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Background
Monotonicity of curvature is a desirable feature in numerical curve and surface draw-
ing applications e.g. in designing of robotic trajectories (Yang and Choi 2013), roads 
(Habib and Sakai 2007) and car bodies (Simon and Isik 1991). The generalized Cornu 
spirals (Cripps et  al. 2010) are a family of spirals that have monotonic rational linear 
curvature profile. However their implementation in CAD systems is not possible due to 
their representation. The CAD system is based on simple polynomial curves, the integral 
and rational Bézier curves and B-spline curves. These curves are recursively defined and 
mimic the shape of control polygon so they are well suited for CAD. The only drawback 
is that the curvatures of Bézier and B-spline curves are not monotonic for randomly 
selected values of control points and weight functions. In this research paper, this void 
has been filled by constructing a parametric rational cubic trigonometric Bézier curve 
(RCTBC) approximation of the generalized Cornu spirals such that it has a monotonic 
curvature profile within a specified tolerance.

In the past few decades, efforts have been invested for approximating the special cases 
of GCS: Cornu spirals, logarithmic spirals and circular arcs. The curvature of Cornu 
spirals and logarithmic spirals also varies monotonically with respect to arc length. 
The parametric equations of the Cornu spirals are defined in terms of Fresnel integrals. 
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Existing approximation schemes of Cornu spirals focus on the approximation of the 
Fresnel integrals, see Heald (1985) and Wang et al. (2001). Heald (1985) approximated 
the Fresnel integrals by rational polynomial function together with sine and cosine 
functions. The error function was the diagonal distance between the approximated 
and exact data points. Although, the approximation scheme of Cornu spirals proposed 
in Heald (1985) gave favourable results but the presence of arc length parameter made 
it unsuitable for CAD. Wang et  al. (2001) approximated the Fresnel integral by Bern-
stein-Bézier polynomials of degree N . The absolute error of approximation was com-
puted by the Hausdorff distance between the exact and approximated points. In Wang 
et al. (2001), for favourable approximation the Bernstein–Bézier curve of at least degree 
seven was required. Baumgarm and Farin (1997) approximated the logarithmic spiral by 
rational cubic Bézier curves. The quality of approximation was considered by comput-
ing relative error between the total arc length of logarithmic spiral and rational cubic 
Bézier curve approximating it. In Fang (1998), Goldapp (1991) and Lee et  al. (1996), 
the approximation of the unit quarter circle was carried out by minimizing the radius 
error of approximation. Lee et al. (1996) proposed G0-approximation by quadratic Bézier 
curves, Goldapp (1991) proposed G1-approximation by cubic Bézier curves and Fang 
(1998) proposed G2-approximation by quintic Bézier curves. In Lee et al. (1996), Gol-
dapp (1991) and Fang (1998), the radius error of approximation progressively decreased 
from 10−2 to 10−5 as the degree of the Bézier curve increased. Piegal and Tiller (2003) 
presented a B-spline approximation method for circular arcs. Since all the above men-
tioned approximation schemes focused on minimizing the Euclidean distance between 
the exact and approximated values so these fall short of controlling the curvature profile 
of the approximating curves.

The GCS (Cripps et al. 2010) is a continuous and smooth curve. It has a monotonic 
curvature and possesses only one inflection point at the most. These are the qualities 
which make it beneficial in the CAD system. GCS reduces to straight lines, circular arcs, 
logarithmic spirals or Cornu spirals for different values of parameters.

Cripps et  al. (2010) proposed a G2-approximation scheme for GCS. In Cripps et  al. 
(2010), the authors formulated the approximating quintic Bézier curve as a function of 
four free parameters. The optimized values of these free parameters were computed by 
minimizing the maximum value of relative curvature error of approximation through a 
search routine. Thus the approximation scheme in Cripps et al. (2010) had hold over the 
curvature of the approximating curve. Cross and Cripps (2012) introduced a G3-approx-
imation scheme for generalized Cornu spirals using parametric quintic Bézier curves. 
Thus the G3-approximation scheme (Cross and Cripps 2012) had only two degrees of 
freedom (β1, γ1). The initial approximation of the shape factors β1 and γ1 were obtained 
by solving the nonlinear equations. If the initial approximation was unacceptable then 
a numerical search algorithm was applied repeatedly to obtain a reasonable value of 
the relative curvature error of approximation. Yoshida and Saito (2007) approximated 
the Quasi-Aesthetic Curves by parametric rational cubic Bézier curves. The Aesthetic 
Curves (Yoshida and Saito 2007) have monotone curvature profile. The values of free 
parameters were determined by minimizing the sum of the Euclidean distances between 
the points on rational cubic Bézier curve segments and the aesthetic curves.
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Han et al. (2009) proposed the Bernstein–Bézier form of cubic trigonometric curves. 
The trigonometric curves developed in Han et al. (2009, 2010) were closer to the con-
trol polygon than the integral parametric cubic Bézier curves. Moreover, the review of 
literature (Han et al. 2009, 2010; Simon and Isik 1991), conveys that Bézier trigonomet-
ric curves are more efficient than the algebraic splines and ordinary parametric Bézier 
curves. Hussain et  al. (2014a, b) used GC1 trigonometric interpolants to preserve the 
shape of curve and surface data respectively.

In this research paper, Gk , k = 1, 2, approximation schemes are developed to approxi-
mate GCSs. The approximation is undertaken by the rational cubic trigonometric Bézier 
curve (RCTBC). The RCTBC was introduced in Hussain et  al. (2015). The RCTBC 
enjoys all the properties of parametric rational cubic Bézier curve like convex-hull prop-
erty, end point interpolation property, end tangent interpolation property. The quality 
of approximation by the RCTBC is better than ordinary rational and integral paramet-
ric cubic Bézier curves (Hussain et al. 2015). It is more flexible than non-rational ordi-
nary parametric Bézier curves due to the presence of weight functions (Sederberg 2014). 
The presence of weight functions permits shape control. Apparently the trigonometric 
functions evaluations and presence of fraction in RCTBC looks like its demerits. It may 
be assumed that these functions will significantly increase the computation time of the 
developed G2 and G1 approximation schemes. But it is clear from Table 1, that the CPU 
time consumed by the developed G2 and G1 approximation schemes is less than 50  s. 
Moreover, softwares are available for the fast computation of trigonometric functions 
(Simon and Isik 1991). These characteristics of RCTBC (1) are the pushing force behind 
its use in this research paper for the approximation of GCS.

In this research paper, Gk , k = 1, 2, approximations of GCSs by the rational cubic trig-
onometric Bézier curve (1) are carried out in the following sequence:

• • The developed G1-approximation scheme evaluates all the control points of the 
RCTBC by matching the end points and end unit tangents of the GCS and RCTBC. 
The four weight functions and the distances (d1, d3) are available as free parameters. 
Here d1 is the distance between the first two control points of RCTBC, whereas, 
d3 is the distance between its last two control points. Since the degrees of freedom 
of a Bézier curve is two less than its number of free parameters (Yoshida and Saito 
2007). Therefore, two of the weight functions are fixed. The RCTBC is reformulated 
in terms of these newly computed values of control points and four free parameters.

Table 1  Relative curvature errors and CPU time consumption

Approxima-
tion schemes

Maximum 
relative 
curvature 
error (σ)/CPU 
time (s)

Circular arc Cornu spiral Logarithmic 
spiral

Non-inflecting 
GCS

Normalized 
GCS

G2-approx-
imation 
(Theorem 1)

σ 9.7977 × 10−8 5.911 × 10−4 7.8252 × 10−4 5.52 × 10−4 0.0012

CPU time 21.6380 17.769 39.0940 14.9760 21.1380

G1-approx-
imation 
(Theorem 2)

σ 5.62 × 10−5 8.94 × 10−4 3.60 × 10−3 4.10 × 10−3 0.0010

CPU time 34.0870 20.230 45.0670 25.9800 26.9880
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• • In G2-approximation scheme, in addition to the control points, two out of total four 
weight functions are fixed by matching end points, end unit tangents and end curva-
tures of the GCS and the RCTBC. The remaining two weight functions and the dis-
tances between control points (d1, d3) are the free parameters. Here again using the 
same arguments the weight functions are fixed. Thus the developed G2-approxima-
tion scheme has two free parameters (d1, d3). The order of continuity of G1-approxi-
mation scheme is less than G2-approximation scheme. But G1-approximation scheme 
has more flexibility due to two more free parameters than G2-approximation scheme.

• • Since we are interested in developing a RCTBC with monotone curvature profile. 
Therefore, to control the curvature profile of the RCTBC, the relative curvature error 
is taken as the gauge for the optimal approximation. The optimal values of the free 
parameters of the developed G2 and G1-approximation schemes of GCS are obtained 
by minimizing the maximum value of the relative curvature error of these approxi-
mation schemes. This minimization is carried out by using the optimization tool box 
of MATLAB software based on sequential quadratic programming technique.

• • The GCS is defined in terms of arc length parameter s and RCTBC is a parametric 
curve of parameter t ∈

[

0, π4
]

. In order to compare these curvatures both the cur-
vatures should be reparametrized in terms of same parameter. Here, Algorithm 1 is 
proposed in “Re-parameterization of the GCS and the rational cubic trigonometric 
Bézier curve” section to find the points of the RCTBC corresponding to the points of 
the GCS. For comparison, the curvatures of RCTBC and GCS are evaluated simulta-
neously.

• • The tolerances for the relative curvature error of the developed approximation 
schemes of GCS are determined by using non-rational cubic trigonometric Bézier 
curve. It is the least degree trigonometric Bézier curve which is completely evaluated 
by the G2-approximation scheme without leaving any degree of freedom.

• • The Gk-approximation schemes of GCS developed in this research paper are applied 
to the special cases of GCS (circular arc, Cornu spiral, logarithmic spiral, non-inflect-
ing GCS, normalized GCS). The numerical results of approximations corresponding 
to these data sets are given in Table 1.

The affine transformations, rotation and translation, do not alter the curvature profile 
of the GCS. Therefore in this research paper, the Gk-approximation schemes are devel-
oped for the standard form of the GCS i.e. the initial point of the GCS is at origin O(0, 0) 
and the tangent at the initial point is in the direction of positive x-axis (θ(0) = 0). It can 
be easily achieved for any given segment of GCS by first translating its initial point to 
origin then rotating it in the direction of positive x-axis.

By comparing the results in Table  1, it is concluded that the developed G2 and G1 
approximation schemes of this research paper perform better than the prevailing 
approximation schemes of GCS (Cripps et al. 2010; Cross and Cripps 2012). Since the 
CPU time consumed by the developed approximation schemes is less than 50 s so it also 
rules out the assumption that the use of rational trigonometric Bézier curve destroys the 
efficiency of the developed G2 and G1 approximation schemes by greatly increasing the 
computation time.
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Preliminaries
In this section, the terms to be used in the rest of the paper are defined.

(i)	 Rational cubic trigonometric Bézier curves (RCTBC)

The rational cubic trigonometric Bézier curve (RCTBC) (Hussain et al. 2015) is a trig-
onometric alternative of well-known parametric rational cubic Bézier curve (Hoschek 
et al. 1993). The RCTBC is given by

Here pi’s, µi’s and b3i (t)µi
∑3

i=0 b
3
i (t)µi

, i = 0, 1, 2, 3, are the control points, weight functions and 

the rational cubic trigonometric basis functions, respectively. The weight functions µi 
may have any real positive value. The cubic trigonometric functions b3i (t), are given by

It is clear from above definition that RCTBC (1) is a parametric curve. The RCTBC has 
the following properties:

(a)	 End point interpolation property: The RCTBC (1) interpolates the first and last 
control points i.e. p(0) = p0 and p

(

π
4

)

= p3.

(b)	 Convex-hull property: The sum of the rational cubic trigonometric basis functions 
b3i (t)µi

∑3
i=0 b

3
i (t)µi

, i = 0, 1, 2, 3, is one and these are non-negative for t ∈
[

0, π4
]

,µi ∈ R
+. 

Therefore, the curve generated by RCTBC (1) always lies in the convex-hull of con-
trol points pi, i = 0, 1, 2, 3.

(c)	 End tangents property: The first order derivatives of RCTBC (1) at the end points 
of the interval are given by

(d)	 The RCTBC (1) is recursively defined and mimic the shape of control polygon.
(e)	 In Hussain et al. (2015), the quality of approximation of RCTBC (1) was measured 

and found better than the ordinary rational and integral parametric cubic Bézier 
curves.

The above highlighted properties of RCTBC (1) make it an ideal candidate for GCS 
approximation in CAD.

(ii)	 Non-rational cubic trigonometric Bézier curve

The parametric non-rational cubic trigonometric Bézier curve is defined as

(1)p(t) =
∑3

i=0 b
3
i (t)µipi

∑3
i=0 b

3
i (t)µi

, t ∈
[

0,
π

4

]

, pi ∈ R
2.

b3i (t) =
(

3
i

)

(1− tant)3−itanit, i = 0, 1, 2, 3

p′(0) = 3µ1(p1 − p0)

µ0
and p′

(π

4

)

= 6µ2(p3 − p2)

µ3
.

(2)
q(t) =

3
∑

i=0

b3i (t)qi, t ∈
[

0,
π

4

]

, qi ∈ R
2.
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Here qi and b3i (t) are the control points and trigonometric basis functions respectively. 
These cubic trigonometric basis functions,b3i (t), are given by

It is a special case of (1) for µi = 1, i = 0, 1, 2, 3.

(iii)	Curvature (Hoschek et al. 1993)

For a parametric curve z(t) =
(

x(t), y(t)
)

, the curvature kz(t) is given as follows

(iv)	G1-approximation (Hoschek et al. 1993)

For the given parametric curves, S1(t) and S2(t), S1(t) is called G1-approximation of S2(t) 
if both the curves have same end points and end unit tangents.

(v)	 G2-approximation (Hoschek et al. 1993)

For the given parametric curves, S1(t) and S2(t), S1(t) is called G2-approximation of S2(t) 
if both the curves have same end points, end unit tangents and end curvatures.

Determining tolerance of relative curvature error
A GCS r(s) is always bounded by two circular arcs, c1(s) and c2(s) (say). These circu-
lar arcs are completely defined by the two end points (r(0) and r(S)) and the unit tan-
gents at these end points (t(0) and t(S)). Since the GCS has monotonic curvature profile 
so it is inside c1(s) and c2(s). In order to attain a good approximation of the GCS, the 
bounds of the relative curvature error of approximation need to be calculated. In this 
research paper, the approximation tolerance is established by approximating the two 
bounding circular arcs of GCS by non-rational cubic trigonometric Bézier curve (1). The 
non-rational curve (2) is the minimum degree trigonometric Bézier curve whose con-
trol points are completely determined by the G2-approximation constraints. These non-
rational cubic trigonometric Bézier approximations of circular arcs are used further for 
obtaining desired approximation of GCS.

Let the circular arcs have center at origin, the angle between the two radii is θ and the 
radius is ρ. The G2-approximation of the circular arc by the Bézier curve (2) is subject to 
the following conditions,

b3i (t) =
(

3
i

)

(1− tant)3−itanit, i = 0, 1, 2, 3.

(3)
kz(t) =

dx
dt
.
d2y
dt

− dy
dt
.d

2x
dt

{

(

dx
dt

)2
+

(

dy
dt

)2
}

3
2

(4)q(0) = r(0), q
(π

4

)

= r(S),

(5)T̂ (0) = t(0), T̂
(π

4

)

= t(S),

(6)
kq(0) = k0, kq

(π

4

)

= k1.
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Here q(0) and q
(

π
4

)

 are the end points, T̂ (0) and T̂
(

π
4

)

 are the end unit tangents, kq(0) 
and kq

(

π
4

)

 are the end curvatures of the Bézier curve (2). The curvatures of the circular 
arc at the initial and final points of the domain are k0 and k1 respectively (Fig. 1).

Substituting the values of r(0), r(S), t(0), t(S), T̂ (0) and T̂
(

π
4

)

 in (4) and (5), we get

From (7) and (8), the control points of the cubic Bézier (2) are evaluated such that 
q0(ρ, 0), q1(ρ, ρα), q2(ρ(cosθ + sinθ), ρ(sinθ − βcosθ)), q3(ρcosθ , ρsinθ). Here, 
α = �q1−q0�

ρ
 and β = �q3−q2�

ρ
 are the free parameters. By the choice of the free param-

eters, these are always positive.
The curvature of the Bézier curve (2), kq(t), as computed by the (3) is

Here,

Substituting the values of k0 and k1 in (6) leads to

(7)q0 = (ρ, 0), q3 = (ρcosθ , ρsinθ),

(8)
q1 − q0

�q1 − q0�
= (0, 1),

q3 − q2

�q3 − q2�
= (−sinθ , cosθ).

(9)kq(t) =
f (t)

ρ
.

f (t) = g(t)
{

(h(t))2 + (w(t))2
}

3
2

,

g(t) = (1− cosθ − βsinθ)
(

(1− tant)3sec6tα
)

+ (1− cosθ − αsinθ)

×
(

tan3t sec6tβ
)

+ (1− cosθ)

×
(

(1− tant)2tant sec6tα + (1− tant)tan2t sec6tβ
)

,

h(t) =
(

2(1− tant)tant sec2t
)

(cosθ + βsinθ − 1)− βtan2t sec2t sinθ),

w(t) = (1− tant)2sec2tα +
(

2(1− tant)tant sec2t
)

(sinθ − βcosθ − α)

+ (βtan2t sec2t cosθ).

(10)kq(0) =
1

ρ
, kq

(π

4

)

= 1

ρ
,

( ) (0)
3

2

1

0

Fig. 1  Approximation of circular arc by non-rational cubic trigonometric Bézier curve
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where,

Substituting the values of end curvatures from (11) in (10), the following set of equa-
tions are achieved,

It results in

Now, either α = β or α + β = 2
3 sinθ .

Case 1  α = β.

If α = β , then (12) can be written as

Solving the quadratic Eq. (14), the two roots α1 and α2 are as follows,

It can be easily seen that for 0 < θ ≤ π
2 ,α2 < 0, a contradiction to the choice of α’s. 

Hence α1 is the only root of (14). The only solution of the simultaneous Eqs. (12) and (13) 
is (α1,β1), where α1 = β1.

Case 2 

If α + β = 2
3 sinθ, then (12) can be written as,

In this case, simultaneous Eqs. (12) and (13) have the solution set: {(α3,β3), (α4,β4)}, 
where

It can be easily verified that cos θ2 >
√
3sin θ

2 for 0 < θ ≤ π
3  and cos θ2 <

√
3sin θ

2 for 
π
3 < θ ≤ π

2 . Since α,β > 0 and 0 < θ ≤ π
2  so if π3 < θ ≤ π

2 , the only solution is (α1,β1) 

(11)kq(0) =
2(1− cosθ − βsinθ)

3α2ρ
, kq

(π

4

)

= 2(1− cosθ − αsinθ)

3β2ρ
.

(12)2(1− cosθ) = 3α2 + 2βsinθ ,

(13)2(1− cosθ) = 3β2 + 2αsinθ .

(α − β)

(

α + β − 2

3
sinθ

)

= 0.

(14)3α2 + 2αsinθ − 2(1− cosθ) = 0.

α1 =
2sin θ

2

(

−cos θ2 +
√

3+ cos2 θ2

)

3
, α2 =

2sin θ
2

(

−cos θ2 −
√

3+ cos2 θ2

)

3
.

α + β = 2

3
sinθ

3α2 + 2βsinθ − 2(1− cosθ) = 0.

α3 =
2sin θ

2

(

cos θ2 −
√
3sin θ

2

)

3
, β3 =

2sin θ
2

(

cos θ2 +
√
3sin θ

2

)

3
,

α4 =
2sin θ

2

(

cos θ2 +
√
3sin θ

2

)

3
, β4 =

2sin θ
2

(

cos θ2 −
√
3sin θ

2

)

3
.
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given in Case 1. However, for 0 < θ ≤ π
3 , there are three solutions of (12) and (13) i.e. 

(α1,β1), (α3,β3) and (α4,β4). Thus we have three distinct non-rational cubic trigonomet-
ric Bézier approximations (2) of the circular arcs. Now to establish the acceptable tol-
erance of the relative curvature error of approximation, the relative curvature error of 
approximation of circular arc is given by

From (9), (15) is rewritten as

The three maximum relative curvature errors of approximation corresponding to 
three non-rational cubic trigonometric Bézier approximating curves of circular arc are 
given by

The smallest tolerance is ε̄ = min{εi}, i = 1, 2, 3. However, by performing the results it 
is observed that ε̄ is obtained when α = β . Thus corresponding to the two non-rational 
cubic trigonometric Bézier approximations of the bounding circular arcs, two curvature 
tolerances ε̄1 and ε̄2 are obtained. However the practical acceptable relative curvature 
error tolerance ε is given by

In Cripps et al. (2010), the tolerance of relative curvature error less than 0.05 was con-
sidered acceptable.

G
k‑approximation of GCS by rational cubic trigonometric Bézier curve

In the following section, the proposed G2 and G1-approximation schemes of GCS by 
RCTBC (1) are presented.

G
2‑approximation of GCS

The G2-approximation of GCS is carried out by the following set of equations,

(15)
δ(t) =

∣

∣

∣
kq(t)− 1

ρ

∣

∣

∣

max
{

∣

∣kq(t)
∣

∣,
∣

∣

∣

1
ρ

∣

∣

∣

} .

(16)δ(t) =
∣

∣f (t)− 1
∣

∣

max
{∣

∣f (t)
∣

∣, 1
} .

(17)εi = max{δi(t)}, t ∈
[

0,
π

4

]

, i = 1, 2, 3.

(18)ε = 2max{ε̄1, ε̄2}.

(19)p(0) = r̃(0), p
(π

4

)

= r̃(S),

(20)T̃ (0) = t̃(0), T̃
(π

4

)

= t̃(S),

(21)kp(0) = k̃0, kp

(π

4

)

= k̃1.
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Here p(0) and p
(

π
4

)

 are the end points, T̃ (0) and T̃
(

π
4

)

 are the end unit tangents, kp(0) 
and kp

(

π
4

)

 are the end curvatures of the RCTBC (1). The curvature of the GCS at the 
initial and final points of the domain are k̃0 and k̃1 respectively. The GCS is defined by the 
two end points, r̃(0) = (0, 0) and r̃(S) =

(

x(S), y(S)
)

, and the unit tangents at these end 
points are t̃(0) = (1, 0) and t̃(S) = (cosθ(S), sinθ(S)). Here θ(S) is the angle made by t̃(S) 
with x-axis. Substituting these values in (19), (20) and (21) we have

Here, di = �pi − pi−1�, (i = 1, 2, 3), and µi > 0(i = 0, 1, 2, 3) are the weight functions 
of RCTBC (1). By solving (22), (23) and (24), the values of control points (pi, i = 0, 1, 2, 3) 
and weight functions µ0, µ3 of the RCTBC (1) in terms of d1, d3, µ1 and µ2 are obtained. 
The values of control points thus obtained are

The weights µ0 and µ3 are given by

Here, d1, d3, µ1 and µ2 are the free parameters. The optimized values of these free 
parameters can be obtained by minimizing the maximum relative curvature error of  
G2-approximation schemes via any optimization technique.

Minimization of the curvature

For the control points given in (25), the parametric equations of RCTBC (1) are

Here,

The first and second order derivatives of x(t) and y(t) are given by

(22)p0 =
(

x(0), y(0)
)

, p3 =
(

x(S), y(S)
)

,

(23)
p1 − p0

�p1 − p0�
= t̃(0),

p3 − p2

�p3 − p2�
= t̃(S),

(24)
2µ0µ2

(

y(S)− d3sinθ(S)
)

3µ2
1d

2
1

= k̃0,
2µ1µ3sinθ(S)(x(S)− d1)− y(S)cosθ(S)

3µ2
2d

2
3

= k̃1.

(25)

p0 = (0, 0), p1 = (d1, 0), p2 =
(

x(S)− d3cosθ(S), y(S)− d3sinθ(S)
)

, p3 =
(

x(S), y(S)
)

.

(26)µ0 =
3µ2

1d
2
1 k̃0

2µ2

(

y(S)− d3sinθ(S)
) , µ3 =

3µ2
2d

2
3 k̃1 + y(S)cosθ(S)

2µ1sinθ(S)(x(S)− d1)
.

(27)x(t) = x1(t)

F(t)
and y(t) = y1(t)

F(t)
.

x1(t) = 3(1− tant)2tant d1µ1 + 3(1− tan t)tan2t(x(S)− d3 cosθ(S))µ2 + tan3tx(S)µ3,

y1(t) = 3(1− tant)tan2t
(

y(S)− d3sinθ(S)
)

µ2 + tan3tx(S)µ3,

F(t) = (1− tant)3µ0 + 3(1− tant)2tant µ1 + 3(1− tant)tan2t µ2 + tan3tµ3.

(28)
dx

dt
= E(t)

F(t)2
,

dy

dt
= G(t)

F(t)2
,
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Here,

(29)
d2x

dt2
= H(t)

F(t)3
,

d2y

dt2
= I(t)

F(t)3
.

E(t) = (1− tant)5sec2ta0 + (1− tant)4tant sec2ta1 + (1− tant)3

× tan2t sec2ta2 + (1− tant)2tan3t sec2ta3 + (1− tant)tan4t sec2ta4

+ tan5t sec2ta5,

G(t) = (1− tant)5sec2tb0 + (1− tant)4tant sec2tb1 + (1− tant)3tan2t

× sec2tb2 + (1− tant)2tan3t sec2tb3 + (1− tant)tan4t sec2tb4

+ tan5t sec2tb5,

H(t) = (1− tant)7sec4tc0 + (1− tant)6tant sec4tc1 + (1− tant)8tant sec2tc2

+ (1− tant)7tan2t sec2tc3 + (1− tant)6tan3t sec2tc4 + (1− tant)5

× tan2t sec4tc5 + (1− tant)5tan4t sec2tc6 + (1− tant)4tan3t sec4tc7

+ (1− tant)4tan5t sec2tc8 + (1− tant)3tan4t sec4tc9 + (1− tant)3

× tan6t sec2tc10 + (1− tant)2tan5t sec4tc11 + (1− tant)2tan7t sec2tc12

+ (1− tant)tan6t sec4tc13 + (1− tant)tan8t sec2tc14 + tan9t sec2tc15

+ tan7t sec4tc16,

I(t) = (1− tant)7sec4te0 + (1− tant)6tant sec4te1 + (1− tant)8tant sec2te2

+ (1− tant)7tan2t sec2te3 + (1− tant)6tan3t sec2te4 + (1− tant)5

× tan2t sec4te5 + (1− tant)5tan4t sec2te6 + (1− tant)4tan3t sec4te7

+ (1− tant)4tan5t sec2te8 + (1− tant)3tan4t sec4te9 + (1− tant)3

× tan6t sec2te10 + (1− tant)2tan5t sec4te11 + (1− tant)2tan7t sec2te12

+ (1− tant)tan6t sec4te13 + (1− tant)tan8t sec2te14 + tan9t sec2te15

+ tan7t sec4te16,

a0 = 3µ0µ1d1,

a1 = 3µ0µ1d1 + 6µ0µ2(x(S)− d3cosθ(s)),

a2 = −9µ1µ2d1 + (6µ0µ2 + 9µ1µ2)(x(S)− d3cosθ(s))+ 3µ0µ3x(S),

a3 = 9µ1µ2(x(S)− d3cosθ(s))− (9µ1µ2 + 6µ1µ3)d1 + (3µ0µ3 + 6µ1µ3)x(S),

a4 = −6µ1µ3d1 − 3µ2µ3(x(S)− d3cosθ(s))+ (6µ1µ3 + 3µ2µ3)x(S),

a5 = 3µ2µ3d3cosθ(s),

b0 = 0,

b1 = 6µ0µ2

(

y(S)− d3sinθ(s)
)

,

b2 = (6µ0µ2 + 9µ1µ2)
(

y(S)− d3sinθ(s)
)

+ 3µ0µ3y(S),

b3 = 9µ1µ2

(

y(S)− d3sinθ(s)
)

+ (3µ0µ3 + 6µ1µ3)y(S),

b4 = −3µ2µ3

(

y(S)− d3sinθ(s)
)

+ (6µ1µ3 + 3µ2µ3)y(S),

b5 = 3µ2µ3d3sinθ(s),
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c0 =
(

18µ0µ1(µ0 − µ1)− 12µ2
0µ1

)

d1 + 6µ2
0µ2(x(S)− d3cosθ(S)),

c1 = 6µ2
0µ3x(S)+ 24µ2

0µ2(x(S)− d3cosθ(S))− 6µ0

(

9µ1µ2 − µ0µ1 + 3µ2
0

)

d1,

c2 = 6µ2
0µ1d1,

c3 =
(

6µ0

(

3µ2
1 + µ0µ1

))

d1 + 12µ2
0µ2(x(S)− d3cosθ(S),

c4 = 6µ2
0µ3x(S)+ 18µ2

1µ0d1 +
(

12µ2
0µ2 + 9µ1µ2

)

(x(S)− d3cosθ(S)),

c5 = 18µ0(µ0µ3 + µ1µ3)x(S)+ 6µ2

(

6µ2
0 − µ2 + µ1

)

(x(S)− d3cosθ(S))− 36µ0µ1

× (3µ2 + µ3)d1,

c6 = 3µ0µ3(2µ0 + 10µ1)x(S)+ 36µ2

(

µ0µ2 + 3µ2
1 + 3µ0µ1

)

(x(S)− d3cosθ(S)− 6µ1

× (9µ1µ2 + µ0µ3)d1,

c7 = 2µ3

(

6µ2
0 + 33µ0µ1 − 3µ0µ2 + 9µ2

1

)

x(s)

+ 2µ2

(

27µ2
1 − 27µ1µ2 − 36µ0µ2 + 27µ0µ1 − 21µ0µ3

)

(x(S)− d3cosθ(S))

+ 2u1
(

−27µ1µ2 − 9µ1µ3 + 27µ2
2 − 27µ0µ2 − 39µ0µ3

)

d1,

c8 = 6µ3

(

6µ2
1 + 5µ0µ1 + 4µ0µ2

)

x(S)

+ 6µ2

(

6µ0µ2 + 9µ1µ2 + 9µ2
1 + µ0µ3

)

(x(S)− d3cosθ(S))

+ 6µ1

(

−9µ1µ2 − 6µ3u1− 9µ2
2 − µ0µ3

)

d1,

c9 = 12µ3

(

6µ2
1 + 4µ0µ1 − µ0µ3 + µ0µ2

)

x(S)

+ 6µ2

(

9µ2
1 − 9µ1µ2 − 9µ0µ2 − 13µ0µ3 − 9µ1µ3

)

(x(S)− d3cosθ(S))

+ 6µ1

(

−9µ1µ2 − 12µ1µ3 + 9µ2
2 + 9µ2µ3 − 7µ0µ3

)

d1,

c10 = 6µ3

(

6µ2
1 + 9µ1µ2 + µ0µ3 + 4µ0µ2

)

x(S)+ 6µ2(9µ1µ2 + µ0µ3)(x(S)− d3cosθ(S))

+ 6

(

−6µ1µ3 − 9u2
2 − 9u3u2

)

d1,

c11 = 18µ3

(

µ0µ2 − µ0µ3 + 3µ1µ2 − µ1µ3 + 3µ2
1

)

x(S)+ 18µ3

(

3µ1µ2 + µ1µ3 − 3µ2
1

)

d1

+ 6µ2(−6µ0µ3 + 6µ1)(x(S)− d3cosθ(S)),

c12 = 6µ3

(

3µ2
2 + 9µ1µ2 + µ0µ3 + 2µ1µ3

)

x(S)− 6µ3(9µ1µ2 + 2µ1µ3)d1

− 18µ2
2µ3(x(S)− d3cosθ(S)),

c13 = −6µ3

(

µ0µ3 − 9µ1µ2 + 4µ1µ3 + µ2µ3 − 3µ2
2

)

x(S)+ 24µ1µ
2
3d1 + (−18µ3µ

2
2

+ 9µ1µ2 − µ2µ3)(x(S)− d3cosθ(S)),

c14 = 6µ3

(

3µ2
2 + µ2µ3 + 2µ1µ3

)

x(S)− 12µ1µ
2
3d1 − 6µ3

(

3µ2
2 + µ2µ3

)

× (x(S)− d3cosθ(S))

c15 = 6µ2µ
2
3x(S)− 6µ2µ

2
3(x(S)− d3cosθ(S)),

c16 = −6µ3

(

−3µ2
2 + µ2µ3 + µ1µ3

)

x(S)+ 6µ1µ
2
3d1 − 6µ3

(

3µ2
2 − µ2µ3

)

× (x(S)− d3cosθ(S)),
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Substituting the values from (28) and (29) into (3), the curvature of the RCTBC (1) is 
given by

Here, E(t), F(t),G(t), H(t) and I(t) have been already defined. Maximum relative cur-
vature error of G2-approximation while approximating GCS by the RCTBC (1) is calcu-
lated as,

whereas the relative curvature error of the developed G2-approximation scheme of 
GCS is δ(t) = |kp(t)−k(S)|

max{|kp(t)|,|k(S)|}. However, for sufficiently small values of the curvatures 

e0 = 6µ2
0µ2

(

y(S)− d3sinθ(S)
)

,

e1 = 6µ2
0µ3y(S)+ 24µ2

0µ2

(

y(S)− d3sinθ(S)
)

,

e2 = 0,

e3 = 12µ2
0µ2(y(S)− d3sinθ(S),

e4 = 6µ2
0µ3y(S)+

(

12µ2
0µ2 + 9µ1µ2

)

(

y(S)− d3sinθ(S)
)

,

e5 = 18µ0(µ0µ3 + µ1µ3)y(S)+ 6µ2

(

6µ2
0 − µ2 + µ1

)

(

y(S)− d3sinθ(S)
)

,

e6 = 3µ0µ3(2µ0 + 10µ1)y(S)+ 36µ2

(

µ0µ2 + 3µ2
1 + 3µ0µ1

)

(y(S)− d3sinθ(S),

e7 = 2µ3

(

6µ2
0 + 33µ0µ1 − 3µ0µ2 + 9µ2

1

)

y(s)

+ 2µ2

(

27µ2
1 − 27µ1µ2 − 36µ0µ2 + 27µ0µ1 − 21µ0µ3

)

(

y(S)− d3sinθ(S)
)

,

e8 = 6µ3

(

6µ2
1 + 5µ0µ1 + 4µ0µ2

)

y(S)

+ 6µ2

(

6µ0µ2 + 9µ1µ2 + 9µ2
1 + µ0µ3

)

(

y(S)− d3sinθ(S)
)

,

e9 = 12µ3

(

6µ2
1 + 4µ0µ1 − µ0µ3 + µ0µ2

)

y(S)

+ 6µ2

(

9µ2
1 − 9µ1µ2 − 9µ0µ2 − 13µ0µ3 − 9µ1µ3

)

(

y(S)− d3sinθ(S)
)

,

e10 = 6µ3

(

6µ2
1 + 9µ1µ2 + µ0µ3 + 4µ0µ2

)

y(S)+ 6µ2(9µ1µ2 + µ0µ3)
(

y(S)− d3sinθ(S)
)

,

e11 = 18µ3

(

µ0µ2 − µ0µ3 + 3µ1µ2 − µ1µ3 + 3µ2
1

)

y(S)

+ 6µ2(−6µ0µ3 + 6µ1)(x(S)− d3cosθ(S)),

e12 = 6µ3

(

3µ2
2 + 9µ1µ2 + µ0µ3 + 2µ1µ3

)

y(S)− 18µ2
2µ3

(

y(S)− d3sinθ(S)
)

,

e13 = −6µ3

(

µ0µ3 − 9µ1µ2 + 4µ1µ3 + µ2µ3 − 3µ2
2

)

y(S)+ (−18µ3µ
2
2 + 9µ1µ2

− µ2µ3)
(

y(S)− d3sinθ(S)
)

,

e14 = 6µ3

(

3µ2
2 + µ2µ3 + 2µ1µ3

)

y(S)− 6µ3

(

3µ2
2 + µ2µ3

)

(

y(S)− d3sinθ(S)
)

,

e15 = 6µ2µ
2
3y(S)− 6µ2µ

2
3

(

y(S)− d3sinθ(S)
)

,

e16 = −6µ3

(

−3µ2
2 + µ2µ3 + µ1µ3

)

y(S)− 6µ3

(

3µ2
2 − µ2µ3

)

(

y(S)− d3sinθ(S)
)

.

(30)kp(t) =
E(t).I(t)− G(t).H(t)

F(t))
{

(E(t))2 + (G(t))2
}

3
2

.

(31)δ(t) = maxt∈[0, π4 ]δ(t),
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(kp(t), k(S)), the relative curvature error δ(t) becomes infinite. Therefore, the practical 
choice of δ(t) is the following:

The curvature of the GCS k(s) is given by

Here k̃0 and k̃1 are the end curvatures of the GCS, r is the shape factor, S is the total arc 
length of the GCS and s is the arc length parameter.

Determining bounds of free parameters

In order to determine the optimized values of the free parameters d1, d3, µ1 and µ2 by 
minimizing the relative curvature error (31) of the developed G2-approximation scheme, 
the bounds of these free parameters are determined in the rest of this section.

By simple computation it can be easily observed that the values of first order derivative 
of RCTBC (1) at the end points of its domain 

[

0, π4
]

 are

Taking the norm on both sides and after some rearrangement, we have

Here �p1 − p0� is the distance between first two control points and �p3 − p2� is the dis-
tance between last two control points of (1). Since for a given GCS, �p′(0)� and 

∥

∥p′
(

π
4

)∥

∥ 
are fixed so for a reasonable distance between p0(p3) and p1(p2), the reasonable choice 
of the free parameters are µ1 ≥ 1 and µ2 ≥ 1.

The arc length of RCTBC (1) over the whole domain is given by

The above integral cannot be solved analytically. Therefore numerical integration tech-
nique is needed to evaluate it. Here, the above definite integral is evaluated by Trapezoi-
dal rule for M = 2 and h = π

16. M and h represent the number of subintervals and length 
of each subinterval. The order of error of approximation of Trapezoidal rule is O

(

h2
)

. 
The computed value of the arc length of the RCTBC (1) is

(32)δ(t) =
∣

∣kp(t)− k(s)
∣

∣

max
{

1,
∣

∣kp(t)
∣

∣,
∣

∣k(s)
∣

∣

} .

(33)k(s) = (k̃1 − k̃0 + rk̃1)s + k̃0s

rs + S
, 0 ≤ s ≤ S, r > −1.

(34)p′(0) = 3µ1(p1 − p0)

µ0
and p′

(π

4

)

= 6µ2(p3 − p2)

µ3
.

(35)�p1 − p0� = µ0�p′(0)�
3µ1

and �p3 − p2� =
µ3

∥

∥p′
(

π
4

)∥

∥

6µ2
.

ST =
∫ π

4

0
�p′(t)�dt.

ST ≈ π

16
�p′(0)� + π

8

∥

∥

∥
p′
(π

8

)∥

∥

∥
+ π

16

∥

∥

∥
p′
(π

4

)∥

∥

∥

>
π

16

∥

∥p′(0)
∥

∥+ π

16

∥

∥

∥
p′
(π

4

)∥

∥

∥
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or

Substituting the values of pi, i = 0, 1, 2, 3, from (25) in (35), we have

Substituting the values of �p′(0)� and 
∥

∥p′
(

π
4

)
∥

∥ from (37) into (36), we have

Although the developed G2-approximation of GCS has four free parameters d1, d3 µ1 
and µ2 but its degrees of freedom are actually two (Yoshida and Saito 2007). Thus two 
out of four free parameters d1, d3, µ1 and µ2 can be chosen arbitrarily. It is because the 
scaling of control points and weights by same scale factor does the affect the shape of the 
curve (Yoshida and Saito 2007). Here for the G2-approximation of GCS by RCTBC (1), 
the weight functions µ1 and µ2 are fixed to µ1 = 1 and µ2 = 1 without loss of generality 
(Yoshida and Saito 2007). Thus there are only two free parameters d1 and d3 for the G2

-approximation of GCS by rational cubic trigonometric Bézier curve (1). It follows from 
above discussion that for reasonable G2-approximation of GCS by RCTBC (1), the free 
parameters d1 and d3 should satisfy the following relation

The above discussion is summarized as:

Theorem 1  If the control points of the rational cubic trigonometric Bézier curve p(t), 
defined in (1), are given by

and the two weight functions µ0 and µ3 are computed as,

then the rational cubic trigonometric Bézier curve (1) gives the G2-approximation of the 
GCS. Here the optimized values of the free parameters d1 and d3 are calculated from the 
following optimization problem-I.

Optimization problem‑I 

(36)�p′(0)� <
16

π
ST and

∥

∥

∥
p′
(π

4

)∥

∥

∥
<

16

π
ST

(37)�p′(0)� = 3µ1d1

µ0
and

∥

∥

∥
p′
(π

4

)
∥

∥

∥
= 6µ2d3

µ3
.

(38)
µ1d1

µ0
<

16

3π
ST and

µ2d3

µ3
<

8

3π
ST .

(39)
d1

µ0
<

16

3π
ST and

d3

µ3
<

8

3π
ST .

p0 = (0, 0), p1 = (d1, 0), p2 = (x(S)− d3cosθ(S), y(S)− d3sinθ(S)), and

p3 =
(

x(S), y(S)
)

,

µ0 =
3µ2

1d
2
1 k̃0

2µ2

(

y(S)− d3sinθ(S)
) , µ3 =

3µ2
2d

2
3 k̃1 + y(S)cosθ(S)

2µ1sinθ(S)(x(S)− d1)
,

Minimize δ(t)

subject to d1 ≥ u, d3 ≥ u,
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where

For practical implementation of Theorem 1 and optimization problem-I, the optimized 
values of d1 and d3 are obtained from Optimization problem-I. These optimized values 
are substituted in Theorem 1 to obtain the corresponding values of µ0 and µ3. If these 
computed values of µ0, µ3, d1 and d3 satisfy the inequalities in (39), then desired values 
are achieved. Otherwise the optimization problem-I is resolved with a different initial 
guess for d1 and d3.

G
1‑approximation of GCS

The G1-approximation of GCS by rational cubic trigonometric Bézier curve (1) is carried 
out by the set of Eqs. (19) and (20). Hence, for the above mentioned G1-approximation 
the control points (pi, i = 0, 1, 2, 3) of the RCTBC (1) are the same as calculated in (25), 
“G2-approximation of GCS” section. Now all the weight functions (µi, i = 0, 1, 2, 3) and 
d1, d3 are the free parameters (Yoshida and Saito 2007). Since the degree of freedom of 
RCTBC (1) is two less than its number of free parameters so two out of above six free 
parameters can be chosen arbitrarily (Yoshida and Saito 2007). For the ease of computa-
tion the weight functions µ0 and µ3 are fixed to µ0 = µ3 = 1. The for the G1-approxima-
tion of GCS by rational cubic trigonometric Bézier curve (1) there are only four free 
parameters d1, d3, µ2 and µ3. The relation (38) yields the following bounds of these free 
parameters

The optimized values of the free parameters d1, d3, µ2 and µ3 are obtained by minimiz-
ing the maximum value of relative curvature error of G1-approximation scheme.

Theorem 2  If the control points of the rational cubic trigonometric Bézier curve p(t), 
defined in (1), are given by

then the rational cubic trigonometric Bézier curve (1) gives the G1-approximation of the 
GCS. Here the optimized values of the free parameters d1, d3,µ1 and µ2 are calculated 
from the following optimization problem-II.

Optimization problem‑II 

δ(t) = maxt∈[0, π4 ]δ(t),

δ(t) =
∣

∣kp(t)− k(s)
∣

∣

max
{

1,
∣

∣kp(t)
∣

∣,
∣

∣k(s)
∣

∣

} , u = 2.2204 × 10−16.

(40)µ1d1 <
16

3π
ST and µ2d3 <

8

3π
ST .

p0 = (0, 0), p1 = (d1, 0), p2 = (x(S)− d3cosθ(S), y(S)− d3sinθ(S)), and

p3 =
(

x(S), y(S)
)

,

Minimize δ(t)

subject to d1 ≥ u, d3 ≥ u,

µ1 ≤
16

3πd1
ST − u, µ2 ≤

8

3πd3
ST − u,
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where

Remark 1  It is clear from the choice of δ(t) of Theorems 1 and 2 that for very small 
values of kp(t) and k(S), the free parameters are obtained by minimizing the maximum 
absolute curvature error of the proposed Gk-approximation schemes.

Remark 2  It can be observed from Theorems 1 and 2 that the control points, weight 
functions and curvature of RCTBC (2) for G2 and G1 approximation of the GCS are not 
dependent on the distance d2.

Remark 3  For determining the bounds of free parameters in “G2-approximation of 
GCS” and “G1-approximation of GCS” sections, the length of GCS and its approximating 
RCTBC are taken approximately equal i.e. ST ≈ S.

Remark 4  In this research paper, the optimization problems I and II are solved by using 
the function program fminimax of the optimization toolbox of MATLAB 7 software. 
The fminimax is based on sequential quadratic programming technique (SQP) (Chong 
and Zak 2010). SQP is a state of art method of optimization. It is more efficient and 
accurate then the prevailing optimization techniques. In SQP, firstly, the Hessian matrix 
of Lagrangian function is updated to obtain a positive definite Hessian. This updating is 
carried out using quasi-Newton updating method preferably the BFGS algorithm. Sec-
ondly, updated Hessian is used to generate a quadratic programming sub-problem. The 
solution of quadratic programming sub-problem is used to determine search direction. 
Lastly, this search direction is used to obtain a new iterate by line search algorithm. The 
step length parameter of line search algorithm is determined by sufficient decrease in 
merit function. It is observed that the sequential quadratic programming technique is 
infeasible or fails for highly nonlinear and discontinuous objective functions. But the 
objective functions involved in Theorems 1 and 2 are neither highly nonlinear nor dis-
continuous, so feasible solutions of optimization problems I and II is possible.

Re‑parameterization of the GCS and the rational cubic trigonometric Bézier 
curve
The curvatures of GCS and the rational cubic trigonometric Bézier curve (1) can be eas-
ily compared if these curvatures have a common parameter. Since the curvature of the 
rational cubic trigonometric Bézier curve kp(t) has parameter t ∈

[

0, π4
]

 while the cur-
vature of the GCS k(s) is expressed in terms of arc-length parameter s. Therefore in this 
research paper the curvatures are compared by matching corresponding points along 
the arc of the GCS and the Bézier curve (1). The developed algorithm is the modified 
version of the numerical algorithm presented in (Wang et al. 2003). The details are as 
follows:

(41)

δ(t) = maxt∈[0, π4 ]δ(t), u = 2.2204 × 10−16

δ(t) =
∣

∣kp(t)− k(s)
∣

∣

max
{

1,
∣

∣kp(t)
∣

∣,
∣

∣k(s)
∣

∣

} .
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Algorithm 1 
Step 1 Divide the interval 

[

0, π4
]

 into m equally spaced subintervals such that 
the length of each subinterval is π

4m. Now, the partition of the interval 
[

0, π4
]

 is 
0 = t0 < t1 < t2 < · · · < tm = π

4 , where ti+1 = ti + π
4m , i = 0, 1, 2, . . . ,m− 1.

Step 2 Compute the arc length s̃j of RCTBC (1) over the subinterval 
[

t0, tj
]

, 
j = 1, 2, 3, . . . ,m.

Step 3 Divide the interval [0, S] into p equally spaced subintervals where S is the total 
arc length of the GCS. The partition of [0, S] is 0 = s̄0 < s̄1 < s̄2 < · · · < s̄p = S, where 
s̄i+1 = s̄i + S

p, i = 0, 1, 2, . . . , p− 1. Here p and m are positive integers with p < m and m 
is very large.
Step 4

	
	 Here t̃i’s are the point on the RCTBC corresponding to the points s̄i on the GCS.
Remark 5  It is observed through numerical experiments that for acceptable approxi-
mation of GCS the suitable choice is m > 700.

All the above discussion is summarized in the form of following algorithm.
Algorithm 2  Step 1. Compute the curvature of rational cubic trigonometric curve (1) 
and GCS from Eqs. (30) and (33) respectively.
Step 2. Compute the values of free parameters from optimization problems I and II for G2 
and G1 approximation schemes respectively.
Step 3. Given x(S), y(S) and θ(S), substitute the values of free parameters obtained in 
Step 2 to compute the control points corresponding to proposed G2 and G1 approxima-
tion schemes of GCS.
Step 4. Put the values of control points obtained from Step 3 into (1) to obtain RCTB 
Gk , k = 1, 2, approximation of GCS.

Numerical examples
In this section, G2 and G1-approximation schemes developed in this research paper are 
tested for the special cases of GCS. For each data set of GCS, the maximum relative 
curvature errors for the proposed G2 and G1-approximation schemes are calculated and 
found less than the prevailing approximation schemes of GCS. The initial conditions for 
special cases of GCS are given in Table 2. The initial values of the free parameters for 
approximation are given in Table 3.

Example 1  The circular arc given in Table  2 is approximated by Theorems 1 and 2 
respectively. The curvature plots of circular arc and its G2-approximation by RCTBC 
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are given in Fig. 2. Similarly, curvature plots of circular arc and its G1-approximation by 
RCTBC are given in Fig. 4. It is clear from Figs. 2 and 4 that the curvatures of the circu-
lar arc and its RCTB approximations are nearly identical. The relative curvature errors 
plots of the G2 and G1 approximations of the concerned circular arc are given in Figs. 3 
and 5 respectively.

Table 2  Initial conditions for the special cases of GCS

Initial conditions Circular arc Cornu spiral Logarithmic spiral Non-inflecting GCS Normalized GCS

S 1.5707 4.0 8.0 3.0 1

r 0.0 0.0 −0.75 0.4 0.1

k(0) 1.0 0.1 0.1 0.1 0.36

k(S) 1.0 0.5 0.4 0.5 2.7

r(0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

r(S) (1, 1) (3.362, 1.680) (6.199, 3.959) (2.670, 1.076) (0.7499, 0.4915)

θ(0) 0 0 0 0 0

θ(S) 1.5707 1.2 1.497 0.967 1.5672

Table 3  Initial guess of parameters and anticipated tolerance of approximation

Approxima-
tion schemes

Values 
of param-
eters/
anticipated 
tolerance (ε)

Circular arc Cornu spiral Logarithmic 
spiral

Non-inflecting 
GCS

Normalized 
GCS

G2-approxima-
tion

d1 0.5 1.515 5 1.1 2

d3 0.5 1.426 1.7 1.1 2

ε 3.59 × 10−2 2.78 × 10−2 6.42 × 10−2 1.10 × 10−2 0.05

G1-approxima-
tion

d1 0.457 1.45 2.28 1.089 2

d3 0.688 1.40 3.19 0.899 2

μ1 0.876 0.67 0.88 1.55 0.8

μ2 0.812 0.899 0.787 1.32 0.8

ε 3.59 × 10−2 2.78 × 10−2 6.42 × 10−2 1.10 × 10−2 0.05

Fig. 2  Curvature plot: circular arc versus Bézier curve
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Example 2  The Cornu spiral arc given in Table 2 is approximated by Theorems 1 and 
2 respectively. The curvature plots of Cornu spiral and its G2-approximation by RCTBC 
are given in Fig. 6. Similarly, curvature plots of Cornu spiral and its G1-approximation by 
RCTBC are given in Fig. 8. It is clear from Figs. 6 and 8 that the curvatures of the Cornu 

Fig. 3  Relative curvature error

Fig. 4  Curvature plot: circular arc versus Bézier curve

Fig. 5  Relative curvature error
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spirals and its RCTBC approximations are overlapping. The relative curvature errors 
plots of the G2 and G1 approximations of the concerned arc of Cornu spiral are given in 
Figs. 7 and 9 respectively.

Fig. 6  Curvature plot: Cornu spiral versus Bézier curve

Fig. 7  Relative curvature error

Fig. 8  Curvature plot: Cornu spiral versus Bézier curve
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Example 3  The logarithmic spiral given in Table 2 is approximated by Theorems 1 and 
2 respectively. The curvature plots of logarithmic spiral and its G2-approximation by 
RCTBC are given in Fig. 10. Similarly, curvature plots of logarithmic spiral and its G1

-approximation by RCTBC are given in Fig. 12. It is clear from Figs. 10 and 12 that the 
curvatures of the logarithmic spiral and its RCTB approximations are overlapping. The 
relative curvature errors plots of the G2 and G1 approximations of the concerned loga-
rithmic spiral arc are given in Figs. 11 and 13 respectively.

Example 4  The non-inflecting GCS given in Table 2 is approximated by Theorems 1 
and 2 respectively. The curvature plots of non-inflecting GCS and its G2-approximation 
by RCTBC are given in Fig. 14. Similarly, curvature plots of non-inflecting GCS and its 
G1-approximation by RCTBC are given in Fig. 16. It is clear from Figs. 14 and 16 that the 
curvatures of the non-inflecting GCS and its RCTB approximations are overlapping. The 
relative curvature errors plots of the G2 and G1 approximations of the concerned non-
inflecting GCS are given in Figs. 15 and 17 respectively.

Example 5  The normalized GCS of Table  2 is first approximated by the Theorem  1. 
Figure  18 expresses the curvature plots of the normalized GCS and the RCTBC 

Fig. 9  Relative curvature error

Fig. 10  Curvature plot: logarithmic spiral versus Bézier curve
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approximating it. It is clear from the Fig. 18 that curvatures of actual and approximat-
ing curves are nearly identical. The relative curvature error plot of the G2-approximation 
of the GCS is given in Fig. 19. The same normalized GCS of Table 2 is approximated by 

Fig. 11  Relative curvature error

Fig. 12  Curvature plot: logarithmic spiral versus Bézier curve

Fig. 13  Relative curvature error
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the G1-approximation scheme presented in Theorem 2. For the G1-approximation of the 
normalized GCS, the curvature plots of the actual and the approximating RCTBC are 
overlapping each other in Fig. 20. The relative curvature error plot of the G1-approxima-
tion of inflecting GCS is given in the Fig. 21.

Fig. 14  Curvature plot: non-inflecting GCS versus Bézier curve

Fig. 15  Relative curvature error

Fig. 16  Curvature plot: non-inflecting GCS versus Bézier curve
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The circular arc, Cornu spiral, logarithmic spiral and non-inflecting GCS of Table 2 
were also approximated by the G2-approximation scheme (Cripps et al. 2010). The rel-
ative curvature error of approximation of the G2-approximation scheme (Cripps et  al. 
2010) was 7.75× 10−5, 1.25× 10−3, 8.80× 10−3 and 10−3 for circular arc, Cornu spi-
ral, logarithmic spiral and non-inflecting GCS respectively. A comparison of the above 

Fig. 17  Relative curvature error

Fig. 18  Curvature plot: normalized GCS versus Bézier curve

Fig. 19  Relative curvature error
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values of relative curvature error with Table  1 shows that Gk-approximation schemes 
proposed in this research paper perform better than Cripps et al. (2010).

The optimum values of the free parameters of the developed G2 and G1 approximation 
schemes for the Examples 1–5 are summarized in Table 4. It is clear from Table 1 that 
the developed G2 and G1 approximation schemes provide favourable results.

Fig. 20  Curvature plot: normalized GCS versus Bézier curve

Fig. 21  Relative curvature error

Table 4  Optimum values of free parameters

Approxima-
tion schemes

Values 
of param-
eters/
anticipated 
tolerance (ε)

Circular  
arc

Cornu spiral Logarithmic 
spiral

Non-inflect-
ing GCS

Normalized 
GCS

G2-approxima-
tion

d1 0.5838 1.5259 4.4089 1.1203 1.9710

d3 0.5877 1.4252 1.8697 1.0948 2.0146

G1-approxima-
tion

d1 1.7 1.4 1.09 1.4 2.1202

d3 1.7 1.4 1.09 1.4 1.9523

μ1 0.7770 0.999 0.555 1.111 0.8183

μ2 0.7770 0.999 0.555 1.111 0.6526
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Remark 6  The developed G2-approximation scheme ensures point, tangent and cur-
vature continuity whereas the developed G1-approximation scheme preserves point and 
tangent continuity. The G2-approximation scheme invokes more appreciable curvature 
plots than the developed G1-approximation scheme. The degrees of freedom of G2 and 
G1 approximation schemes are two and four respectively. Therefore, the CPU time con-
sumption of G2-approximation scheme is less than G1-approximation scheme, see the 
Table  1. It follows that the developed G2-approximation scheme is better than the G1

-approximation scheme.

Conclusion
In this research paper, G2 and G1 approximation schemes of GCS are developed using 
RCTBC (1). The choice of these approximation schemes serves the purpose of favour-
able approximations with minimized errors, see Table 1. The CPU time consumed by the 
developed trigonometric approximation schemes is acceptable. The observations given 
in Table 1 convey that the G2-approximation scheme works better than the developed  
G1-approximation scheme.
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