfying the condition (E). Let {xn} be a sequence in K defined by 
(13). Assuming that there exists an increasing function f : [0,∞) → [0,∞) with f (0) = 0 
and f (r) > 0 for all r > 0 such that

Then the sequence {xn} converges strongly to a fixed point in F(T).

Proof  By Theorem 12, we have dist(xn,Txn) = 0. Hence from the assumption that

Therefore, we have

Since f : [0,∞) → [0,∞) is an increasing function with f (0) = 0, we we obtain 
limn→∞ dist(xn, F(T )) = 0. The rest of the proof follows in the lines of Theorem 18. � �

Numerical example
Let (X , d) = R with metric d(x, y) = |x − y| and K = [0, 5]. Denoted by

d(xnk , pk) <
1

2k
.

dist(pk ,Tq) ≤ dist(pk ,PTq)

≤H(PTpk ,PTq)

≤ d(q, pk),

dist(xn,Txn) ≥ f (dist(xn, F(T ))).

lim
n→∞

f (dist(xn, F(T ))) ≤ lim
n→∞

dist(xn,Txn) = 0.

lim
n→∞

f (dist(xn, F(T ))) = 0.

W (x, y,α) = αx + (1− α)y,
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for all x, y ∈ X and α ∈ [0, 1], then (X, d, W) is a complete uniformly convex hyperbolic 
space with a monotone modulus of uniform convexity and K is a nonempty closed and 
convex subset of X. Let T : K → P(K ) be a multivalued mapping defined by

Then it is easy to prove that (also see Abkar and Eslamain 2012), T : K → P(K ) is a gen-
eralized nonexpansive multivalued mapping satisfying the condition, (C�) and (E) with 
convex value 0 ∈ K  which is a unique fixed point in K and T (0) = {0}. Therefore T is 
a generalized nonexpansive multivalued mapping satisfying the condition (E) and sat-
isfies all conditions in Theorem 12. Let {αn} and {βn} be two constant sequences such 
that {αn} = {βn} =

1
2 for all n ≥ 0. For any given x0 ∈ [0, 5] (for the sake of simplicity, we 

can assume that x0 = 1). Using (3), we have, take x0 = 1, we have Tx0 = [0, 15 ], taking 
u0 =

1
5 ∈ Tx0, then

Now we compute Ty0 =
[

0,
1
2 (1+

1
5 )

5

]

, taking v0 = 1
2×52

∈ Ty0, then

From the definition of T, we have Tx1 =
[

0,
1

2×5

(

1+ 1
2×5

)

5

]

, taking u1 = 1
22×53

∈ Tx1, then

Hence, Ty1 =
[

0,
1

22×5

(

1+ 1
2×5+

1

2×52

)

5

]

, taking v1 = 1
23×54

. Hence,

Inductively, we have

Hence we have limn→∞ xn = 0 ∈ F(T ).

Conclusion remarks
Our Theorems 12, 13, 14, 15, 17, 18 and 19 are improvements and extensions of the cor-
responding results in the following senses:

T (x) =

{

[0, x5 ], x �= 5,
{1}, x = 5.

y0 =W

(

x0,u0,
1

2

)

=
1

2

(

1+
1

5

)

.

x1 =W

(

u0, v0,
1

2

)

=
1

2× 5

[

1+
1

2× 5

]

.

y1 =W

(

u1, x1,
1

2

)

=
1

22 × 5

[

1+
1

2× 5
+

1

2× 52

]

.

x2 =W

(

u1, v1,
1

2

)

=
1

23 × 53

(

1+
1

2× 5

)

.

xn+1 =
1

22n+1 × 52n+1

(

1+
1

2× 5

)

.
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(1) 	� Our results are setting in hyperbolic spaces instead of uniformly convex Banach 
spaces in Chang et al. (2014b, Theorems 3.1,  3.2 and Theorems 4.1, 4.2 and 4.3) 
and Khan et al. (2012, Theorems 1 and 2).

(2) 	� We used the generalized multivalued mappings in hyperbolic spaces instead of 
the SCC, SKC, KSC, KSC SCS and C-type multivalued mappings in Chang et al. 
(2015, Theorems 2.1 and  2.4).

(3) 	� We used the generalized nonexpansive multivalued mappings in hyper-
bolic spaces instead of nonexpansive multivalued mappings in Chang et  al. 
(2014a, Theorems 2.1 and 2.2) and Khan et al. (2014, Theorems 2.4 and 2.5)

(4) 	� Our results are setting in hyperbolic spaces instead of CAT(0) spaces in 
Abkar et  al. (2012,  Theorems  3.6,  3.7  and  3.12) and Pathak et  al. (2015,  Theo-
rems 3.2, 3.3 and 3.4).
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