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Background
As an important application in optical imaging, palmprint recognition devices screen 
individual status by extracting effective textures of human palm (Shu and Zhang 1998; 
Feng et al. 2015; Fei et al. 2016). Compared with other optical recognition methods, such 
as fingerprint, face and gait, palmprint recognition has many advantages including low 
price of capture devices, low offensive and fixed rich texture features, which make it 
become a research focus in optical imaging and perception (Shu and Zhang 1998; Kong 
et al. 2009; Zhang et al. 2012).

Key issues in palmprint recognition are feature extraction and classification. The sub-
space method is one of main methods for feature extraction, including principal com-
ponent analysis (PCA), independent component analysis (ICA), linear discriminant 
analysis (LDA), and so on (Connie et al. 2003; Duda et al. 2012; Zabalza et al. 2014; Ford 
et al. 2015). Among these methods, the most classic algorithm is the principal compo-
nent analysis (Belhumeur et al. 1997), where original image matrix is converted into an 
one-dimensional vector, and limited features are used as accurately as possible to repre-
sent original image. However, its disadvantage is that the process of image matrix being 
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converted into one-dimensional vector will cause problems like loss of spatial informa-
tion. On the basis of this, the two-dimensional principal component analysis (2DPCA) 
method proposed by Yang et al. (2004) overcomes this defect well, which operates the 
image matrix directly instead of converting it in advance, but the dimension of feature 
vector is still high. Zhang and Zhou (2005) proposed the bi-directional two-dimensional 
principal component analysis ((2D)2PCA) method, which extracts features from both 
row and column respectively, reducing the correlation between row and column, and 
also reducing the dimension of image feature matrix. As a result, the recognition rate is 
much improved (Pan and Ruan 2008).

The traditional signal sampling must follow the Nyquist sampling theorem: in order 
to reconstruct an analog signal without distortion, the sampling frequency should not 
be less than two times of the highest frequency of the signal spectrum (Gonzalez and 
Woods 2004). Compressed sensing (CS) theory was proposed by Donoho (2006), Can-
dès and Wakin (2008), which has broken the restriction of the traditional Nyquist sam-
pling theorem, and has brought a revolutionary change to the field of signal processing. 
In compressed sensing one can acquire the discrete samples of signal, where the sam-
pling rate is far less than that of the Nyquist sampling, while still ensuring no distortion 
in the reconstructed signal under certain conditions. If observation matrix and sparse 
signal are known, sparse representation of original signal will be obtained. This sparse 
representation can be thought of as a compressed coding of the original signal, and the 
coded signal can be the basis for classification in the context of palmprint recognition 
(Wright et  al. 2010). Sparse representation based classification (SRC) has been widely 
applied to the field of biological feature recognition (Wright et al. 2009; Yin et al. 2016; 
Feng et  al. 2015). In this framework, however, the computational complexity of the 
reconstruction by the L1 norm minimization is very high, consequently a lot of time and 
space resources are needed in the process of numerical solution.

In view of the influence on palmprint recognition rate of unfavorable factors such 
as palm position, illumination, capture devices, etc, and the high computational com-
plexity of traditional sparse classification methods, this paper presents fusion of block-
wise bi-directional two-dimensional principal component analysis and grouping sparse 
representation-based classification method. In this method, a palmprint image is first 
divided into equal blocks, which can make image information more fully utilized; then, 
(2D)2PCA is used for each block to reduce dimension and to build an overcomplete dic-
tionary; finally, a special subspace orthogonal matching pursuit algorithm is designed 
to solve the grouping sparse representation to obtain a final classification. The palm-
print image is preprocessed before palmprint recognition, which can largely solve the 
above problem of the unfavorable factors. In addition, the method of the (2D)2PCA with 
image blocking used in the recognition stage, still can partly overcome the difficulties: 
(2D)2PCA can better extract image information from both rows and columns, which 
reflects more accurate features of image than PCA, 2DPCA and the random projection 
method; image blocking has good adaptability to the changes in posture and illumination 
(Gottumukkal and Asari 2004). It is explained as follows. Most dimensionality reduction 
based palmprint recognition measure the global information of each palmprint image 
and express them with a set of weights (feature), so they are not very effective in the 
case of changing position and illumination. Weight vectors will be greatly affected by the 
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conditions from the weight vectors of the image with normal position and illumination, 
therefore it is hard to identify them accurately. If the palmprint image is divided into 
smaller blocks and the weight vector of each block is calculated, the local information 
of the palmprint can be well represented by the weights. Once the position or the illu-
mination changes, just some of palmprint blocks will vary and the rest of the blocks will 
remain the same as the normal palmprint blocks, so the category can still be determined 
accurately by the remaining blocks.

We organize the remaining part of this paper as follows. In the “Principal component 
and sparse representation” section, principal component analyse with (2D)2PCA, sparse 
representation for compressed sensing and sparse classification are reviewed respec-
tively. In the “Our method” section, feature extraction by blockwise bi-directional two-
dimensional principal component analysis and our grouping sparse classification are 
described in detail. In the “Experimental results and analysis” section, experiments on 
data of a special palmprint database are implemented to verify advantages of our pro-
posed algorithm. We give the conclusions of this paper in the “Conclusions” section.

Principal component and sparse representation
(2D)2PCA

In the (2D)2PCA method feature matrix is extracted from two directions of both row 
and column of image respectively, which can reduce the correlation between them and 
the dimension of the feature matrix of image.

Assuming N is the number of image sample category, there are ni images with size 
l × h in the ith category, and the total number of samples is n =

∑N
i=1 ni. For a learned 

projection matrix X(h× t) obtained from row direction, and a learned projection matrix 
Z(l × s) obtained from column direction from a set of training images, we project the 
original image A(l × h) onto X and Z in sequence, thus generating a s × t dimensional 
coefficient (feature) matrix C = ZTAX. Conversely, a reconstructed image Â can be 
obtained by using the coefficient matrix for image reconstruction (Zhang and Zhou 
2005):

Sparse representation for compressed sensing

The compressed sensing theory tells us that, if a signal is sparse or compressible through 
an orthogonal transformation, the signal can be observed in a lower frequency, and can 
be represented with least numbers of observation values. Moreover, the original signal 
can be estimated well by these sparse observation values (Donoho 2006; Candès and 
Wakin 2008).

In the case of one dimension, suppose x is an original signal with length n,  y is an 
observed signal with length m, and D(m× n,m ≪ n) is a measurement matrix satisfying

Under certain conditions x can be sparsely reconstructed from y through solving the 
following L0 norm optimal problem (Elad 2010):

(1)Â = ZCXT .

(2)y = Dx.

(3)x̂ = argmin�x�0, s.t. Dx = y.
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There are a large number of elaborated work to solve fast above problem, for example 
the orthogonal matching pursuit (OMP) algorithm (Tropp and Gilbert 2007; Elad 2010).

Sparse classification

A supervised classification is to use labeled training samples from special object catego-
ries to correctly determine the category to which a new test sample belongs. The basic 
idea of sparse representation-based classification (SRC) method is as follows. Assuming 
that a test sample can be linearly represented by training samples obtained from its same 
category, one assembles an overcomplete dictionary composed of all training samples 
from object categories, and lets a test sample project on it. Because the test sample only 
has bigger coefficients corresponding to some sample category in the aforementioned 
dictionary representation, the test sample is usually sparse in the representation of the 
overcomplete dictionary. According to this sparse representation the test sample can be 
correctly classified.

Given N categories of gray palmprint image with size l × h, and there are ni train-
ing samples in the ith category. If each image is converted into a column vector 
ν ∈ Rm(m = l × h), the image y to be identified in the ith category can be expressed as 
(Wright et al. 2009):

where αi,j ∈ R and νi,j ∈ Rm, j = 1, 2, . . . ni, are scale factors and column vectors belong-
ing to the ith category, respectively.

We construct a training sample matrix of N categories D = [D1,D2, . . . ,DN ] ∈ Rm×n 
with the sample dimension m and the number of total samples n(=

∑N
i=1 ni), where 

Di = [νi,1, νi,2, . . . , νi,ni ] is a group of the training samples in the ith category. Any sample 
y to be identified can be linearly represented through D:

Thus, the pattern recognition problem is converted into to solve the equation (5) 
(Wright et al. 2009).

Ideally, for an image y belonging to the ith category, there should be a correspond-
ing vector x = [0, 0, . . . 0,αi,1,αi,2, . . . ,αi,ni , 0, 0, . . . 0, ]

T ∈ Rn according to the Eq.  (5). 
Moreover, if the total number of samples is greatly larger than the number of samples in 
each category: n ≫ max(ni), the proportion of nonzero elements in x ni/n will be much 
smaller. The greater the difference between n and max(ni), the sparser x is, and the more 
favorable it is to the sparsity classification.

But, in actual process of palmprint recognition, the testing samples may be subjected 
to changes of position and illumination and other factors. Consequently, nonzero ele-
ments may appear in other locations, and the Eq. (5) reduces into:

Here, e is an error vector representing changes of position and illumination of testing 
samples.

(4)y = αi,1νi,1 + αi,2νi,2 + · · · + αi,niνi,ni ,

(5)y = Dx.

(6)y = Dx + e.
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From the above discussion, however, if the overcomplete dictionary D consists of all 
training samples, it can be expected that any testing sample is sparse in D in any case, 
and is only similar to the elements of D belonging to the same category.

Our method
Blockwise bi‑directional two‑dimensional principal component analysis

The dimension of a palmprint image is usually very high after being converted into 
one-dimensional vector. In order to solve y in the Eq.  (5), one needs to solve a high-
dimensional linear equations, which is very difficult in actual applications. In this paper, 
we propose a blockwise bi-directional two-dimensional principal component analysis 
to reduce the dimension of image. To be specific, image blocking and the (2D)2PCA 
method are combined to extract palmprint image features, which divides the image to 
be identified into some subimages, and then identifies the subimages with (2D)2PCA. 
Because changes of position and illumination only influence a few subimages, and do 
not influence all subimages, this method can effectively overcome negative effects of 
position and illumination changing in traditional PCA algorithms. Finally, the reduced 
and normalized feature matrixes are converted into column vectors to assemble an over-
complete dictionary for the sparsity classification.

In order to get optimal projection vectors, the original image matrix A(l × h) is 
divided into p× q blocks:

Here, the size of each subimage is l1 × h1(p× l1 = l, q × h1 = h), on which the 
(2D)2PCA transform is used, and a feature matrix characterizing palmprint features is 
obtained as follows:

Then, subimage sets can be built, which are composed of subimages in same positions. 
An example with the blocking number 2× 2 is shown in Fig. 1. In particular, when the 
blocking number is 1× 1, above blockwise bi-directional two-dimensional principal 
component analysis (B(2D)2PCA) degenerates into the original (2D)2PCA.

The proposed method can effectively reduce the computational complexity. For each 
subimage block from a palmprint image, its size is l1 × h1. If one reserves p(p < {l1, h1}) 
eigenvalues in the PCA transformation, then the size of a subimage with dimensionality 
reduction by (2D)2PCA, is p× p; the size of a subimage by 2DPCA is l1 × p; although 
the size by PCA is p× 1, one need to convert the image into one-dimensional matrix 
before image projection, which means the size of each subimage is l1h1 × 1. As one 
can see, the (2D)2PCA consums the least computer memory. Thus, (2D)2PCA used for 
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dimensionality reduction can effectively reduce the computational complexity compared 
with PCA and 2DPCA.

Grouping sparse classification

In order to speed up the process of sparsely solving of the Eq. (5), we employ a subset 
technique [(subspace orthogonal matching pursuit (SOMP)] to solve it in each training 
category, which will effectively reduce the computational cost by canceling a great num-
ber of columns of D.

Specifically, for the total category number N of training samples, our arithmetic steps are 
as follows:

1.	 The training sample matrix is divided into blocks of equal size to form subimage sets, 
which are composed of subimages in the same positions after being divided; dimension 
reduction and normalization with (2D)2PCA are used for each subimage; an overcom-
plete dictionary D′ is formed, and according to the sample category, D′ is divided into 
N training submatrixes: 

 That is D′ = [D′
1,D

′
2, . . . ,D

′
N ].

2.	 For each test sample y, y = D′
ixi, i = 1, 2, . . . ,N , is solved by the orthogonal matching 

pursuit algorithm, and the coefficient vector [x1, x2, . . . , xN ] is obtained.
3.	 The recognition coefficient xi of each category is related to the testing sample to calcu-

late the residual: 

4.	 Finally, a recognition result is outputted: 

 where, the category of the minimum reconstruction error is just that of the test data y.
The method SOMP is used to greatly reduce the size of the calculated sample, which 

makes it easy to calculate sparse coefficients and error results in the comparison, and 
reduces the number of the loop count accordingly, improving the precision level than 
the calculation of samples with larger size. More important, this method can signifi-
cantly improve the recognition result.

(9)D′
1,D

′
2, . . .D

′
N .

(10)ri = �y− D′
ixi�2, i = 1, 2, . . . ,N .

(11)Identity(y) = argmin(ri), i = 1, 2, . . . ,N ,

Fig. 1  Formation of subimage sets for blockwise PCA with blocking number 2× 2
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Experimental results and analysis
In order to verify advantages of the proposed method using the dimension reduction 
with B(2D)2PCA and the subspace orthogonal matching pursuit (SOMP), three experi-
ments are carried out according to different dimension reductions, sparse classifications 
and image blockings.

All images in following experiments are from a palmprint database collected by an 
optical plamprint scanner in Beijing Jiaotong University (Pan and Ruan 2009), including 
500 gray palmprint images of 50 individuals, where each individual has 10 images. The 
resolution of original image is 413× 292, with different changes of location and illumi-
nation. Part of original palmprint images and their regions of interest (ROI) are shown 
in Fig. 2. The images in the palmprint database are divided into training and testing sam-
ples. For each person, first five images are as training samples, last five images are as 
testing samples. In order to compare the recognition rate of each algorithm, all methods 
are implemented using the MATLAB programming under current Windows operating 
systems.

Experiment 1: recognition rates with different dimension reduction methods

Different dimension reduction methods are compared. Random projection: test image 
is converted into a column vector, and is projected onto a random Gaussian matrix, and 
then feature vectors are obtained. PCA: test image is also converted into a column vec-
tor and is reduced in the dimension. (2D)2PCA: the dimension of test image is reduced 
by the bi-directional projection, and then the feature matrix is obtained. B(2D)2PCA: 
test image is first divided into 16 subimages with the blocking number 4 × 4, and then 
(2D)2PCA is used to reduce the dimension of each subimage to get the feature matrix. In 
the final step, the subspace orthogonal matching pursuit (SOMP) is used for all of above 
feature data to complete corresponding sparse classifications.

In Fig.  3, recognition rates are shown in sparse classifications with different dimen-
sion reduction methods. Here, the size of one side of square feature matrix is defined as 

Fig. 2  Part of palmprint data from Beijing Jiaotong University: original images (top) and their regions of inter-
est (bottom)
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feature size, which means feature dimension is the double of the feature size. It can be 
seen that, when the feature size is lower than 12, the recognition rate using B(2D)2PCA 
is always higher than that of anyone of other three methods. When the feature size is 7, 
B(2D)2PCA has reached the optimal recognition rate of 97.2 %; at this time, (2D)2PCA 
is 94.4 %, PCA is 95.2 %, and the random projection is only 90 %. After the feature size 
is 12, recognition rates of both (2D)2PCA and B(2D)2PCA tend to be consistent having 
reached above 96 %. When the feature size is 14, (2D)2PCA achieves the optimal recog-
nition rate of 96.4 %.

In Table 1, four dimension reduction methods are compared in respect of optimal rec-
ognition rate and corresponding feature dimension. It is clear that, the proposed method 
achieves the highest recognition rate of 97.2 % with the smallest feature dimension of 49 
among four methods, guaranteeing better robustness against changes of palmprint posi-
tion and illumination.

Experiment 2: recognition rates with different classification methods

The B(2D)2PCA algorithm is first used to reduce the dimension of test image to get the 
feature vector, followed by a normalizing processing; then, both OMP and SOMP meth-
ods are used for sparse classification and recognition.

In Fig. 4, recognition rates are shown in sparse classifications using different methods 
of solving the Eq.  (5). It can be seen that, SOMP has more advantages than OMP: its 
corresponding recognition rate is always higher than that of the latter at least two per-
centage points. This is because, training samples are divided into subblocks firstly, and 
then the OMP algorithm is used on them, which reduces the data dictionary in scale 
obtained from training subsamples, so that the solution of the Eq. (5) is much closer to 
the ideal linear coefficients, which further improves the calculating precision. Therefore, 

Fig. 3  Recognition rates (%) using SOMP classification with different dimension reduction methods

Table 1  Optimal recognition rates (%) and corresponding feature dimensions with differ-
ent dimension reduction methods

Dimension reduction method Feature dimension Optimal recognition rate

Random projection 225 94.8

PCA 100 95.6

(2D)
2
PCA 196 96.4

B(2D)
2
PCA 49 97.2
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the SOMP algorithm can effectively improve the classification performance of palmprint 
recognition.

Experiment 3: recognition rates with different blocking numbers

Here, we discuss the effect of feature dimension on the recognition, where different 
blocking numbers: 1× 1 (without dividing), 2× 2, 2× 4, 4 × 4 and 8× 8 are compared. 
SOMP is used in the sparse classification.

In Fig.  5, recognition rates in different blocking numbers are shown. It can be seen 
that, when the feature dimension is low, the recognition rate with the dividing technique 
is higher than that of non-dividing in same conditions; when the feature size is 7, the 
sparse classification with 4 × 4 blocking reaches the highest recognition rate of 97.2 %, 
which shows that the combination of blocking method and (2D)2PCA is much effective. 
The reason for this advantage can be explained as follows: the subimage is smaller in 
size after image dividing, and one can extract more feature details which is conducive to 
palmprint recognition; at the same time, when the palmprint image is disturbed by posi-
tion, illumination and other external factors, only a small portion of subimages will be 
influenced, other subimages will not be done.

With the increase of feature size, the recognition rates of most blocking numbers grad-
ually increase. When the blocking number reaches 4 × 4 and the feature size is 7, the 
recognition rate reaches the peak for all blocking numbers. When the blocking number 
increases to 8× 8, its recognition rate is higher than that of 4 × 4 at the first two feature 
dimensions, but it subsequently shows a downward trend and it can not exceed the case 

Fig. 4  Recognition rates (%) using different classification methods

Fig. 5  Recognition rates (%) using SOMP classification with different blocking numbers
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of 4 × 4 any more. It can be explained that when the number of blocks is too small (less 
than 4 × 4), the advantage of robust against changed position and illumination can not 
be highlighted completely; when the number of blocks is too big (more than 4 × 4 ), this 
may get good result at low feature dimensions. However, overmuch blocks will under-
mine the overall structure information of palmprint images, resulting in the drop of 
recognition rate, and the recognition time will also increase significantly. Of course, for 
different palmprint database, due to the different image size and block mode, one need 
concrete analysis on a case-by-case basis.

In Fig. 5, it also can be seen that, when the blocking number is too small, each subimage 
will be bigger in size, as a result this method can not display the strength of being insensitive 
to position and illumination changes; when the blocking number is too big, on the contrary, 
each subimage will be much smaller, which will damage the global structure information of 
the palmprint image, resulting in the decreasing of recognition rate. Therefore, one should 
select appropriate blocking number and feature dimension based on different degradations 
of palmprint image when utilizing B(2D)2PCA to extract feature vectors.

Conclusions
In this paper an efficient grouping sparse classification is proposed with dimension 
reduction using robust blockwise principal components as feature vectors, which greatly 
reduces the feature dimension and overcomes interferences from unfavorable exter-
nal factors, obtaining better recognition results in the process of palmprint recogni-
tion. Obvious advantages in both recognition rate and reduction of feature dimension 
are verified in experiments on special palmprint data in the comparison of some related 
methods. In the case of noise corruption palmprint enhancement for more effective dic-
tionary using fringe filtering (Fu and Zhang 2012) is one of ongoing work in grouping 
sparse classification for degraded palmprint images.
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