
Towards early software reliability
prediction for computer forensic tools
(case study)
Manar Abu Talib*

Background
Kanellis et al. (2006) defined digital forensics as “the science of collecting evidence often
used in a court of law to prosecute those who engage in digital activities that are deemed
unlawful.” Reliable digital forensic techniques are therefore important for prevention,
detection, and investigation of electronic crime.

As a new field, digital forensics requires computer forensic tools that ensure reliable
results and meet the legal requirements acceptable in the courts. In the U.S., these tools
should meet the four Daubert criteria: (1) testable and accurate, (2) peer reviewed, (3)
accepted by the scientific community and (4) having acceptable error rates, which also
requires intensive testing efforts (NIST 2001, 2005a, b).

According to Nelson et al. (2016) there are two types of computer forensic tools:
hardware and software tools. Software forensic tools require versatility, flexibility and

Abstract 

Versatility, flexibility and robustness are essential requirements for software forensic
tools. Researchers and practitioners need to put more effort into assessing this type of
tool. A Markov model is a robust means for analyzing and anticipating the function-
ing of an advanced component based system. It is used, for instance, to analyze the
reliability of the state machines of real time reactive systems. This research extends the
architecture-based software reliability prediction model for computer forensic tools,
which is based on Markov chains and COSMIC-FFP. Basically, every part of the com-
puter forensic tool is linked to a discrete time Markov chain. If this can be done, then
a probabilistic analysis by Markov chains can be performed to analyze the reliability of
the components and of the whole tool. The purposes of the proposed reliability assess-
ment method are to evaluate the tool’s reliability in the early phases of its develop-
ment, to improve the reliability assessment process for large computer forensic tools
over time, and to compare alternative tool designs. The reliability analysis can assist
designers in choosing the most reliable topology for the components, which can maxi-
mize the reliability of the tool and meet the expected reliability level specified by the
end-user. The approach of assessing component-based tool reliability in the COSMIC-
FFP context is illustrated with the Forensic Toolkit Imager case study.

Keywords:  Reliability prediction, Computer forensic tool, Component-based,
Markov model, COSMIC-FFP, ISO/IEC 19761:2003

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Abu Talib ﻿SpringerPlus (2016) 5:827
DOI 10.1186/s40064-016-2539-0

*Correspondence:
mtalib@sharjah.ac.ae
Department of Computer
Science, University of Sharjah,
P.O. Box 27272, Sharjah,
United Arab Emirates

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2539-0&domain=pdf

Page 2 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

robustness. Many are closed-source, where only the vendor has access to the code,
thereby making it more difficult to apply the Daubert criteria. This makes it imperative
for researchers and practitioners to put more effort into assessing this type of tool (Abu
Talib and Baggili 2016).

One of the main issues in developing computer forensic tools is the reliability of the
tool components once combined. According to IEEE (1991), software reliability is “the
probability of failure-free software operation for a specified period of time in a specified
environment”. According to Ormandjieva et al. (2008), software failures are “primarily
due to design faults. Repairs are made by modifying the design to make it robust against
conditions that can trigger a failure. Software reliability has no wear-out phenomena or
software errors occur without warning, and “old” code can exhibit a failure rate which
increases as a function of errors introduced during upgrading. Moreover, external envi-
ronmental conditions do not affect software reliability, while internal environmental
conditions, such as insufficient memory or inappropriate clock speeds, do affect it.”

In this paper we improve the software reliability prediction model by extending the
COSMIC-FFP method to component-based tools (ISO 14143-1 1988; ISO/IEC 19761
2003; Abran et al. 2009; Abu Talib 2007; Abu Talib et al. 2012). We model each compo-
nent of the tool as a discrete time Markov chain and represent it as a finite state machine.
The goals of the proposed method are: (1) determine the tool’s reliability in the first
stages of implementation, (2) enhance the software reliability assessment mechanism for
extensive computer forensic tools, and (3) examine substitute tool designs. The paper
is organized as follows. “Work related to software reliability” section presents a brief
survey of related accomplishments in software reliability models based on the theory of
Markov chains, and discusses the major components of COSMIC-FFP together with a
brief literature review of digital forensic tools assessment. “Proposed software reliability
prediction methodology” section explains the methodology for predicting reliability in
component-based tools; a case study in “Case study: Forensic Toolkit Imager” section
illustrates the methodology. Finally, “Conclusion and future work” section summarizes
the research results and identifies future research avenues.

Work related to software reliability
Markov model

Markov Processes have many applications in management and the environmental sci-
ences. A prime illustration is the weather model (Wikipedia Encyclopedia), a powerful
mathematical tool used by experts and engineers to investigate and anticipate the behav-
ior of a complex component based system (Strook 2005; Trvedi 1975). In the last three
decades several models using Markov chains have appeared in the literature. Nonethe-
less, existing models have the consistent issue of presenting the transition probability
but no technique for deciding it (Lai-shun et al. 2011).

A Markov model analysis can produce a number of significant calculations that
describe system performance such as system reliability, availability, mean time to fail-
ure (MTTF), or probability of being in a specific state at a specific time. Implement-
ing a Markov model to predict software reliability has significant value for the following
reasons:

Page 3 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

• • Environmental regulations fail to comply with component-based systems laws
• • Within a given state, a component may randomly process a transition available in

that state to move to another state.

Other research efforts in this direction include: (1) building a Markov chain-based soft-
ware reliability usage model with UML (Lai-shun et al. 2011), (2) unifying the Markov
model-based software reliability evaluation using failure data (Okamura and Dohi 2011),
(3) using a Markov reliability model based on error classification (Jin et al. 2012), and
(4) presenting software reliability test case design based on a Markov chain usage model
(Wang et al. 2013).

COSMIC‑FFP measurement method

The Common Software Measurement International Consortium (COSMIC) developed
the functional size measurement method (COSMIC-FFP), which was approved as inter-
national standard ISO 19761 (2003). Its design complies with all ISO provisions (ISO
14143-1) (ISO 14143-1 1998) related to functional size measurement systems. It was
developed to cope with some key deficiencies associated with previous programs such
as FPA, designed 30 years earlier when software systems had limited and basic specifica-
tions. COSMIC-FFP emphasizes the “user view” of functional requirements, and applies
throughout the process life cycle, from the requirements stage through to completion
and maintenance. Whenever the COSMIC-FFP method is used to measure software
functional size the software functional processes and their triggering events must be
determined. Data movement is the measurement unit, a base functional component that
shifts one or more data attributes within the same data group. The four common data
movement types are: Entry, Exit, Read and Write.

Assessing and evaluating digital forensics tools

Without a clear strategy for empowering digital forensics research endeavors that
expand upon each other, forensics research will fail to meet market expectations, digital
forensic tools will become progressively out of date, and legal authorities, military and
other clients of PC crime scene investigations will be not able depend on the results of
digital forensic examinations (Garfinkel 2010). According to Flandrin et al. (2012) “Little
research has been carried out on digital forensic tools evaluation and validation, which
leaves investigators with few resources to assess their tools”.

Tool testing is important from an Information Technology (IT) perspective to ensure
that software and hardware operate as expected. Tool testing programs have been initi-
ated by various organizations. IEEE established standards for tool testing in 1993, while
the International Organization for Standardization and the Electrotechnical Commis-
sion (ISO/IEC) established the General Requirements for the Competence of Testing
and Calibration Laboratories (ISO/IEC 17025) in 1999 (General Testing Methodology
2007).

There is a high demand to evaluate computer forensic tools (Meyers and Rogers 2004).
According to the National Institute of Standards and Technology (NIST), “there are
three digital forensics projects currently providing resources for the digital investiga-
tor underway. These projects are supported by the U.S. Department of Justice’s National

Page 4 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

Institute of Justice (NIJ), federal, state, and local law enforcement, and the NIST Office
of Law Enforcement Standards (OLES) to promote efficient and effective use of com-
puter technology in the investigation of crimes involving computers.” Computer Foren-
sic Tool Testing (CFTT) is one of these projects. NIST (Nelson et al. 2016; Lyle et al.
2008) performs the following steps in testing a tool:

1.	 Acquires the tool to be tested.
2.	 Reviews the tool documentation.
3.	 Selects relevant test cases depending on features supported by the tool.
4.	 Develops a test strategy.
5.	 Executes test cases.
6.	 Produces a test report.
7.	 Steering Committee reviews the test report.
8.	 Tool vendor reviews the test report.
9.	 NIJ posts the test report to the Web.

Moreover, there are ongoing assessment and evaluation efforts and research in this
direction such as (1) NIST testing efforts (NIST 2005a, b; Nelson et al. 2016), (2) the first
common evaluation scheme for forensic software, which is planned to be extensible and
to bolster the benchmarking of forensics applications (Hildebrandt et al. 2011), (3) the
validation and verification of computer forensics software tools (Guo et al. 2009) and
(4) a high-level design for a second generation computer forensic analysis system based
on metrics for measuring the efficacy and performance of computer forensic tools. The
metrics include absolute and relative speed, reliability, accuracy, completeness, audit-
ability and repeatability (Ayers 2009).

Our research work introduces new reliability analysis to assist designers in choosing the
most reliable topology for the constituents, in order to expand the accuracy of the tool and
comply with the desired reliability level required by the ultimate user. According to Ayers
(Guo et al. 2009), “The tool must be designed and coded to provide a high level of assur-
ance that analysis results will be correct and software operation free from error under all
circumstances. Accuracy and reliability metrics must be 100 % in all validation tests.”

Proposed software reliability prediction methodology
A state-machine diagram is a UML 2.0 behavioral diagram (Rumbaugh et al. 2005;
Gongzheng and Guangquan 2010; Booch et al. 1998) designed to illustrate the dynamic
behavior of individual devices and describe the progress of the different states and the
transitions involved. In Fig. 1, the state machine models the behavior of the Evidence
Item in a Forensic Toolkit Imager case study, which has four states: one initial state,
“idle”, “toAdd”, “Adding”, and “Updating”. When the “Add evidence item” option is clicked,
it triggers the “Evidence Item” state to shift from the “idle” to the “toAdd” state.

The purpose of a Markov model is to evaluate the accuracy of state machine programs
(Ormandjieva 2002). Figure 2 illustrates the mapping of the Evidence Item object to a
Markov model. Since there is only one event for each state, each event has a probability
of 1, P12 represents the probability that the event will be triggered with the subsequent
transition from state E1 to state E2.

Page 5 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

Table 1 shows the transition matrix P for the Evidence Item Object that results from
the state machine diagram where the ijth entry is pij and the entries in each row add up
to 1. The prediction of reliability is derived from the steady state of the Markov model.
The steady vector [wxyz] of the Evidence Item object is calculated based on the P matrix
below:

The steady vector value obtained is: [0.25, 0.25, 0.25, 0.25].
COSMIC-FFP and UML 2.0 state machine diagrams share the same concept as seen

from a mapping of such concepts documented in Ormandjieva et al. (2008). Applying
the COSMIC-FFP measurement method makes it possible for us to predict software
reliability in the first stages of tool development. Our methodology for software reliabil-
ity prediction for forensics tools is summarized as follows (Ormandjieva et al. 2008; Abu
Talib 2007; Abu Talib et al. 2012):

∣

∣[wxyz]
∣

∣ P =

∣

∣[wxyz]
∣

∣

→ w = 0.25, x = 0.25, y = 0.25, z = 0.25.

Fig. 1  Evidence Item state machine diagram

Fig. 2  Evidence Item state diagram illustrating transition probabilities pij

Table 1  Transition matrix P for Evidence Item object

E1 E2 E3 E4

E1 0 1 0 0

E2 0 0 1 0

E3 0 0 0 1

E4 1 0 0 0

Page 6 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

1.	 State machine diagrams can result from the multiple interrelated sequence diagrams
drawn using the COSMIC-FFP measurement method. This is shown in “Sequence
diagrams from COSMIC-FFP” and “State machine diagrams from COSMIC-FFP”
sections.

2.	 The probabilities of state transitions of an object due to events (environmental or
related to that same object) are measured as displayed in “Markov model applica-
tions” section.

3.	 The product machine of the state machine objects pertaining to the same compo-
nent results in an extended state machine outlining the behavior of the component.
“Markov model applications” section illustrates this process.

4.	 The Markov model of a component is implemented in two stages. As an initial step,
the Markov models are built for its objects. For the second stage, the Markov model
for the entire component is built. This latter consists of synchronously interacting
objects. “Markov model applications” section illustrates this process.

Case study: Forensic Toolkit Imager
FTK Imager is a data preview and imaging tool that allows forensic investigators to
assess electronic evidence. A Forensic Toolkit (FTK) helps to obtain, store, analyze, and
provide computer evidence. To preserve the integrity of case evidence, forensic investi-
gators do not work on the original files. Instead, they create an exact replica of the files
and work on the image to ensure that the original files remain intact.

Sequence diagrams from COSMIC‑FFP

A sequence diagram is a UML2.0 behavioral diagram (Rumbaugh et al. 2005; Gongzheng
and Guangquan 2010; Booch et al. 1998), generally adopted for analysis and design that
models the flow of logic within the system in a visual manner, enabling both documenta-
tion and validation of the user’s logic. In the RUP context (ISO/IEC 19761 2003; Abran
et al. 2009), the functional processes used in COSMIC-FFP can explain the series of sce-
narios for the software. In the Forensic Toolkit Imager case study, for example, the first
sequence diagram (Fig. 3, part 1) demonstrates that, when Add Evidence Item is clicked,
the FTK Imager receives a message. The FTK Imager then instructs the Image to be cre-
ated, and the Image is created. This process of adding Evidence Item and creating an
image is referred to as a functional process, and is activated by clicking Add Evidence
Item. Similarly, Fig. 3, part 2 is a scenario illustrating a sequence of events between the
Evidence Item, FTK Imager and the Image. This scenario also incorporates a sequence of
events within the tool (FTK Image in this case) to generate a hash image. Therefore, each
functional process involves both its sub processes and its triggering events, which are
sequences of events (or data movements).

State machine diagrams from COSMIC‑FFP

According to the COSMIC-FFP definitions given in ISO/IEC 19761 (2003) and Abran
et al. (2009) and the sequence diagrams that derive from it, state machine diagrams can
be obtained by applying these sequence diagrams. COSMIC-FFP measurements can be
mapped to UML 2.0 state diagrams applying the technique proposed in Vasilache and

Page 7 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

Tanaka (2004), applied in Ormandjieva et al. (2008) (Abu Talib 2007; Abu Talib et al.
2012) and demonstrated by state machine diagrams from multiple interrelated scenarios
(or sequence diagrams).

The steps are summarized as follows (Ormandjieva et al. 2008; Abu Talib 2007; Abu
Talib et al. 2012; Vasilache and Tanaka 2004):

Step 1	� Draw sequence diagrams for all scenarios as illustrated in the previous
section

Step 2	� Draw a dependency diagram that shows the link between the series of sce-
narios (sequence diagrams) based on time dependencies between scenarios
and dependencies related to their cause-effect and their generalization. In
this case study we can say “Generate Hash” scenario depends on the “Add
Evidence Item” scenario

Step 3	� Create the state machines diagrams following the previous two steps. The
sequence diagram in Fig. 3, part 1 has the following set of tuples = {(Evi-
dence_Item, FTK_Imager, add_Evidence_Item), (Evidence_Item, Evidence_
Item, add), (FTK_Imager, Image, click_Create_Image), (Image, Image, cre-
ate)} while the sequence diagram in Fig. 3, part 2 has the following set of
tuples = {(Evidence_Item, Evidence_Item, update), (Evidence Item, FTK_
Imager, finish), (FTK_Imager, Image, generate hash), (Image, Image, store)}.
Since three objects are involved in each scenario, three state machine dia-
grams can be derived as shown Fig. 4

Step 4	� Adjust the final state machines and approve the compatibility between
scenarios and state machines to ensure that the behavior of the final state
machine diagrams reproduce the information contained in the scenarios
(Figs. 5, 6)

Fig. 3  “Add Evidence Item” (part 1) & “Generate Hash” (part 2) sequence diagrams

Fig. 4  Initial state machine diagrams from Fig. 3

Page 8 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

Markov model applications

The work reported here builds on our research results using the COSMIC-FFP method
for testing purposes, by combining the functions measured by the COSMIC-FFP meas-
urement procedure with a black box testing strategy (Abu Talib et al. 2005, 2006; Abran
et al. 2004). This extends the COSMIC-FFP and reliability prediction model to the com-
ponent-based tool context.

We can assume that each component in the tool is replaceable and functionally inde-
pendent from the rest of the tool components. In order to predict the reliability of such a
component, FTK Imager and Image objects are mapped to their corresponding Markov
models as shown previously with the Evidence Item object. For example, the mapping of
FTK Imager object to a Markov model assigns a probability of 1 for two events since only
one event issues from F1 and F4 states, a probability of 1/2 for each of the two external
events generating transitions from state F2, and 1/3 for each of the external three events
issuing from F3. Table 2 illustrates the probability matrix for the map of the Image object
to a Markov model, which is identical to the Evidence Item object mapping.

To ascertain the reliability of the component composed of Evidence Item, FTK Imager
and Image objects, and calculate its level of uncertainty in the Markov model H, we
applied the following formulas:

Reliability (Component) = Σ
i=1,k

Hi − H

H = −Σ
i
vi Σ

j
pij log2 (pij)

Fig. 5  FTK Imager state machine diagram

Fig. 6  Image state machine diagram

Page 9 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

where H stands for the level of uncertainty in a Markov chain corresponding to the whole
component; Hi represents the level of uncertainty in a Markov chain corresponding to an
object, v is a steady state distribution vector for the corresponding Markov chain, and pij
are the transition probabilities in the extended state machines modeling the behaviors of
the ith object (Ormandjieva et al. 2008; Abu Talib 2007; Abu Talib et al. 2012).

The synchronous product of Evidence Item, FTK Imager and Image and its corre-
sponding transition matrix P built to calculate H, are shown in Fig. 7 and Table 3.

Table 4 shows the next steps in calculating H for each object within the above
component.

We applied the same steps for other components in the same tool and compared the
results. Major values of reliability measure indicate less uncertainty associated with the
model, hence a higher level of software reliability. Adopting one evidence item implies

Table 2  Transition matrix P for FTK Imager and Image objects

F1 F2 F3 F4 I1 I2 I3 I4

F1 0 1 0 0 I1 0 1 0 0

F2 0 1/2 1/2 0 I2 0 0 1 0

F3 0 0 2/3 1/3 I3 0 0 0 1

F4 1 0 0 0 I4 1 0 0 0

Fig. 7  The synchronous product of Evidence Item, FTK Imager and Image objects as one component

Table 3  Transition matrix P of the component

E1F1I1 E2F2I1 E2F3I2 E2F3I3 E3F3I3 E4F3I3 E1F4I3 E1F1I4

E1F1I1 0 1 0 0 0 0 0 0

E2F2I1 0 0 1 0 0 0 0 0

E2F3I2 0 0 0 1 0 0 0 0

E2F3I3 0 0 0 0 1 0 0 0

E3F3I3 0 0 0 0 0 1 0 0

E4F3I3 0 0 0 0 0 0 1 0

E1F4I3 0 0 0 0 0 0 0 1

E1F1I4 1 0 0 0 0 0 0 0

Page 10 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

less uncertainty in a Markov model for the FTK imager object and accordingly its behav-
ior is not so complex that it necessitates generating additional sequences to describe it,
while this is not the case for one FTK imager controlling two evidence items.

Conclusion and future work
The advantage of the method reported in this paper derives from the ability to consider
the measures of functionality early on where sequence diagrams are derived, as with
COSMIC-FFP this makes it possible to take into account the uncertainty in the opera-
tional profile of forensic tools (i.e., the uncertainty of environmental events) as well as
the uncertainty of failure of component behavior in forensic tools, based on:

• • A component being recognized as a physical and substitutable part of the system
which realizes, and conforms to, a set of interfaces (Jin et al. 2012); a component
that is functionally detached from the rest of the components in a component-based
system.

• • Knowledge of the software architecture requirements (corresponds to reliability
structures in reliability theory, see “Case study: Forensic Toolkit Imager” section).

• • Evaluation of component reliability, in the context where a component is a group of
interacting software objects the behaviors of which are modeled with state diagrams,
and followed by application of the Markov model (see “Case study: Forensic Toolkit
Imager” section). The probabilities of state transitions of an object generated by

Table 4  Calculating H for each object

Evidence Item Object
Image Object

FTK Image Object

P
0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 1/2 1/2 0

0 0 2/3 1/3

1 0 0 0

v [0.25, 0.25, 0.25, 0.25] [0.182, 0.364, 0.273, 0.182]

Hi HEvidence_Item = HImage =
-((0.25 * (0log(0) + 1log1
+ 0log(0) + 0log(0)) + (0.25
* (0log(0) + 0log(0) +
1log1 + 0log(0)) + (0.25 * (
0log(0) + 0log(0) + 0log(0)

+ 1log1) + (0.25 * (1log1 +
0log(0) + 0log(0) +
0log(0))) = 0

HFTK_Imager = - ((0.182 * (0log(0)
+ 1log1 + 0log(0) + 0log(0)) +
(0.364*(0log(0) + ½ log½ +
½log½ + 0log(0)) +
0.273*(0log(0)+0log(0)+1/3log
1/3+2/3log2/3) + (0.182 * (1log1
+ 0log(0) + 0log(0) + 0log(0)))
= 0.615

Reliability Component = (HEvidence_Item + HFTK_Imager+ HImage)
– HEvidence_Item-FTK_Imager-Image = (0 + 0.615+ 0) – 0 = 0.615

Page 11 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

events (environmental or internal to the object) are measured as illustrated in “Case
study: Forensic Toolkit Imager” section, where the environmental events are random
and not regulated by system laws.

In the work reported here, the number of case studies was limited. Further work will
explore how to approach such considerations as scalability and the processing of huge
data. In addition, further specific templates are required for generating the set of sce-
narios and converting them into state diagrams.
Competing interests
The author declares that she has no competing interests.

Received: 16 February 2016 Accepted: 8 June 2016

References
Abran A, Ormandjieva O, Abu Talib M (2004) Functional size and information theory-based functional complexity

measures: exploratory study of related concepts using COSMIC-FFP measurement method as a case study. In: 14th
International workshop of software measurement (IWSM-MetriKon 2004), Shaker-Verlag, Konigs Wusterhausen, pp
457–471

Abran A, Desharnais J-M, Olingy S, St-Pierre D, Synmons C (2009) COSMIC FFP—Manuel de Mesures. http://estudijas.lu.lv/
pluginfile.php/258973/mod_resource/content/1/COSMIC%20Method%20v3.0.1%20Measurement%20Manual.pdf

Abu Talib M (2007) Exploratory study on an innovation use of COSMIC-FFP for early quality assessment. Ph.D. Thesis,
Concordia University, Montreal, Canada

Abu Talib M, Baggili I (2016) Testing closed source software: computer forensic tool case study. IET Softw J (submitted)
Abu Talib M, Ormandjieva O, Abran A, Buglione L (2005) Scenario-based Black-Box Testing in COSMIC-FFP. In: 2nd Soft-

ware measurement European Forum, Rome (Italy), pp 173–182
Abu Talib MA, Ormandjiva O, Abran A, Buglione L (2006) Scenario-based Black-Box testing in COSMIC-FFP: a case study.

ASQ Softw Qual Prof J 8(3):23–33
Abu Talib M, Mendes E, Khelifi A (2012) Towards reliable web applications: ISO 19761. In: 38th Annual Conference of the

IEEE Industrial Electronics Society (IECON 2012). IEEE, Montreal, Canada, 25–28 Oct 2012
Ayers D (2009) A second generation computer forensic analysis system. J Digit Investig 6:34–42
Booch G, Rumbaugh J, Jacobson I (1998) The unified modeling language user guide. Addison-Wesley, USA
Flandrin F, Buchanan W, Macfarlane R, Ramsay B, Smales A (2012) Evaluating digital forensic tools (DFTs). School of Com-

puting, Edinburgh Napier University, Edinburgh
Garfinkel S (2010) Digital forensics research: the next 10 years. Digit Investig 7:S64–S73
General Testing Methodology (2007) Retrieved 25 Dec 2015, from NIST CFTT: http://www.cftt.nist.gov/TestMethodol-

ogy7.doc
Gongzheng L, Guangquan Z (2010) An approach to check the consistency between the UML 2.0 dynamic diagrams. In:

2010 5th international conference on computer science and education (ICCSE)
Guo Y, Slay J, Beckett J (2009) Validation and verification of computer forensic software tools—searching Function. Digit

Investig 6:S12–S22
Hildebrandt M, Kiltz S, Dittmann J (2011) A common scheme for evaluation of forensic software. In: 2011 Sixth interna-

tional conference on IT security incident management and IT forensics (IMF)
Institute of Electrical and Electronics Engineers (1991) ANSI/IEEE Standard Glossary of Software Terminology, IEEE Std.

729-1992
ISO 14143-1 (1988) Functional size measurement—definitions of concepts. International Organization for Standardiza-

tion—ISO, Geneva
ISO/IEC 19761 (2003) Software engineering—COSMIC-FFP—a functional size measurement method. International

Organization for Standardization—ISO, Geneva
Jin Y, Xun L, Ping L, GuangYu Y (2012) Markov reliability model based on error classification. In: 2012 Fifth international

symposium on parallel architectures, algorithms and programming
Kanellis P et al (2006) Digital crime and forensic science in cyberspace. ISBN-13: 978-1591408727, ISBN-10: 1591408725
Lai-shun Z, Yan H, Zhong-wen L (2011) Building Markov chain-based software reliability usage model with UML. In: 2011

IEEE 3rd international conference on communication software and networks (ICCSN)
Lyle JR, White DR, Ayers RP (2008), Digital forensics at the national institute of standards and technology. National Insti-

tute of Standards and Technology, Interagency Report (NISTIR). http://www.cftt.nist.gov/NISTIR_7490.pdf
Meyers M, Rogers M (2004) Computer forensics: the need for standardization and certification. Int J Digit Evid 3(2):1–11
Nelson B, Phillips A, Steuart C (2016) Guide to computer forensics and investigations, 5th edn. Cengage Learning, ISBN-

13: 978-1285060033, ISBN-10: 1285060032
NIST (2001) General test methodology for computer forensic tools. National Institute of Standards and Technology, Tech-

nical Report Version 1.9. Retrieved 25 March 2016 from www.cftt.nist.gov/Test%20Methodology%207.doc

http://estudijas.lu.lv/pluginfile.php/258973/mod_resource/content/1/COSMIC%2520Method%2520v3.0.1%2520Measurement%2520Manual.pdf
http://estudijas.lu.lv/pluginfile.php/258973/mod_resource/content/1/COSMIC%2520Method%2520v3.0.1%2520Measurement%2520Manual.pdf
http://www.cftt.nist.gov/TestMethodology7.doc
http://www.cftt.nist.gov/TestMethodology7.doc
http://www.cftt.nist.gov/NISTIR_7490.pdf
http://www.cftt.nist.gov/Test%2520Methodology%207.doc

Page 12 of 12Abu Talib ﻿SpringerPlus (2016) 5:827

NIST (2005a) Digital data acquisition tool test assertions and test plan. National Institute of Standards and Technology,
Draft 1. Retrieved 25 March 2016 from http://www.cftt.nist.gov/DA-ATP-pc-01.pdf

NIST (2015b) Computer forensics tool testing program: project overview. Retrieved 25 March 2016, from http://www.cftt.
nist.gov/ ISO/IEC 17025:2005. Retrieved March 25, 2015, from International Organization for Standardization: http://
www.iso.org/iso/catalogue_detail.htm?csnumber=39883

Okamura H, Dohi T (2011) Unification of software reliability models using Markovian arrival processes. In: 2011 IEEE 17th
Pacific Rim international symposium on dependable computing (PRDC). IEEE, Pasadena, pp 20–27. doi:10.1109/
PRDC.2011.12

Ormandjieva O (2002) Deriving new measurement for real time reactive systems, Ph.D. dissertation. Department of
Computer Science & Software Engineering, Concordia University, Montreal

Ormandjieva O, Abu Talib M, Abran A (2008) Reliability model for component-based systems in COSMIC-FFP (a case
study). Int J Software Eng Knowl Eng 18(04):515–539

Rumbaugh J, Jacobson I, Booch G (2005) Unified modeling language user guide, 2nd edn. Pearson Education, UK
Strook DW (2005) An introduction to Markov processes. Springer, Berlin
Trvedi AK (1975) Computer software reliability: many-state Markov modeling techniques, Ph.D. dissertation. Polytechnic

Institute of Brooklyn
Vasilache S, Tanaka J (2004) Synthesis of state machines from multiple interrelated scenarios using dependency dia-

grams. In: 8th World multiconference on systemics, cybernetics and informatics (SCI 2004), Orlando, FL, pp 49–54
Wang Y, Ye F, Zhu X, Wu C (2013) A method for software reliability test case design based on Markov chain usage model.

In: 2013 international conference on quality, reliability, risk, maintenance, and safety engineering (QR2MSE)
Wikipedia Encyclopedia. http://en.wikipedia.org/. Accessed 25 Jan 2016

http://www.cftt.nist.gov/DA-ATP-pc-01.pdf
http://www.cftt.nist.gov/
http://www.cftt.nist.gov/
http://www.iso.org/iso/catalogue_detail.htm%3fcsnumber%3d39883
http://www.iso.org/iso/catalogue_detail.htm%3fcsnumber%3d39883
http://dx.doi.org/10.1109/PRDC.2011.12
http://dx.doi.org/10.1109/PRDC.2011.12
http://en.wikipedia.org/

	Towards early software reliability prediction for computer forensic tools (case study)
	Abstract
	Background
	Work related to software reliability
	Markov model
	COSMIC-FFP measurement method
	Assessing and evaluating digital forensics tools

	Proposed software reliability prediction methodology
	Case study: Forensic Toolkit Imager
	Sequence diagrams from COSMIC-FFP
	State machine diagrams from COSMIC-FFP
	Markov model applications

	Conclusion and future work
	Competing interests
	References

