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Background
After the 9/11 attacks in 2001, the response and failure of structures under the com-
bined loads of impact, explosion, and fire has become a major concern in building design 
(Maria et al. 2011). The demand for a critical understanding of the response and failure 
mechanism of main structural members, such as beams and columns that are subjected 
to multiple extreme loads in steel structures, has increased.

The case of extreme loads including impact and fire can be divided into the following 
scenarios: (a) blast or impact load, (b) fire load, (c) blast or impact load followed by fire, 
and (d) blast or impact load during fire.

The load and response process for scenario (a) is short (time is measured in ms). An 
effective explicit integration technique has been developed to simulate the behavior of 
structures in current finite element programs (Anonymous 2014). The finite element 
method (FEM) can predict the dynamic response of structures more accurately than the 
long-established rigid plastic method because secondary effects such as elasticity, large 
deformation, strain rate, and so on, are included in calculating the former.
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The current analysis for scenario (b) is regarded as a static problem because a fire load 
is not short-lived (the unit of time is h). The experimental results have shown that the 
fire resistance of an isolated steel beam with simple supports at its ends differs from that 
of a beam restrained by surrounding structures. One of the main causes of this differ-
ence is the effects of catenary action. Current studies on beams under the effects of fire 
have also shifted toward this direction (Bradford et al. 2008; Liu et al. 2002; Xi and Luan 
2012; Yin and Wang 2005). The fire resistance of restrained steel beams can be analyzed 
by using various methods; the limiting temperature of the structures can then be deter-
mined. However, the traditional concept of limiting temperature, which is defined by 
the rule that the section bending moment is equal to the plastic limiting moment at a 
corresponding temperature, is only applied to pure bending beams under the assump-
tion of infinitesimal deflection. Apparently, this definition may be inappropriate for large 
deflection beams, wherein bending moments and axial forces contribute to yield condi-
tion. Catenary action has been demonstrated to improve the fire resistance of restrained 
beams (Liu et al. 2002). However, the definition of limiting temperature (or failure tem-
perature) remains unclear. Although both limiting temperature criteria were proposed 
by Xi and Luan (2012), additional examples are needed to check their validity.

In scenario (c), the blast results in fire. The behavior of the structure under fire is near 
explosion, and the entire course—from blast to fire—can be regarded as a dynamic 
behavior because it has time and inertial effects. Related studies on this subject have 
been published (Chen and Liew 2005; Song et al. 2000; Izzuddin et al. 2000; Liew 2008; 
Liew and Chen 2004). The response of steel frames to a local blast followed by a fire has 
been investigated. However, such research remains relatively rare even for single steel 
beams. Simultaneously, developing new methods to address this problem is necessary 
because of mesh dependency defects in FEM.

The structural response in scenario (d) is more complex than that in scenario (c). In 
addition, coupling response occurs between thermal and impact effects if structural 
temperature changes during the course of the blast or impact load and the dynamic 
response phase. However, even if temperature does not change during the blast or 
impact response course, and the coupling behavior does not manifest, the dynamic 
response in the second phase will still be related to material degradation and expansion 
deformation caused by the elevated temperature during the first phase. Furthermore, 
although the dynamic properties of a material are also affected by current tempera-
ture, experimental data on the relationship between these two factors remain lacking 
and related literature is scarce. In addition to the study just completed recently (Xi et al. 
2014), no papers on the behavior of structures in scenario (d) have been found. However, 
this scenario is important because temperature seriously affects the pressure–impulse 
diagram used in the blast-resistance designs of structures (Krauthammer et  al. 2008). 
Hence, considerable related research remains to be done.

For structures under the combined loads of explosion and fire, a unified comput-
ing model is required to solve the coupling problem between statics and dynamics. In 
this manner, the behavior of structures under fire and explosion can be predicted accu-
rately. Hence, this study proposes a unified computing model, in which the statical and 
dynamic behavior of restrained steel beams under fire, blast, and impact loads can be 
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analyzed more effectively, and the interaction effects between the two types of load can 
be discussed.

The computing model proposed in this study is established based on the minimum 
principle of acceleration in the dynamics of elastic–plastic continua at finite deforma-
tion (Lee and Ni 1973). Statical analysis is performed by eliminating the inertial effects 
of the dynamic model, and thus, the catenary effects of steel beams are accurately pre-
dicted. Furthermore, by using this dynamic computing model, the response and limit-
ing temperature of steel beams subjected to a blast or impact load followed by fire are 
discussed. The effects of dead load and explosion intensity ratios on critical temperature 
are also compared in detail. Finally, this model is developed and can be used to simulate 
the behavior of steel beams under a fire that follows a blast or impact load. The effects 
of temperature on the pressure–impulse diagram are discussed, and the existence of an 
explosion load limit is examined.

The computing model
To examine the effects of thermal expansion deformation and to simulate the constraint 
action applied by surrounding structures, a hinged–hinged steel beam with a constant 
cross section and span L is considered. The beam is exposed to fire and subjected to a 
concentrated load at its mid-span. The basic assumptions made in this model are the 
same as those in Xi and Luan (2012), Xi et al. (2014).

Under fire and impact loads, the steel beams easily undergo plastic deformation that 
results from a reduction in their strength and stiffness at elevated temperatures. Thus, 
the large deflection effects cannot be neglected because catenary action has a significant 
influence on the behavior of a beam under fire (Yin and Wang 2005).

The minimum principle of acceleration in the dynamics of elastic–plastic continua at 
finite deformation (Lee and Ni 1973), can be used to derive the governing equations and 
to solve for a structural member easily and directly. In fact, expressions of a geomet-
ric displacement field based on the finite strain are adopted, and thus, large deflection 
effects are included in motion equations. The principle is perfect to describe the elastic 
plastic behavior of structures under extreme loads. At present, this principle is used to 
derive the computing model of steel beams under fire and impact loads.

The minimum acceleration principle is given by:

in which Sij ,Eij(i, j = 1, 2, 3) are the Kirchhoff stress tensor and Lagrangian strain tensor, 
respectively; Uk(k = 1, 2, 3) is the component of the displacement vector; Tk , Fk are the 
components of surface force and body force, respectively; ρ is the initial mass density; 
AT ,V0 are the initial surface of the force boundary and the volume of the body, respec-
tively, as defined in Lee and Ni (1973).

Suppose that u(x,T , t) and w(x,T , t) are the axial and transverse displacements of a 
point at the centroidal axis of the beam, respectively, at temperature T. The displace-
ments at any point in the beam are

(1)J =

∫

V0

SijËijdV0 +
1

2

∫

V0

ρÜkÜkdV0 −

∫

AT

TkÜkdA−

∫

V0

ρFkÜkdV0,
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where w,x = ∂w/∂x. The Green strain and its acceleration can be expressed as

where E11 is the axial total strain and is noted by ε below. It includes two parts as follows:

where εσ and εT = α(T − 20) are the stress-related strain and thermal strain, 
respectively.

For the case without body force, suppose that p(t) is the load magnitude per unit of 
axial length. By substituting Eqs. (2) and (3) into Eq. (1), Lee’s functional J is presented as 
follows:

where m0 = ρA, Iy =
∫

A ρz2dA. The axial force, bending moment, and second-order 
moment of the stress of the cross section are respectively given by:

Equations  (5) and (6) can be replaced with their discrete form. The discrete form of 
motion equations for a hinged–hinged beam can be obtained as follows:

where 

The preceding motion equation can also be applied to the case of concentrated loads 
but only by using the Dirac function (Yang and Xi 2003). The transverse weight force can 
be applied on the beam as load p(t).

(2)







Ux(x, z,T , t) = u− zw,x

Uy(x, z,T , t) = 0

Uz(x, z,T , t) = w
,

(3)

{

E11 = u,x − zw,xx +
1
2
(u,x − zw,xx)

2 + 1
2
(w,x)

2

Ë11 = ü,x − zẅ,xx + (ü,x − zẅ,xx)(u,x − zw,xx)+ ẅ,xw,x + (u̇,x − zẇ,xx)
2 + (ẇ,x)

2 ,

(4)ε = εσ + εT ,

(5)

J =

∫ L

0

[m0

2
(ü2 + ẅ2)

]2

+
Iy

2
(ẅ,x)

2]dx+

∫ L

0

∫

A
σ [(ü,x − zẅ,xx)(1+ u,x − zw,xx)+ ẅ,x

w,x + (u̇,x − zẇ,xx)
2 + (ẇ,x)

2]dAdx − p

[

w,x

(

ü−
H

2
ẅ,x

)

+

(

1+ u,x −
H

2
w,xx

)

ẅ

]

,

(6)Nx =

∫

A
σdA, Mx = −

∫

A
σ zdA, Lx =

∫

A
σ z2dA.

(7)



























üi =
1

2m0�x [(1+ Ai+1)(Nx)i+1 − (1+ Ai−1)(Nx)i−1 + (Mx)i+1Bi+1 − (Mx)i−1Bi−1]

[1+
Iy

2m0(�x)2
]ẅi −

Iy

4m0(�x)2
(ẅi−2 + ẅi+2) =

1

2m0�x {Bi+1(Nx)i+1 − Bi−1(Nx)i−1

− 2
�x [(1+ Ai+1)(Mx)i+1 − 2(1+ Ai)(Mx)i + (1+ Ai−1)(Mx)i−1 + Ci+1(Lx)i+1

−2Ci(Lx)i + Ci−1(Lx)i−1]} +
p
m0

(i = 2, . . . , n− 1)

(8)











A1 =
4u2−u3
2�x , An =

−4un−1+un−2

2�x , Ai =
ui+1−ui−1

2�x

B1 =
4w2−w3

2�x , Bn =
−4wn−1+wn−2

2�x , Bi =
wi+1−wi−1

2�x (i = 2, . . . , n− 1)

C1 =
−5w2+4w3−w4

(�x)2
, Cn =

−5wn−1+4wn−2−wn−3

(�x)2
, Ci =

wi+1−2wi+wi−1

(�x)2

.
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The discrete form of the stress-related strain at temperature T  is

The Cowper–Symonds equation (Cowper and Symonds 1957), which is related to 
strain rate, is adopted for the steel beam, as shown in the following equation, because 
the material is sensitive to strain rate:

where σT
s  is the initial yield stress at temperature T ; T ε̇σp is the rate of plastic strain 

related to stress at temperature T ; and DT and qT are the constants related to the strain 
rate and temperature, respectively. For fire loads, however, the effects of the strain rate 
can be ignored because it can be regarded as a static course.

For the stress–strain relationship, the elastic-perfectly plastic model shown in Fig. 1 is 
adopted, and the temperature variation in each time step is assumed to have no effect on 
plastic strain (Franssen 1990).

The discrete forms of relationship between strain increment and stress increment are 
as follows:

where �εσ and �ε̇σp are the stress-related strain increment and the rate of stress-related 
plastic strain increment, respectively, at temperature T .

For the relations between ET and E, and σT
s  and σs, Eurocode 3 provides the following 

factors in table form for a common structural steel (Eurocode 2001), as shown in Table 1. 

(9)εσ (i, j) = Ai − j�zCi +
1

2
(Bi)

2 − εT (i, j).

(10)σT = σT
s [1+ (T ε̇σp /D

T )]q
T
, σT ≥ σT

s ,

(11)

{

�σT = ET�εσ , −σT
s ≤ σT ≤ σT

s , or unloading

�σT = σT
s [1+ (

�ε̇σp

DT )]q
T
,

∣

∣σT
∣

∣ > σT
s , and loading

,

Fig. 1  The stress–strain relationship

Table 1  Retention factors of material strength and stiffness

T (°C) 20 100 200 300 400 500 600 700 800 900 1000 1100

ET /E 1.0 1.0 0.9 0.8 0.7 0.6 0.31 0.13 0.09 0.0675 0.045 0.0225

σ T
s /σs 1.0 1.0 1.0 1.0 1.0 0.78 0.47 0.23 0.11 0.06 0.04 0.02
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The initial conditions are

Equations (8) to (12) comprise the computing model for a hinged–hinged steel beam 
under fire and transverse distributed loadings, which are expressed by displacements 
ui and wiui,wi at each node. Several second-order effects such as elastic deformation, 
strain rate, temperature, rotation inertial, large deflection, and so on are involved in this 
model. When loads are linearly increased with time, and time is sufficiently long for a 
loading course, inertial effects can be eliminated and the static computing model can 
be obtained. Thus, the behavior of a steel beam subjected to a dead load and fire can be 
analyzed. Note that the governing equations for beams under a concentrated load can 
be obtained by using Dirac function. In addition, the proposed computing model can 
express the response problem of steel beams under the separate or combined loads of 
explosion, fire, and weight loads.

To solve the proposed computing model, the following discrete equations, which are 
obtained by applying the central finite difference technique to the velocity and accelera-
tion at each node, must be used:

This computing model can be called the dynamic finite difference method (abbrevi-
ated as FD).

Numerical examples and analysis
Herein several numerical examples are presented. Based on the numerical results, sev-
eral response features and the limiting temperature of the beam are analyzed, and the 
interaction effects of structural behavior under two types of loads are discussed.

For example, the response of the steel beam with an H cross section shown in Fig. 2 is 
discussed. Several parameters of the structure, materials, and loads are given as follows.

Geometric dimensions of the beam with an H cross section:

Span of beam: L = 1.14 m

(12)t = 0,

{

ui = 0, u̇i = 0

wi = 0, ẇi = 0
, (i = 1, . . . , n) .

(13)







u
q+1

i = ü
q
i (�t)2 + 2u

q
i − u

q−1

i

w
q+1

i = ẅ
q
i (�t)2 + 2w

q
i − w

q−1

i

.

Fig. 2  Geometric configuration of a beam with an H cross section
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Height of cross section: H = 0.08 m
Width of flange: B = 0.046 m
Thickness of flange: tf = 0.0052 m
Thickness of web: tw = 0.0038 m
Material constants of steel at normal temperature:
Density and Thermal expansion coefficient: ρ = 7850 kg/m3, α = 1.4 × 10−5/◦C

Young’s modulus, yield stress and Poisson ratio: E = 205 GPa, σs = 399 MPa, ν = 0.3

Strain rate constants: D = 40.4 s−1, q = 5
The load ratio is defined by η = P/Pc, in which Pc = 4MP/L, MP is the plastic limiting 

bend moment.

Steel Beam under elevated temperatures

The deformation behavior of a beam under fire may be seriously affected by the restrain-
ing action of the surrounding structures because of thermal expansion. As a reduced 
beam model in practice, a hinged–hinged beam has been demonstrated to have the best 
fire-resistant capability (Liu et al. 2002).

Two traditional plastic hinges and two concepts of limiting temperature

As is known to all, the effects of thermal expansion and end axial constraints on a 
hinged–hinged beam at elevated temperatures will result in catenary action. Accord-
ingly, large deflection effects have to been considered and the fire-resistant capability 
of the beam can be improved. However, in the large deflection case, axial force is also 
included in the section along with bending moment. The influence of the interaction 
between these factors on the yield of the material must be considered. Thus, determin-
ing the limiting temperatures in such cases is the issue that will be discussed during this 
phase.

Corresponding to several load ratio situations, the curves of the mid-span deflection 
against temperature are presented in Fig. 3. With regard to the increase in temperature, 
the deflections do not rapidly change but gradually increase. Thus, determining the fail-
ure limiting temperature appears difficult because the axial constraints at the ends of the 
beam do not only restrain the axial displacements at the ends, but also cause the beam 

Fig. 3  Curves of the mid-span deflection against temperature under different load ratios
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to produce an axial force on the section. Moreover, the early axial contraction force can 
be changed into a stretch force as temperature increases. Then, the stretching axial force 
and bending moment jointly resist the loads, and slow down the increase in beam deflec-
tions. The aforementioned phenomenon is called the catenary action effect (Yin and 
Wang 2005).

For a fully fixed steel beam under fire, two criteria to determine the limiting tempera-
ture are proposed by Xi and Luan (2012) as follows:

Criterion 1: The first limiting temperature, Tlim
1 , can be defined when the dimension-

less catenary force is zero or the dimensionless bending moment is one, which corre-
spond to the traditional bending plastic hinge.

Criterion 2: The second limiting temperature, Tlim
2 , can be defined when the dimen-

sionless catenary force is one or the dimensionless moment is zero, which correspond to 
the traditional stretching plastic hinge.

Then, the adaptability of the aforementioned criteria to a hinged–hinged beam is 
examined.

The curves of the dimensionless bending moment Mx
T/MP

T and axial force Nx
T/NP

T 
against temperature are presented in Fig. 4, where Mx

T and Nx
T are the bending moment 

and axial force of the mid-section at temperature T, respectively, whereas MP
T and NP

T 
are the fully bending moment and the full axial force of the corresponding temperature, 
respectively. The bending moment increases as temperature is raised from 20  °C until 
the moment when a maximum value of one is reached. However, as temperature rises, 
the axial force initially increases and then decreases because of the combined effects of 
thermal expansion and large deflection. The dimensionless axial force is also equal to 
zero when the bending moment is increased to one. Thus, a traditional bending plastic 
hinge is formed on the mid-section of the beam. The corresponding temperature, which 
should be defined as the failure limiting temperature, is called the first limiting tempera-
ture Tlim

1. However, as temperature continues to increase, this plastic hinge will not last. 
Moreover, an increased deflection results in axial tension forces or catenary actions, 
which cause the steel beam to retain its carrying capacity. Obviously, when temperature 
exceeds Tlim

1, the moment decreases and the axial force increases as temperature rises. 
This phenomenon demonstrates that the deformation mode of the steel beam is changed 

Fig. 4  Curves of the dimensionless axial force and bending moment against temperature
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from a mainly bending flexure into a catenary state dominated by the stretching force 
after the bending plastic hinge disappears. Along with temperature increases, the dimen-
sionless axial force also increases and achieves the maximum value of one, whereas the 
moment is zero. Thus, a traditional stretching plastic hinge is formed on the section, and 
the steel beam exhibits full plastic chord status. This stretching plastic hinge will keep up 
with continuous temperature increases until the steel beam breaks and completely loses 
its carrying capacity. Thus, at the start of this phase, another failure limiting temperature 
can be defined and called as the second limiting temperature Tlim

2   .

Comparison between limiting temperature and critical temperature

The concept of critical temperature in the current code is defined as the state when the 
maximum deflection of the beam achieves the rated value (such as span/20 or span/10) 
(Eurocode 2001). The critical temperatures correspond to span/20 and span/10, which 
are denoted by T 1

cr and T 2
cr, respectively. Then, for each case of load ratio η =  0.2, 0.5, 

0.7, 0.85, the corresponding critical temperature can be easily determined by using the 
curve of the mid-span deflection against the temperature shown in Fig. 3. For example, 
for η = 0.5, T 1

cr = 598 °C, T 2
cr = 787 °C; whereas, from Fig. 4, both limiting temperatures 

are T 1
lim

= 599 °C, T 2
lim

= 755 °C. Obviously, T 1
cr is close to T 1

lim
 but T 2

cr is slightly higher 
than T 2

lim
.

According to the aforementioned criteria for limiting temperature and critical temper-
ature, the corresponding temperature against the load ratio can be presented, as shown 
in Fig. 5. Thus, an intuitive comparison can be made. Again, T 1

cr and T 2
cr are close to T 1

lim
 

and T 2
lim

, respectively. For the cases with a low load ratio (η < 0.4), T 1
cr is slightly lower 

than T 1
lim

. However, T 1
lim

 is slightly higher than T 2
lim

 for all load ratios.
Based on the preceding numerical results, a suggestion for a fire-resistant design for a 

hinged–hinged steel beam can be provided. If a large deformation is permitted and the 
influence of the reaction force at the ends of the surrounding structures can be ignored, 
then the criterion that the maximum deflection is equal to span/10 [as indicated in 
Yin and Wang (2005), this displacement is close to the recorded data of the Carding-
ton test] can be used to determine critical temperature T 2

cr. However, if the influence of 
the reaction force at the ends of the surrounding structures should be considered, then 

Fig. 5  Curves of the limiting temperature and critical temperature against load ratio
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determining critical temperature T 1
cr by using the criterion that the maximum deflec-

tion is equal to span/20 is appropriate. This conclusion corresponds with the case of the 
fixed–fixed beam discussed in Xi and Luan (2012).

It should be stressed that some results obtained herein are quite already known in 
the fire community, this indicates that the minimum principle of acceleration can be 
used to effectively analysis the large deflection static behavior of structures subjected 
to fire loading. Compared with the method of Newton–Raphson commonly used in the 
response analysis of structures under fire, the proposed method is more straightforward 
and simple, and the iterative computation is not need.

Steel beam subjected to explosion followed by fire

The beam discussed earlier is then subjected to the following loads in succession.

①	First, a transverse dead load P is applied at the mid-span, P = ηPc.
②	Next, an explosion load, which is a rectangular pulse with intensity Pd and duration 

time t0 = 0.25 s, is applied at the mid-span. The Explosion Load Ratio (ELR in short) 
is ηe = Pd/Pc.

③	Fire is applied. Temperature is assumed to be distributed uniformly along each direc-
tion of the beam.

Undoubtedly, the response of the steel beam under these combined loads is compli-
cated. At present, the influence of blast loads on failure limiting temperature is exam-
ined in particular.

For the four cases of load ratio (η = 0.2, 0.5, 0.7, 0.85), the curves of the mid-span per-
manent deflection against temperature are presented in Fig.  6a–d. The four curves of 
each figure correspond to the four cases of ELR ηe = 0, 1, 2, 3, respectively, in which 
ηe = 0 denotes the absence of a blast load. By observing each curve of these figures, 
the deflections of the beam can be increased through blast loading. Moreover, if the 
increases in deflection are as large as the rise in ELR, then the limiting temperature of 
the beam will be affected.

To analyze variations in critical temperature, the L/20 and L/10 horizontal lines are 
also depicted in the figure. The maximum permanent deflections exceed the L/20 hori-
zontal line for the two cases of ELR (ηe = 2, 3). Therefore, only an L/10 horizontal line 
can be used to determine the critical temperature of cases with relatively high ELR. 
Obviously, a high ELR such as ηe > 2 cannot been applied if excessive deformations are 
not allowed in the fire-resistant design. Critical temperatures decrease as ELR increases, 
as shown in Fig. 6a. The critical temperatures are T 1

cr = 683 °C and T 1
cr = 654 °C, which 

correspond to ηe = 0 and ηe = 1, respectively. The difference between these values is only 
�T 1

cr = 683− 654 = 29 °C. However, this difference increases as load ratio η increases, 
as shown in Fig. 6b–d. The difference in the critical temperature corresponding to ηe = 0 
and ηe = 1 for η = 0.5, 0.7, 0.85 is �T 1

cr = 597− 514 = 83 ◦C, �T 1
cr = 537− 312 = 

225 °C, and �T 1
cr = 473−225 = 248 °C, respectively.

The four curves on each figure tend to be superimposed as temperature increases, thus 
indicating that the influence of blast load has been exceeded by the serious deterioration 
of the strength and stiffness of the material caused by the elevated temperature. Thus, 
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the deformation of the beam induced by the blast load no longer has a leading role. This 
effect is striking when the blast load is small, such as when ηe = 0 and ηe = 1 , which cor-
respond to the situation when the second critical temperatures T 2

cr are the same. How-
ever, the influence of the blast load on displacement also increases and the second critical 
temperature decreases when ELR increases, such as when η = 0.2. The second critical 
temperatures corresponding to ηe = 2 and ηe = 3 are T 2

cr = 886  °C and T 2
cr = 636  °C, 

respectively. The difference is �T 2
cr = 886− 636 = 250  °C. When η = 0.5, 0.7, 0.85,  

the difference of the second temperature corresponding to ηe = 2 and ηe = 3 is �T 2
cr 

= 735− 460 = 275 ◦C, �T 2
cr = 687− 312 = 375  °C, and �T 2

cr = 656− 206 = 450  °C, 
respectively. Thus, the difference in critical temperature also increases as load ratio 
increases.

Steel beam subjected to fire followed by an explosion

The hinged–hinged beam is subjected to the following loads in succession:

①	First, a transverse dead load P is applied at the mid-span, P = ηPc.
②	Next, the fire load is applied until a given temperature is reached.
③	An explosion load with a rectangular pulse is then applied. ELR and duration are 

ηe = Pd/Pc and t0 = 0.05 s, respectively.

Obviously, the response of the steel beam under these combined loads is compli-
cated, particularly because the blast or impact load is applied on the steel beam that is 

Fig. 6  a Curves of the mid-span deflection against the temperature for load ratio η = 0.2. b Curves of 
the mid-span deflection against the temperature for load ratio η = 0.5. c Curves of the mid-span deflec-
tion against the temperature for η = 0.7. d Curves of the mid-span deflection against the temperature for 
η = 0.85
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subjected to the fire load. The sensitivity of the strain rate of the materials is different 
from that when temperature is normal. Thus, both parameters D and q of the Cowper–
Symonds equation are related to temperature. However, such test data are lacking. In a 
recent study on the behavior of a steel beam subjected to fire and subsequent impulsive 
loading (Xi et  al. 2014), an assumption of the relationship between the parameters of 
strain rate and temperature was proposed. In the present study, we still use this assump-
tion. Although this assumption is not necessarily consistent with reality, the differ-
ence should not be significant and the emphasis of the present study is to describe the 
method. In any case, the real structural behavior can be effectively simulated by using 
the proposed computing model if the test accurately provides the temperature-depend-
ent strain rate parameters.

For load case η = 0.2, given temperatures at 20, 400, 600, and 700 °C, and ELR ηe = 3 , 
the time history curves of the mid-span deflection are presented in Fig. 7, in which 20 °C 
corresponds to the case when a fire load is unavailable. An obvious increase in deflec-
tions occurs when the given temperature is greater than 400  °C. However, the differ-
ence between the deflections that correspond to 20 and 400  °C is minimal. When the 
given temperature is <400 °C, material stiffness is reduced and thermal expansion defor-
mation is produced, whereas the strength of the material only deteriorates at tempera-
tures higher than 400 °C. Therefore, for a beam under these loads, the main factor that 
generates a rapid increase in displacement is deteriorating strength caused by elevated 
temperatures, whereas the influences of thermal expansion deformation and stiffness 
deterioration caused by changes in temperature are minimal.

Based on the curves of the deflection–time history shown in Fig. 7, the curves of the 
mid-span permanent deflection (regarded as the even deflection of residue elastic vibra-
tion) against temperature under several load ratio cases η = 0.2, 0.5, 0.7 and ELR ηe = 3 
are presented in Fig.  8. For comparison, the curve corresponding to the case when 
ηe = 0 is also depicted in this figure. The shapes of the curves have obviously changed, 
and beam deformation increases as a result of the blast load. Thus, the critical tempera-
ture decreases. However, deflections do not always increase obviously when temperature 
increases, such as when T < 400 °C. This phenomenon can be attributed to the increase 
in the axial thermal expansion deformation of the beam as temperature increases to 

Fig. 7  Curves of mid-span deflection against time
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400  °C, thus indicating that the deformation mechanism is dominated by axial ther-
mal expansion. When temperature exceeds 400 °C, the strength of the material starts to 
deteriorate and the deformation mechanism assumes a leading role in bending deflec-
tion. Then, deflection rapidly increases as temperature continues to rise. Obviously, the 
failure limiting temperature can be easily determined for such deformation mode.

Compared with the three curves that correspond to the case with no blast load, the 
three curves of ηe = 3 are significantly closer to one another, thus implying that the 
influence of the first dead load with different load ratios on the deformation of the beam 
is minimal.

For η = 0.5 and ηe = 0, 1, 2, 3, 4, the curves of the mid-span permanent deflection-
temperature are presented in Fig.  9. Deflections increase as blast loads increase, and 
each curve exhibits characteristics that show that deflection increases dramatically as 
temperature rises. Thus, a failure temperature exists for each load case.

The L/20 and L/10 horizontal lines are also depicted in Fig.  9, such that the corre-
sponding critical temperature can be easily determined. The results are presented in 
Table 2. For comparison, the critical temperatures obtained in phase 3.2 are also pro-
vided. Table 2 shows that the two results are different. The critical temperature of the 

Fig. 8  Curves of the mid-span deflection against temperature

Fig. 9  Curves of mid-span permanent deflections against temperature
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steel beam that is subjected to fire followed by an explosion is lower than that of the 
beam that is subjected to explosion followed by fire. These results show that different 
loading sequences can lead to various response behaviors, thus affecting the critical tem-
perature of a structure.

In Fig. 10, the curves of the mid-span permanent deflection against ELR are depicted 
for the cases of η = 0.5 and different temperatures. Obviously, displacement does not 
increase dramatically as ELR increases, which may be attributed to strain rate and iner-
tia inhibiting the occurrence of a phenomenon similar to that of the static case. Thus, 
the corresponding dynamic limiting loads are not determined. Therefore, the explo-
sion-limiting load will also not exist in this case when the failure of materials is not 
considered.

To evaluate the effects of temperature on the pressure–impulse diagram, Fig. 11a rep-
resent several ELR–impulse curves in three temperature conditions and two statical load 
ratios. The area of the safety zone at the lower left of the curve decreases as temperature 
rises. In particular, the areas of zones with temperatures of 300 and 600 °C are signifi-
cantly different, and thus, the safety zone is seriously reduced by high temperatures. By 
contrast, the influence of the statical load ratio is insignificant. For η = 0.5, an iso-dam-
age surface on the three dimensional parametric space of temperature, ELR and impulse 
is presented in Fig. 11b, this 3D surface divides the space into two regions. The region 
below the surface is the safe spatial zone while the region above it is unsafe spatial zeon. 
When designing the structural fire and explosion resistance, it should be ensured that 
the temperature, ELR and impulse is located in the safe region.

Table 2  Comparisons of critical temperatures

η = 0.5 T
1
cr (°C) T

2
cr (°C)

ηe = 1 ηe = 1 ηe = 2 ηe = 3

Scenario (c) 514 782 735 460

Scenario (d) 498 664 574 504

Fig. 10  Curves of the permanent deflection against ELR
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Conclusions
Based on the minimum principle of acceleration in the dynamics of elastic–plastic con-
tinua at finite deformation, an FD computing model to simulate the large deflection 
behavior of a steel beam that is subjected to the combined loads of static, fire, and explo-
sion is presented. Response analysis for a hinged–hinged steel beam is conducted for 
several load cases by using the proposed model. The innovations of this study are listed 
as follows.

• • The criteria that can determine the limiting temperature of a large deflection steel 
beam under fire are further confirmed, i.e., the first and second limiting tempera-

Fig. 11  a The pressure–impulse diagram under three temperature conditions. b The pressure–temperature–
impulse diagram for η = 0.5
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tures that correspond to the bending and stretching plastic hinges, respectively. Both 
temperatures can be obtained from the curve of the dimensionless axial force against 
temperature when the dimensionless catenary force is zero and one, respectively.

• • The numerical results also show that the limiting temperatures determined by the 
first criterion are closer to the critical temperature determined by the L/20 line, 
whereas the limiting temperatures determined by the second criterion are slightly 
higher than the critical temperature determined by the L/10 line.

• • For beams subjected to explosion followed by fire, the blast load affects the limiting 
and critical temperatures. The critical temperatures are related to ELRs, and the dif-
ference of both critical temperatures corresponding to two low ELRs is related to the 
static load ratio. Such difference increases as η increases.

• • The influence of the blast load decreases as temperature rises, and the deformation 
induced by the blast loads no longer has a leading role. These effects are obvious in 
low ELRs, and the key factor that affects the critical temperature is static ratio.

• • For beams subjected to fire followed by an explosion, the numerical results show that 
the influence of thermal expansion deformation and the reduction of stiffness caused 
by temperature change in the permanent deflection of the beam are minimal. More-
over, no serious deformation is observed within the scope of T < 400 °C. However, 
when temperature exceeds 400 °C, the influence of the reduction in material strength 
on permanent deflection is significant, and deflection rapidly increases as tempera-
ture rises. High temperatures also seriously influence the pressure–impulse diagram 
of a beam. An iso-damage surface on temperature, ELR and impulse space is intro-
duced to distinguish safe and unsafe regions, which could be used in the structural 
design for the resistance of fire and blast loads.

• • Two cases of explosion and fire loading sequences are compared. The displacement 
response and the critical temperatures are different for the two cases. The critical 
temperature of the beam that is subjected to fire followed by an explosion is lower 
than that of the beam that is subjected to an explosion followed by fire.

• • Explosion limit load do not exist because the effects of strain and inertia when 
the material failed are not considered. The area of the safety zone in the pressure–
impulse diagram decreases as temperature rises, whereas the influence of the static 
load ratio is insignificant.

In summary, a method for analyzing the large deflection behavior of restrained steel 
beams under the combined loads of explosion and fire is presented. The conclusions 
obtained through numerical results are conducive to further understanding on struc-
tural response and failure. Undoubtedly, this study is beneficial to designing fire- and 
explosion-resistant structures.
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