
Ant colony optimization‑based firewall
anomaly mitigation engine
Ravi Kiran Varma Penmatsa1*  , Valli Kumari Vatsavayi2 and Srinivas Kumar Samayamantula3

Background
A firewall is one of the most vital network defense components that can be used to filter
unsolicited traffic. A packet-filter firewall can filter packets based on fields in the net-
work layer and transport layer such as the source internet protocol (IP) address, desti-
nation IP address, source and destination port address, and protocol field. The firewall
will perform its job of filtering packets based on a set of rules written by the administra-
tor. The number of rules and the traffic that must be filtered depend upon the organiza-
tion’s security policy. A firewall is typically placed at the network perimeter as shown in
Fig. 1. A typical scenario consists of an internal network, a de-militarized zone (DMZ),
the Public Network, and a Branch Office network. The internal network must be pro-
tected from the public network. The DMZ contains systems and servers that normally
are meant for public access. There can be trusted and non-trusted or blacklisted hosts in
the public network.

Abstract 

A firewall is the most essential component of network perimeter security. Due to
human error and the involvement of multiple administrators in configuring firewall
rules, there exist common anomalies in firewall rulesets such as Shadowing, Generali-
zation, Correlation, and Redundancy. There is a need for research on efficient ways of
resolving such anomalies. The challenge is also to see that the reordered or resolved
ruleset conforms to the organization’s framed security policy. This study proposes an
ant colony optimization (ACO)-based anomaly resolution and reordering of firewall
rules called ACO-based firewall anomaly mitigation engine. Modified strategies are also
introduced to automatically detect these anomalies and to minimize manual interven-
tion of the administrator. Furthermore, an adaptive reordering strategy is proposed to
aid faster reordering when a new rule is appended. The proposed approach was tested
with different firewall policy sets. The results were found to be promising in terms of
the number of conflicts resolved, with minimal availability loss and marginal security
risk. This work demonstrated the application of a metaheuristic search technique,
ACO, in improving the performance of a packet-filter firewall with respect to mitigat-
ing anomalies in the rules, and at the same time demonstrated conformance to the
security policy.

Keywords:  Packet-filter firewall rules, Ant colony optimization (ACO), Metaheuristics,
Shadowing, Generalization, Correlation, Redundancy, Rule anomalies, Rule reordering

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Penmatsa et al. SpringerPlus (2016) 5:1032
DOI 10.1186/s40064-016-2489-6

*Correspondence:
ravikiranvarmap@gmail.com
1 MVGR College
of Engineering, Vizianagaram,
AP, India
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-4989-1305
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2489-6&domain=pdf

Page 2 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

The security policy that must be enforced at the main office firewall is shown in
Table 1. The firewall ruleset that was evolved by the administrator in the process of
implementing the security policy at main office firewall is listed in Table 2.

Firewall anomalies

Often, more than one administrator might be involved in writing or appending rules to
the firewall. When the size of the ruleset grows, the complexity and interdependency of
the rules increase and might be susceptible to errors, which can lead to anomalies. These
anomalies are often unavoidable due to human error and often cannot be detected and
corrected manually. There are four types of anomalies in packet-filter firewalls (Al-Shaer
and Hamed 2004a, b; Yuan et al. 2006), as follows: (1) shadowing, (2) generalization,
(3) correlation and (4) redundancy. Among the four mentioned anomalies, shadowing,
generalization and correlation considered “policy conflicts” because these anomalies are

Fig. 1  Typical organizational firewall placement scenario (Policy 1)

Table 1  Security policy to be implemented at main office firewall of Fig. 1

1. Full access is to be given to the organization telnet server for the organization administrator’s home IP
“10.44.128.112”

2. Full access is to be given to the organization telnet server for the organization’s work from home IP address
“192.168.5.64”

3. Full access is to be given to the organization telnet server for the organization’s work from home IP address
“192.168.15.253”

4. The technical department of the branch office having IP “172.19.55.124” must have access to the entire organi-
zation’s internal network

5. The Sales Department of the branch office having IP “172.19.55.121” must have access to web server
“10.12.32.21” and ftp server “10.12.32.24” of the organization only

6. Access to webserver http port “10.12.32.21: 80” must be open to all

7. All remaining access from untrusted source “172.19.55.122” except http connection to web server is to be
stopped

8. All remaining access from untrusted source “172.19.55.123” except http connection to web server is to be
stopped

9. All remaining access from untrusted source “10.45.48.34” except http connection to web server is to be
stopped

10. All remaining access from untrusted source “172.19.64.221” except http connection to web server is to be
stopped

Page 3 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

caused by rules with interdependency but that have different actions. However, Redun-
dancy exists because of rules with interdependencies that have the same action.

Shadowing

A rule is considered shadowed by one or a set of preceding rules if each packet matched
by this rule is also matched by those preceding rules but takes a different action. For
example in the ruleset showed in Table 2, rules “9, 12, and 13” are shadowed by rule
“4.” That is, any packet that matches any one of rules “9, 12, and 13” whose actions are
“Deny” also matches rule “4,” whose action is “Allow.”

Generalization

A rule is considered a generalized rule if it is a superset of any preceding rules but with
a different action. For example, rule “9” is a generalized rule of rules “7 and 8.” Rule 9’s
action is Deny whereas Rule 7 and 8’s actions are Allow.

Correlation

Two rules are considered correlated if they have an intersection of rule spaces, i.e., one
rule is a superset to the other in some part of the fields and vice versa. Rule pairs (6, 5),
(9, 2), (12, 2), and (13, 2) are correlated from Table 2.

Redundancy

A rule is declared redundant if the action taken by the firewall on a packet does not
change even when it is removed from the ruleset. For example, rule “8” in Table 2 is
redundant because the set of packets matched to rule “8” also matches to rule “2” and
both perform the same action, i.e., “Allow.” Therefore, removing or moving rule “8” will
not affect the firewall.

Table 2  Initial configuration of firewall rules (Policy 1)

Rule Protocol Source IP Source
port

Destination IP Destination
port

Action

1 * 172.19.55.124 * 10.12.32.21–10.12.32.22 1–80 Allow

2 TCP 172.19.55.* * 10.12.32.21 80 Allow

3 TCP 192.168.5.64 * 10.12.32.23 23 Allow

4 * 172.19.55.121–
172.19.55.124

* 10.12.32.* * Allow

5 * 10.45.48.34 * 10.12.32.* * Deny

6 * 10.*.*.* * 10.12.32.21 80 Allow

7 TCP 172.19.55.121 * 10.12.32.24 20–21 Allow

8 TCP 172.19.55.121 * 10.12.32.21 80 Allow

9 * 172.19.55.121 * 10.12.32.* * Deny

10 TCP 192.168.15.253 * 10.12.32.23 23 Allow

11 TCP 10.44.128.112 * 10.12.32.23 23 Allow

12 * 172.19.55.122 * 10.12.32.* * Deny

13 * 172.19.55.123 * 10.12.32.* * Deny

14 * 172.19.64.221 * 10.12.32.* * Deny

Page 4 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

These anomalies often results in unintended behavior and may cause loss of availabil-
ity and/or security risk to the organizational resources. Therefore detection and resolu-
tion of such anomalies in an efficient way is very much essential for any organization.

The remainder of this article is arranged as follows: “Related work” section presents
the previous work in the domain along with their limitations and also the highlights of
our proposed solution. “Anomaly detection methodology” section discusses anomaly
detection technique using segmentation and grid representation process with an exam-
ple. The role of “Action Constraint Generation” (ACG) and Strategies used for ACG in
the process of resolving anomalies are discussed in “Anomaly resolving” section. The
proposed modifications, primarily the new Trust Factor (TF)-based ACG, the role of
ACO in anomaly resolving and reordering, and the adaptive reordering algorithm are
provided in “ACOFAME” section. The experimentation results, analysis and comparison
with the existing system are presented in “Experimentation results and comparison” sec-
tion, and conclusion and future scope are provided in the last section.

Related work
An earlier study by Wool (2004) revealed that corporate firewalls suffer from poor con-
figurations. The author analyzed rulesets gathered from several corporate firewalls and
found that misconfigurations in framing rules caused breaches of security policies. Wool
(2010) also proved that the number of errors is correlated to the ruleset complexity.
Later, the same author analyzed several corporate firewalls and found that the same situ-
ation prevailed and misconfigurations in the firewall rules were ubiquitous.

The framework called “fast detect” (Hari et al. 2000) was one of the earlier works
focused on detecting and resolving correlation conflicts by reordering rules. The authors
addressed individual local conflicts; however, global conflicts were not addressed. They
identified a circular looping problem among the conflicting rules, even after reordering.
The authors proposed resolving filters to break circular loops within the rules to solve
the problem. The fast-detect algorithm is not suitable for five-tuple firewalls because it
is only based on two-tuples, source and destination IP addresses. The authors tried to
address the five-tuple issue by maintaining three-tuples as constants. However, the solu-
tion was not feasible for real-valued five-tuples.

The authors of Al-Shaer and Hamed (2004a, b) made an effort to find the errors in the
firewall rules of different organizations. They found that many such anomalies are unin-
tended and mostly caused by human mistakes. Firewall anomalies are classified into four
types: shadowing, generalization, correlation, and redundancy. The authors proposed
anomaly detection with the help of a tree representation of the rules. A path from the
root to the leaf node of one rule not colliding with that of another rule implies no anom-
aly. If the paths of two rules collide, then there exists an anomaly. The authors left the
resolving part to the administrator for manual intervention. They also proposed a Fire-
wall Policy Advisor that helps in editing the rule and guides the administrator in insert-
ing a new rule at an appropriate position to remove anomalies. However, the results
were not checked against security policy conformation.

The authors of Yuan et al. (2006), Benelbahri and Bouhoula (2007) and Al-Shaer and
Hamed (2004a, b) have suggested methodologies to detect pairwise anomalies. The
authors left the resolving part to the administrators, giving the details of the conflicts

Page 5 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

present in the rules. The authors of Yuan et al. (2006) designed a tool called “FIREMAN,”
which tries to detect anomalies existing in stateless firewalls. They also tried to minimize
the size of the policy by summarizing. The authors converted a firewall policy into a rule
graph and used Binary Decision Diagrams (BDDs) to detect anomalies. The limitation is
that the graph was able to detect only pairwise anomalies, in which it compares the pre-
sent rule with preceding rules but not with succeeding rules.

In Benelbahri and Bouhoula (2007) the authors proposed an algebraic mathematical
method for detecting anomalies. They also proposed a new language for writing rules
by designing a compiler to parse the rules; however, the resolution was not addressed in
that study. The authors in Muhammad et al. (2006) proposed pair-wise anomaly detec-
tion. Here, one rule is compared with another rule and the process takes action based on
the relationship of the two rules. A semi-automated detection and resolving strategy of
firewall anomalies was proposed that followed a default-deny policy for the packets that
fell into the conflict space. The default-deny policy might increase the availability loss,
although the policy might reduce the security risk. The author in Alex (2009) designed a
tool to guide the user in entering new rules into existing firewalls without creating con-
flicts, but detection or resolving already-existing anomalies was not addressed.

The authors in Pozo et al. (2008) were able to detect global anomalies by dividing the
rules into groups so that the administrator could easily address the smaller groups inde-
pendently. The ruleset was initially converted to a potential conflict graph (PCG). Then,
the PCG was divided into independent clusters of inconsistence rules (ICIR). However,
the resolver was manual.

The authors in Liang et al. (2014) developed a firewall anomaly detector to identify
shadowing and correlation using ordered binary decision trees. The authors provided a
formal model to detect global conflicts in firewall policies. The model was able to detect
both local and global conflicts efficiently. The ordered binary tree was able to reduce
false positives. This study did not present any anomaly resolver.

“Firewall Anomaly Management Environment (FAME)” (Hu et al. 2012). was able
to detect and resolve the anomalies in firewall policies both locally and globally. The
authors used a “risk value-based combination algorithm” to reorder the rules semi-auto-
matically to eliminate Shadowing, Generalization, and Correlation anomalies. FAME
also had a redundancy viewer to eliminate redundancies in firewall policies; however,
the viewer was addressed in a separate phase. In Hu et al. (2012), the rule space was ini-
tially divided into disjoint segments, and then a mapping was conducted to discover con-
flicted and non-conflicted segments. Once this mapping was performed, semi-automatic
methods were used to reorder the rules to resolve the conflicts. The authors employed a
“Common Vulnerability Scoring System (CVSS)-based Risk Level” to decide whether to
Allow or Deny packets that belonged to a conflicted segment. The only means of resolv-
ing the conflicts or anomalies accidentally created by administrators was to follow tech-
niques to reorder the rules. Permutation and Greedy algorithms were used in Hu et al.
(2012) to select the best order of rules, which can avoid conflicts. However, although the
permutation method produces the best order of rules, it is much too time consuming.
Conversely, the greedy method was quick but might not produce the best-ordered result.

In the literature, additional works that have addressed firewall rule anomaly detec-
tion include Abbes et al. (2008), Ben Neji and Bouhoula (2011), Bouhoula et al. (2008),

Page 6 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Matsumoto and Bouhoula (2008), Saadaoui et al. (2014). In Abbes et al. (2008) the
authors proposed rule anomaly detection based on a tree structure that represented the
rules. An inference system was used to construct the tree and to identify the anoma-
lies. The tree structure helped to find the anomalies more quickly. However, no resolving
techniques were proposed.

In Bouhoula et al. (2008), the authors proposed an efficient means of detecting fire-
wall anomalies using a matrix-based method and also proposed methods to rectify those
anomalies. In Matsumoto and Bouhoula (2008), the authors depicted the importance of
security policy, and they proposed a method to verify the firewall rules against the pol-
icy. The work proposed in Saadaoui et al. (2014) is similar recent work that successfully
addressed detection of all of the types of anomalies by dividing them into two categories:
superfluous and conflicting. The authors used a two-dimensional grid in the detection
phase, which was a simple and efficient detection technique. The authors of Saadaoui
et al. (2014) also proposed a resolving method that would remove the shadowed rules; in
the case of correlated rules, they inserted a new rule. However, this approach had limi-
tations; occasionally, removing rules could violate the security policy, whereas adding
rules increased the ruleset size.

In summary, several issues must be addressed in the case of packer-filter firewall
anomaly mitigation. There is a need to investigate automated anomaly resolution tech-
niques that can help to minimize human error. Another important issue is security
policy conformation even after resolution of existing anomalies. There is also a need to
research optimizing ruleset size by eliminating redundant rules.

Contributions of this study

One solution to avoiding induced anomalies of the firewall rules and removing any
redundant rules is reordering. Finding the best order of rules among all possible orders
is a combinatorial optimization problem. To date, no one has studied the application of
Ant Colony Optimization as a metaheuristic search to reorder packet-filter firewall rules.

This study proposes a framework with the following features:

1.	 Introduces a concept called “TF” to establish a relationship between the security pol-
icy and the anomaly resolver. TF helps in conforming to the security policy even after
reordering.

2.	 Proposes methods to automate the anomaly mitigation process with the help of
modified “Action Constraint Generation” strategies.

3.	 Applies ACO to generate an optimized set of ordered rules, which not only removes
anomalies but also eliminates redundancy in this process.

4.	 Introduces an algorithm that adaptively handles a newly entered rule to avoid run-
ning the tool for the entire ruleset and hence save much time.

The proposed system will be called the ACO-based Firewall Anomaly Mitigation
Engine (ACOFAME). The results of experimentation conducted on several rulesets
have proved that our approach has improved firewall performance when measured with
important evaluation parameters such as the number of conflicts resolved, availability
loss and security risk.

Page 7 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Anomaly detection methodology
A packet-filter firewall works on five fields. Each field has its range of values and can be
considered operating in a five-dimensional continuous packet space. Manual identifica-
tion of anomalies is very difficult. Several researchers have proposed methodologies to
identify anomalies (Hu et al. 2012; Liang et al. 2014; Hari et al. 2000; Alex 2009; Pozo
et al. 2008; Yuan et al. 2006; Benelbahri and Bouhoula 2007; Al-Shaer and Hamed 2004a,
b). A BDD-based segmentation approach was used in Hu et al. (2012); the firewall-rule
packet space was represented in the form of “Segmentation and Grid.”

Segmentation

Figures 2, 3 and 4 shows the process of segmentation for sample rules R1, R2, R4, R7,
and R9 selected from Table 2. Each rectangle represents a rules packet space. White
space represents that the action of that rule is “Allow,” and Grey space represents that
the action of that rule is “Deny.” Figure 4 shows the final segments formed for the rules
considered. Each segment is either a non-overlapping segment or a non-conflicting or
conflicting segment.

In this work, a BDD-based segmentation technique proposed in Hu et al. (2012) is
used to segment the rules into disjoint segments. This segmentation helps to identify

Fig. 2  Example rule space

Fig. 3  Overlapped rule space

Fig. 4  Formation of Segments from the rule space

Page 8 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

clearly the boundary between intersected and non-intersected packet space. The seg-
mentation process is depicted in Algorithm 1.

A disjoint segment set S = {s1, s2 . . . , sn} must satisfy the following two properties:

1.	 Any pair of segments of S must be disjoint; i.e., si ∩ sj �= φ for i, j ∈ 1 to n and i �= j;

2.	 Any two packet spaces, p ∈ si, where p �= p′, must match with an exact set of rules.

Algorithm 1  Segmentation of given ruleset R into set of disjoint segments S (Hu et al.
2012)

Anomaly identification using grid representation

In a ruleset, one overlapping segment can be associated with two or more rules, and
one rule can be associated with one or more segments. To ease further operation and
represent the anomalies more precisely, “grid representation,” that is, a two-dimensional
matrix representation, is generated by using ruleset R and set of segments S. The Grid
representation of the ruleset provided in Table 2 is shown in Table 3.

In Table 3, “A” indicates that the action is Allow, and “D” indicates that the action is
Deny. From the grid representation, one can obtain a clear view of exactly where anom-
alies are occurring. For example, segments 4, 5, 8, 9, 13, 14, 17 and 18 in Table 3 are
non-overlapping segments and all of the remaining segments are overlapping. Among
the overlapping segments, 1 and 2 are non-conflicting segments, and 3, 6, 7, 10, 11, 12,
15 and 16 are conflicting segments. An anomaly can be easily identified based on the
grid shown in Table 3. For example, rule 9 is shadowed by rule 4 because all of the sub-
spaces covered by rule 9 are also covered by rule 4 but with a different action, and rule 4
contains additional subspaces that are not covered by Rule 9. Therefore, rule 9 is a subset
of Rule 4 with a different action and hence shadowed. From the grid representation, rule
9 is a generalized rule of rule 8 because all of the subspaces covered by rule 8 are also
covered by rule 9 but with different actions, and Rule 9 covers additional subspaces that

Page 9 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

are not covered by rule 8. From the grid, a correlation can be identified between rules 5
and 6 because they share a common segment (subspace) s7 having different action. Fur-
thermore, there is a segment covered by rule 5 and not covered by rule 6 and vice versa.
Redundant rules can also be identified from the grid. For example, “Rule 1” is redundant
because, even when rule 1 is removed, the action taken by the firewall for a packet falling
in the segment space of rule 1 does not change. However, redundancy depends upon the
order of the rules; hence, redundant rules cannot be removed at this stage from the grid
but can be removed only after the reordering phase.

Anomaly resolving
Some earlier works related to “packet-filter firewall policy anomalies,” which addressed
the detection stage, and includes the following references (Liang et al. 2014; Hari et al.
2000; Alex 2009; Pozo et al. 2008; Yuan et al. 2006; Benelbahri and Bouhoula 2007; Al-
Shaer and Hamed 2004a, b; Muhammad et al. 2006). A few works also addressed the
resolving stage. Hari et al. (2000) proposed a “fast detect” framework that was able to
detect and resolve correlation conflicts by reordering the rules. However, the authors
were only able to address individual local conflicts; they were unable to address global
conflicts. The authors used resolve filters to break circular loops formed by rules that
could not be resolved by reordering. “Fast detect” is not suitable with present firewalls
because it was designed based on two-tuple firewalls. The authors of Muhammad et al.
(2006) tried to resolve the conflicts by only following a default deny policy, that is, by
denying all of the packets that are in the conflict space. Hu et al. (2012) addressed the
issue of both local and global conflict detection and resolution. To resolve the anoma-
lies, “Action Constraints” were generated for the conflicted segments, and reordering
of rules was performed based on these action constraints. In the process of identify-
ing the best order of rules, a combination of greedy and permutation algorithms was
proposed.

Table 3  Grid representation of example ruleset of Table 2

Page 10 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Action constraint generation

In Hari et al. (2000), the authors defined a semi-automatic mechanism to generate action
constraints. The authors introduced a “Risk Level (RL)” to each conflicted segment,
which depended upon the “Risk Value.” “Risk Value (RV)” was calculated for every vul-
nerability in the network using the CVSS (Mell et al. 2007) score and Importance Value
(IV) as shown in Eq. 1.

The RL for a conflicted segment is calculated as shown in Eq. 2, which is nothing but
the accumulated RVs of vulnerabilities belonging to that segment.

where CS denotes conflicting segment, V(CS) is set of Vulnerabilities in CS, CVSS(v) is
CVSS of Vulnerability v, IV (s) is IV of a Service “S,” and α is a factor assigned by the
administrator to control the dependency of RL on the vulnerabilities in CS. The adminis-
trator also assigns IV to a service based on the importance of the service.

The CVSS is an open framework designed for calculation of the Risk involved in an
organization. CVSS uses several metrics as discussed in Mell et al. (2007) for calculat-
ing vulnerability score. There are different strategies for generating action constraints
as proposed by Hu et al. (2012), which are shown in Table 4. The administrator can
define customized threshold values of RL called upper limit (UL) and lower limit (LL).
For a conflicted segment, if the obtained RL is greater than UL or less than LL, then the
action constraint is generated automatically. The action constraint follows an automatic
“Deny-Override” strategy when the RL is greater than the UL and an “Allow-Override”
strategy if RL is less than the LL. However, when the RL is in-between LL and UL, a
manual strategy selection is used. This study proposes an automatic action-constraint
strategy.

Rule reordering and redundancy removal

Once Segmentation, Conflict Group Formation, and Action Constraint Generation is
performed, based on the results, the administrator can manually change the order of the
rules to eliminate conflicts. However, changing the order of the rules manually will be a
tedious task when the size of the policy is huge. Therefore, an automated mechanism is
to be used to reorder the rules by segment sets and their action constraints. The authors

(1)Risk Value (RV) = CVSS(v)× IV (s)

(2)RLCS =

∑

v∈V (CS) RV

α × |V (CS)|

Table 4  Action constraint generating strategies (Hu et al. 2012)

Strategy Action constraint

Deny-override Action = “deny”

Allow-override Action = “ALLOW”

Recency-override Action of newest rule

Specificity-override Action of most-specific rule

High-majority-override Action of rules with greater number than opposite rules

First-match-override Action of first-matched rule

High-authority-override Action of rule with highest authority

Page 11 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

in Hu et al. (2012) used a combination of greedy and permutation to find the best possi-
ble order to resolve the conflicts. However, there is a limitation in this approach; an opti-
mal solution might not be obtained in all of the cases. This study proposes to use ACO
to find the best possible order of rules, which can produce more-optimal results. FAME
(Hu et al. 2012) also proposed a separate method to remove redundancy. However, it is
a semi-automated approach. In our work, redundancy is automatically addressed by the
ACO itself without the need of a separate process.

ACOFAME
This work proposes adaptive and automated detection and resolution of firewall policy
anomalies. The proposed modifications include the following:

(a)	 The “Action Constraint Generation” is modified to include a TF for a source IP
address to establish a relationship between security policy and the resolver, which
increases the chance of security policy conformation after resolving and reordering.

(b)	 “Action Constraint Generation” is automated.
(c)	 ACO is used to address reordering and redundancy removal without the need for

an additional redundancy removal phase.
(d)	 Anomaly detection and resolution for a newly added rule can be quickly performed

adaptively, which can save much time compared with running the tool for n + 1
rules.

“Trust Factor”‑based and automated “Action Constraint Generation”

The authors in Hu et al. (2012) used the CVSS score and IV for calculating RL of a con-
flicting segment. The CVSS score and IV are both defined from the organization’s asset,
i.e., only the destination address of a packet. Considering destination system parameters
alone when generating “Action Constraints” will increase the availability loss, which indi-
cates that the firewall will drop packets that are supposed to be allowed. Assume that the
host “192.168.124.125” is an internal server with a high-RV, for example, 9 out of 10. An
administrator adds Rule 97 to provide remote access to trusted host “172.19.23.22” with-
out knowing about rule 4 as shown in Table 5. An anomaly exists; rule 97 is shadowed
by rule 4; hence, remote access from the trusted host will be denied. Figure 5 shows the
segments formed by the two Rules 4 and 97. There exists a conflict as shown in segment
2. Because the Risk calculation is based only on the destination address, although the
administrator trusts the source host, his intention cannot be satisfied. Segment 2 denies
the packet space as shown in Fig. 6 based on the action constraint generated by FAME.

Based on the security policy, a TF is allocated to all of the sources that are trusted by
the administrator to obtain the intended behavior from the firewall. TF is used as one of
the parameters in computing the new RL of a conflicted segment RL′CS as shown in Eq. 3.
The TF can be between 0 and 1; “1” indicates a highly trusted source, and “0” indicates
an untrusted source.

(3)RL
′
CS =

∑

(

aS ,ad

)

∈CS

(

RV
′
(

ad

)

× (1− TF(aS))
)

N (CS)

Page 12 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

where CS is conflicting segment, N(CS) is Number of (aS, ad), source and destination
pairs, that belongs to CS, TF(aS) is TF of Source as, and RV ′(ad) is total risk associated
with Destination ad as follows:

This work proposes a new and automated algorithm to generate action constraints
that use five of the strategies shown in Table 4. The associated pseudocode is shown in
Algorithm 2.

(4)RV
′(ad) =

∑

v∈V

(

ad

) RV

|V (CS)|

Table 5  Sample ruleset

Rule Protocol Source IP Source port Destination IP Destination port Action

4 * * * 192.168.124.125 * Deny

. … … … … … …

. … … … … … …

97 TCP 172.19.23.22 * 192.168.124.125 22 Allow

Fig. 5  Segmentation of rule 4 and rule 97

Fig. 6  Segmentation after action constraint generation based on FAME

Page 13 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

The Modified RVs (RV ′) shown in Table 6 are calculated using Eq. 4, which uses Risk
Value RV. The RV is calculated using Eq. 1, uses the CVSS framework suggested by Mell
et al. (2007) and Hu et al. (2012). Table 7 shows that the TFs assigned by the administra-
tor for the scenario depicted in Fig. 1 are deduced from the security policy of Table 1.

Five strategies from among those suggested in Table 4 were used to automate action
constraint generation completely as shown in Algorithm 2. When the RL is above the
higher level, “Deny-Override” is chosen as the “Action Constraint.” When the RL is
below the lower level, “Allow-Override” is chosen. Otherwise, Recency-Override with
First-Match Override will come into effect. Therefore, the action of the first rule among
the recent ones in that conflicted segment will be chosen. Here, recency number n is
automatically obtained from the parameter “Recency Interval,” which will be set by the

Table 6  List of organization IT assets and their risk values

Destination IP address

10.12.32.21 4

10.12.32.22 6

10.12.32.23 10

10.12.32.24 9

10.12.32.25 10

10.12.32.26 10

Page 14 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

administrator once as part of the organization’s policy before running ACOFAME. The
value n is the serial number of the first rule among the set of recent rules. The recency
strategy helps to decide the action to be taken in case of conflict. Whenever there is a
new security need, the administrator will add a new rule based on that need, but there is
a chance that the new rule might come into conflict with the earlier rules. In such a situ-
ation, the newly entered rules obviously must take priority over the earlier rules. If there
are no such rules that fall under the recent rules, then specificity-override will be cho-
sen. Therefore, the action selected for that conflicted segment is that of the most specific
rule among the rules covered in that segment. These strategies were proved promising
with the help of result analysis, which will be discussed later.

By employing the proposed TF-based action constraint generation for the example
scenario shown in Table 5, if the TF assigned to the trusted source IP of rule 97 is 1, then
the new Risk Level RL′ for the conflicted segment s2 will be 0. Therefore, from the pro-
posed algorithm, the action constraint for segment s2 will be “Allow” as shown in Fig. 7.
The administrator’s wish to allow a trusted host “172.19.23.22” of rule 97 is now satis-
fied, and the availability loss is reduced. Table 8 shows the action constraint generated by
the proposed algorithm for the grid shown in Table 3. The last row of Table 8 shows the
Strategies applied by Algorithm 2 for the given conflicted segments. The ‘–‘indicates that
there is no conflict in that segment.

Motivation for applying ACO

The ACO algorithm is a metaheuristic (Dorigo and Caro 1999)-based optimization
approach designed based on a biological ant system. The Swarm Intelligence approach

Table 7  List of source addresses and their trust factors

Source IP address

192.168.5.64 0.9

192.168.15.253 0.9

10.44.128.112 0.9

172.19.55.121 0.6

172.19.55.124 0.6

172.19.55.122 0.1

172.19.55.123 0.1

10.45.48.34 0.1

172.19.64.221 0

Fig. 7  Segmentation after action constraint generation based on proposed algorithm

Page 15 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Ta
bl

e 
8 

A
ct

io
n

co
ns

tr
ai

nt
s

ge
ne

ra
te

d
by

 p
ro

po
se

d
ap

pr
oa

ch
 fo

r t
he

 g
ri

d
sh

ow
n

in
 T

ab
le

 3

AO
 a

llo
w

 o
ve

rr
id

e,
 D

O
 d

en
y

ov
er

rid
e,

 R
FM

O
 re

ce
nc

y
w

ith
 fi

rs
t m

at
ch

 o
ve

rr
id

e

Se
gm

en
ts

A
ct

io
n

co
ns

tr
ai

nt
s

A
A

A
A

A
A

A
D

A
D

A
D

A
A

A
D

A
D

St
ra

te
gy

 a
pp

lie
d

by
 A

lg
or

ith
m

 2
–

–
A

O
–

–
A

O
A

O
–

–
D

O
A

O
RF

M
O

–
–

A
O

RF
M

O
–

–

Page 16 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

is inspired by nature (Bonabeau et al. 1999). It primarily uses two factors, i.e., the phero-
mone and heuristic factors, as an aid in finding a solution. It was initially introduced
by Dorigo et al. (1991, 1996), Dorigo (1992) at the beginning of the 1990s. They used
ACO to find an optimal path from a source to a destination through a group of nodes
connected by multiple paths. The authors in Dorigo and Caro (1997) used ACO to
solve the Traveling Salesman Problem (TSP), which is to find the best order of cities
to travel to, minimize the total distance traveled. The distance between pairs of cities
is used as a heuristic factor. To work with ACO, one must convert the given problem
into a two-dimensional mesh. The authors in Liangjun et al. (2008), Jensen and Shen
(2003), Majdi and Derar (2013) proposed a Rough set attribute reduction using an ACO-
based approach to reducing the number of attributes in a dataset. They used Rough set
Significance as a heuristic factor that was calculated when needed. The authors of Ravi
Kiran Varma et al. (2015) proposed a novel ACO search for global best attributes by con-
sidering Rough Set-based attribute significance as the heuristic factor for Ant search.
Apart from these examples, ACO is also used in solving many NP-Hard and combinato-
rial optimization problems. Some of these include vehicle traffic (Jabbarpour et al. 2014),
University course timetabling (Socha et al. 2002), Multicast Routing (Zhang and Liu
2011), Stock Market Prediction (Binoy et al. 2011), and Bankruptcy Prediction (Nigib
et al. 2013). The authors of Broderick et al. (2014) employed ACO to solve a Software
Project Scheduling problem. The heuristic factor changes based upon the type of prob-
lem. ACO was also used for feature selection in the signal-processing domain in Turker
et al. (2014). The work in Sreelaja and Vijayalakshmi (2010) proposed an ACO-based
packet-filter firewall to overcome the drawbacks of the Neural Network, Binary search,
and sequential search approaches.

This work proposes an ACO-based reordering algorithm by taking conflict resolving
score (CRS) as a heuristic factor, which can be calculated as and when needed. The prob-
lem can be converted into a graph as shown in Fig. 8, in which each node is nothing but
the firewall rule.

After converting the problem into a two-dimensional mesh network, artificial ants are
released at random nodes. The ants will traverse from one node to another by selecting
next node at each step using probability calculated from two factors that are a heuristic
factor and pheromone factor using Eq. 5 (Dorigo and Thomas 2004).

i is present node, j is next node, τij is pheromone concentration on branch ij, ηij is heu-
ristic factor calculated for branch ij, and Nk

i is remaining nodes that are not traversed by
ant k.

The heuristic factor depends upon the type of problem. For example, for the TSP, the
heuristic factor is calculated using the formula shown in Eq. 6.

where dij is the distance between i and j.

(5)pkij =







ταij ×η
β
ij

�

l∈Nk
i
ταil×η

β

il

if j ∈ Nk
i

0 otherwise

(6)ηij = 1/dij

Page 17 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

The parameters α and β are used to control the importance of heuristic and pheromone
factors. If α = 0, the ants will select the next city closest to them, which turns ACO into
simple greedy algorithms. If β = 0, only pheromone amplification will occur. Initially,
the pheromone concentration will be same on all branches and hence in the first itera-
tion the movement of ants completely depends upon the heuristic factor. After every
iteration, the pheromone is updated on the branches that are traversed and evaporated
on all remaining branches that are not traversed. From the second iteration onwards,
because of the varied pheromone concentration, the ants will start converging toward
an optimal path, giving a common optimal solution after several iterations. The formula
used to update and evaporate pheromones is shown in Eqs. 7 and 8, respectively.

Lk is the total distance of the path traversed by ant k, and ρ is the evaporation rate.

ACO heuristic for the problem domain and the resolver algorithm

After determining the action constraints, the goal is to find the best possible ordered
combination of rules that produces the highest CRS. The CRS is nothing but the count of
segments that satisfy the action constraints, which will be used in calculating heuristics
for ACO as shown in Eq. 9. A segment is considered satisfied if the action constraint
generated for that segment and the action of the first rule under that segment are the
same. Otherwise, the segment is considered not satisfied.

For example, in the grid representation shown in Table 3, the action constraint gener-
ated for segment 7 is “ALLOW,” which was shown in Table 8. For the initial order of rules
shown in Table 3, segment 7 is considered not satisfied because the first vertical sub-
space under that segment 7 is Rule 5, and its action is “DENY.” The CRS for this initial
order is 14, as shown in Table 9, because 14 segments were satisfied and 4 segments were
unsatisfied. The heuristic factor η used for this problem domain is shown in Eq. 9:

(7)τij = (1− ρ) · τij +

m
∑

k=1

�τ kij

(8)�τ kij =

{ q
Lk

if ant k used edge ij in the tour

0 otherwise

Fig. 8  Sample ACO Graph of proposed approach

Page 18 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Ta
bl

e 
9 

A
n

ex
am

pl
e

fo
r C

RS
 c

al
cu

la
ti

on
 fo

r t
he

 o
rd

er
 o

f r
ul

es
 1

–1
4

(P
ol

ic
y

1)
 o

f T
ab

le
 2

A
al

lo
w

, D
 d

en
y

Se
gm

en
ts

A
ct

io
n

co
ns

tr
ai

nt
s

ge
ne

ra
te

d
by

 A
lg

or
ith

m
 2

 fo
r P

ol
ic

y
1

A
A

A
A

A
A

A
D

A
D

A
D

A
A

A
D

A
D

A
ct

io
n

in
 fi

rs
t v

er
tic

al
ly

 a
pp

ea
rin

g
bl

oc
k

in
 th

e
se

gm
en

ts
 o

f T
ab

le
 4

A
A

A
A

A
A

D
D

A
A

A
A

A
A

A
A

A
D

Sa
tis

fie
d

(S
)/

no
t s

at
is

fie
d

(N
S)

S
S

S
S

S
S

N
S

S
S

N
S

S
N

S
S

S
S

N
S

S
S

Page 19 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

tk is the set of rules traversed by ant k, i is the last rule of tk , j is the next rule to be tra-
versed, and CRS(tk), the number of segments satisfied, is calculated using Eq. 10:

Stk is the set of satisfied segments associated with tk

ACO algorithm applied to reorder the rules to resolve anomalies

The rules are copied into R′ from R according to the output of Algorithm 3.

(9)
ηij

k =
CRS

(

tk ∪ j
)

− CRS
(

tk
)

Segments covered by (tk ∪ j)

(10)CRS(tk) =
∣

∣Stk

∣

∣

Page 20 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Algorithm 3 shows the rule reordering process. imax number of ants are released in
each iteration for amax iterations. In each iteration, every ant will find its own solution.
For this problem, each solution is nothing but a possible order of rules. For the first iter-
ation, ants are released randomly because there will not be any influence of pheromone
in the first iteration. Every ant finds a solution, an order of the rules by traversing each
rule based on the selection probability. In this algorithm, the pheromone is updated for
every ant’s solution so that the pheromone concentration increases toward the possible
best solution. For each iteration, the iteration’s best ant solution is saved, which is noth-
ing but the solution with the highest CRS. The pheromone is evaporated at the end of
each iteration. Finally, after the last iteration, the global best solution is determined.

Adaptive detection and resolution

This work also proposes a mechanism that adaptively reorders the existing rules when an
administrator enters a new rule even after running the ACOFAME tool. The advantage
is that much time will be saved when compared with running the tool for n + 1 rules
again. The algorithm for adaptive reordering is shown in Algorithm 4. The input for this
algorithm is the resolved and reordered ruleset after applying ACOFAME. When a new
rule is entered by the administrator, it will be compared against the existing reordered
ruleset R′ one by one, sequentially. The following are the possible situations.

Case 1: Subset and different action  If the new rule r is a subset of the compared rule
and the action of the compared rule and the new rule are not same. In this case, to make
an appropriate decision concerning whether to “Allow” or “Deny,” an Action Constraint
will be generated using Algorithm 2. If the generated action constraint is same as that of
the new rule, then the new rule is inserted before the compared rule position in the reor-
dered ruleset and the reordered rule grid is updated. Conversely, if the generated Action
Constraint is different, then obviously the new rule will be ignored.

Case 2: Subset and same action  If the new rule r is a subset of the compared rule and
the action of the compared rule and the new rule are same. In this case, the new rule will
be a shadowed rule and redundant, and hence ignored.

Case 3: Intersection and different action  If there exists an intersection or correlation
among the new rule r and the compared rule, and the action of the compared rule and
the new rule are not same. In this case, to make an appropriate decision concerning
whether to “Allow” or “Deny,” an Action Constraint will be generated using Algorithm 2.
If the generated action constraint is same as that of the new rule, then the new rule is
inserted before the compared rule position in the reordered ruleset and the reordered
rule grid is updated.

Case 4: Intersection and same action  In this case, the new rule will not be inserted. The
“if” condition of line number 11 of algorithm 4 will fail, and the new rule is sequentially
checked with the remaining rules. Finally, if none of the cases match, then the new rule
is appended to the existing reordered ruleset.

Page 21 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Experimentation results and comparison
Lab environment and datasets

The experiments were performed on an Intel Core 2 Duo CPU 2.6 GHz with 2 GB RAM
and the Windows 7 Operating System. The free parameters used in the ACO are set to
the following values on a trial and error basis, and this set of parameters are found to
be suitable: α = 1, β = 0.01, ρ = 0.9, and q = 0.9. The initial value of the pheromone is
set to 0.5. As of now, there are no standard benchmark packet-filter firewall rules avail-
able. Five rulesets were used, named Policy 1–5, as shown in Table 10. The rulesets were
collected from college and university level campus networks. The number of anomalies
identified in each dataset is shown category-wise in Table 10. All the algorithms listed in
this paper were developed using Java SE 1.7. Java with jpcap-0.6 was used for testing and
simulation of firewall. Nping, network packer generation tool, was used to generate net-
work traffic for testing. Nessus vulnerability scanner was used in the process of identify-
ing vulnerabilities associated with the systems that belongs to the conflicted segments.

Resolved and reordered output of ACOFAME

The policies, the number of rules, the number of segments generated by the segmenta-
tion process and the time taken for segmentation are shown in Table 10 along with cate-
gories of anomalies found in each ruleset. The rules for Policy 1 are nothing but the rules
shown in Table 2. The proposed ACOFAME algorithm was used to reorder the rules for
all of the policies. The results of reordered rules and the reordered grid are shown in
Tables 11 and 12, respectively.

Page 22 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Performance evaluation parameters and comparison

The parameters that are used for evaluation and comparison of the proposed system are
availability loss, security risk, number of resolved conflicts, number of redundant rules
eliminated, and the time taken by the algorithm.

Availability loss

Availability loss (AL) Hu et al. (2012) is used to measure the effect of a firewall policy
on network availability. Availability loss occurs if the action constraint generated for a
conflicted segment is “ALLOW,” but the action taken by the firewall on that packet is
“DENY.”

AL for a particular firewall policy ruleset P, is calculated using the formula shown in
Eq. 11, which is a modified version of the availability loss equation proposed in Hu et al.
(2012).

An example calculation of Availability Loss for the ruleset shown in Policy 1 (P1):

To calculate the AL of Policy 1, the conflicted segments of Policy 1 before reordering
(Table 3) and the action constraints generated for those segments (Table 9) must be
observed. Segment 7 (S7) was the only segment in which the generated action constraint
was Allow but the performed action was Deny. In Segment 7, there is a conflict between
rule 5 and rule 6. The source IP of the conflicted segment is “10.45.48.34,” and the desti-
nation IP of the conflicted segment is “10.12.32.21.” Therefore, the source, “10.45.48.34,”
will not obtain web access to the web server; hence, availability loss occurs. From Eq. 3,

Substituting RL′(S7) in Eq. 11,

Availability Loss was calculated similarly for other rulesets (Policies 2–5). Note that
the Availability Loss after the reordering of Policy 1 with our proposed method is 0

(11)
Aℓ(P) =

∑

cs∈CS(P)·is Forced Denied

(

10− RL′(cs)
)

RL′(S7) = RV ′(10.12.32.21)(1− TF(10.45.48.34))/1

= 4(1− 0.1)/1 = 3.6

Aℓ(P1) =
∑

cs∈{S7}

(

10− RL′(cs)
)

= 10− RL′(S7) = 10− 3.6 = 6.4

Table 10  Policy-wise segments and number of anomalies

Policy
no.

No of
rules

No. of segments
generated after
segmentation

Time
taken (s)

No
of shadow
anomalies

No of
generalization
anomalies

No of
correlation
anomalies

No of
redundant
rules

Policy 1 14 18 0.016 3 1 4 2

Policy 2 35 35 0.013 7 6 3 4

Policy 3 55 64 0.064 9 8 6 6

Policy 4 171 171 0.482 29 29 8 35

Policy 5 325 344 0.846 45 54 20 49

Page 23 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

because, after reordering Policy 1, the action taken by the firewall on conflicted segment
S7 is “Allow,” and the generated action constraint is also “Allow.”

Security risk

Security Risk This parameter is helpful to measure the security risk to the organization’s
network due to the firewall policy. It is calculated as shown in Eq. 12, which is a modified
version of the security risk equation proposed in Hu et al. (2012).

An example calculation of Security Risk for the ruleset shown in Policy 1 (P1):

Conflicting segments whose first vertical action in the segments is “Allow” must be iden-
tified. From Table 3, Policy 1 has 7 conflicting segments. These segments are

For each segment of CS(P1), we must calculate RL′(cs). A sample calculation for
RL′(S3) is shown:

The packet space covered by Segment 3 is

“* 172.19.55.121 * 10.12.32.23–10.12.32.26 *”

In this packet space, there is one source, aS1, which is “172.19.55.121,” and four des-
tinations, ad 1 to ad 4, which are “10.12.32.23–10.12.32.26.” Therefore, the number of
source–destination pairs is 4. Calculation of RL′ for conflicted segment 3 (s3) using Eq. 3
is shown as an example.

By substituting pre-calculated values of RV ′ from Table 6 and TF values from Table 7,

(12)
Sr(P) =

∑

cs∈CS(P)·is Allowed

(

RL
′(cs)

)

CS(P1) = {S3, S6, S10, S11, S12, S15, S16}

RL
′
S3 =

(

RV
′
(

ad1

)

×
(

1− TF
(

aS 1

)))

+
(

RV
′
(

ad2

)

×
(

1− TF
(

aS1

)))

+
(

RV
′
(

ad3

)

×
(

1− TF
(

aS1

)))

+
(

RV
′
(

ad4

)

×
(

1− TF
(

aS1

)))

4

Table 11  Reordered output of ACOFAME (input: Policy 1)

Rule Protocol Source IP Source port Destination IP Destination port Action

1 TCP 10.44.128.112 * 10.12.32.23 23 Allow

2 * 10.*.*.* * 10.12.32.21 80 Allow

3 * 10.45.48.34 * 10.12.32.* * Deny

4 TCP 192.168.5.64 * 10.12.32.23 23 Allow

5 TCP 172.19.55.* * 10.12.32.21 80 Allow

6 * 10.*.*.* * 10.12.32.21 80 Allow

7 * 172.19.55.123 * 10.12.32.* * Deny

8 TCP 192.168.15.253 * 10.12.32.23 23 Allow

9 TCP 172.19.55.121 * 10.12.32.24 20–21 Allow

10 * 172.19.55.121 * 10.12.32.* * Deny

11 * 172.19.55.121–172.19.55.124 * 10.12.32.* * Allow

12 * 172.19.64.221 * 10.12.32.* * Deny

Page 24 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Ta
bl

e 
12

 G
ri

d
w

it
h

re
or

de
re

d
ru

le
s

re
so

lv
ed

 b
y

A
CO

S.
 n

o.
O

rd
er

1
A

2
A

A

3
D

D

4
A

5
A

A
A

A
A

6
D

D

7
D

D

8
A

9
A

10
D

D
D

11
A

A
A

A
A

A
A

A
A

A

12
D

Page 25 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

The Security Risks of other rulesets are calculated similarly.

Comparison of evaluation parameters

To prove the influence and importance of TF in reducing Availability Loss, the ALs of
reordered policies proposed by the FAME method and our method are calculated and
compared. The ALs of policies reordered with the help of the action-constraint genera-
tion methodology of FAME are provided in column 5 of Table 13. The policies show a
certain amount of Availability Loss even after reordering, whereas the ALs of policies
reordered with the help of action constraints generated based on TF are 0. Table 13 also
shows the total number of segments generated, number of conflicted segments, and
time taken for action constraint generation. It is clear that there is no availability loss
with our approach.

Table 14 shows the experimental results for all of the five policy rule sets. The second
column depicts the actual conflicts existing in each policy. The third column shows the
number of Resolved Conflicts (RC) and time taken to resolve the conflicts by the Per-
mutation method proposed by Hu et al. (2012). The fourth column shows the number of
RC and time taken to resolve the conflicts by the Greedy method proposed by Hu et al.
(2012). The fifth column shows the number of RC and time taken to resolve the conflicts
by the Combination method proposed by Hu et al. (2012). The sixth column shows the
number of RC, the time taken to resolve the conflicts, and the number of Rules Elimi-
nated (RE) automatically due to redundancy by the ACOFAME. The seventh and last
column shows the percentage of conflicts resolved and clearly indicates that ACOFAME
has outperformed FAME with respect to conflicts resolved. The values in the italics indi-
cates improvement in the results. One advantage of ACOFAME is that the redundancy

=
(10× (1− 0.6))+ (9× (1− 0.6))+ (10× (1− 0.6))+ (10× (1− 0.6))

1× 4 = 4

=
15.6

4
= 3.9

Sr(P1) =
∑

cs∈CS(P)·is Allowed

(

RL
′(cs)

)

= RL
′(S3)+ RL

′(S6)+ RL
′(S10)+ RL

′(S11)+ RL
′(12)+ RL

′(15)+ RL
′(16)

= 3.9+ 1.8+ 7.6+ 2.5+ 4.9+ 2.8+ 4.5 = 28

Table 13  Comparison of availability loss after reordering of policy rules with action con-
straints generated by FAME and ACOFAME

Policy no. Total no.
of segments
generated

No. of
conflicting
segments

Time taken for
action constraint
generation
(in music)

Availability loss
(with action
constraints
generated by FAME)

Availability loss
(with action
constraints generated
by ACOFAME)

Policy 1 18 8 <1 18 0

Policy 2 35 19 2 35 0

Policy 3 64 33 2 64 0

Policy 4 171 77 7 171 0

Policy 5 344 164 59 344 0

Page 26 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

removal and anomaly resolving is performed simultaneously as opposed to with the
FAME method, in which each is a different phase.

The results shown in Table 14 indicate that ACOFAME can resolve more conflicts than
can the other approaches. ACOFAME requires less time to resolve than the permuta-
tion approach does, but more time than do the greedy and FAME approaches. Although
ACOFAME requires more time to resolve the conflicts than FAME does, this drawback
can be neglected because the Availability Loss and Security Risk are the least compared
with other approaches.

Figure 9 is the comparative graph showing the Availability Loss for each case. Best
Case is true when the action performed by the firewall is the same as the organization’s
intended action in the respective conflicted segments. Worst Case is true when the fire-
wall “Denies” all of the packets that fall under the conflicted segments. Given Policy
is the availability loss calculated for the policy under consideration before reordering.
FAME is the availability loss obtained by the FAME algorithm (Hu et al. 2012). ACO-
FAME is the proposed work; the proposed approach is very close to the Best Case, and
the Availability Loss is much less than with existing approaches.

Figure 10 is the comparative graph showing the Security Risk for each case. Best Case
is the same as in Availability Lost, However, in calculating Security Risk, Worst Case is
true when the firewall “ALLOWS” all of the packets that fall under the conflicted seg-
ments. The Security Risk was reduced compared with the Given Policy, which is nothing

Table 14  Evaluation of ACOFAME and comparison with FAME

Policy
no.

No. of
conflicted
segments

Permutation
(Hu et al.
2012)

Greedy
(Hu et al.
2012)

Combination
(FAME) (Hu
et al. 2012)

ACOFAME
(proposed work)

% of conflicts
resolved

RC Time (s) RC Time (s) RC Time (s) RC Time (s) RE FAME ACOFAME

1 8 8 0.142 3 0.016 8 0.128 8 0.196 2 100 100

2 19 19 0.229 13 0.018 19 0.178 19 0.918 4 100 100

3 33 33 31.215 25 0.040 31 0.589 33 4.447 6 93.93 100

4 77 – ∞ 63 0.046 71 25.281 77 122.28 35 92.92 100

5 164 – ∞ 126 0.048 152 32.722 163 1754.12 49 92.68 99.39

0
50

100
150
200
250
300
350
400

AV
AI

LA
BI

LI
TY

 LO
SS

Best Case Worst Case Given Policy

FAME ACOFAME

Fig. 9  Availability loss evaluation

Page 27 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

but the original policy before reordering. However, the Security Risk is slightly higher
compared with FAME because FAME will DENY packets in cases in which the organi-
zation’s/administrator’s intention is to ALLOW, as discussed with an example in “ACO-
FAME” section.

Advantage of adaptive reordering when a new rule is appended

To evaluate the adaptive rule editing mechanism, the time taken to check one rule adap-
tively is compared with the time taken by ACOFAME to recheck the entire policy with
n + 1 rules, as shown in Table 15. The time taken for checking a rule by our adaptive mech-
anism is much smaller than the time taken for rechecking the entire policy with n + 1 rules.

Case study 1: Comparison of ACOFAME with Saadaoui et al. (2014)

Results when ACOFAME applied to the ruleset data of Saadaoui et al. (2014)

As a case study, our approach is also compared with a recent similar work proposed in
Saadaoui et al. (2014). The authors Saadaoui et al. (2014) suggested novel methods for
anomaly detection and resolution. They used a two-level approach. In level one, super-
fluous anomalies were eliminated, and in level two, conflicting rule-class anomalies were
eliminated. However, the security policy was verified only in level two, i.e., for conflict-
ing class anomalies, whereas the proposed ACOFAME builds a relationship to the secu-
rity policy and the conflict resolver through RVs and TFs.

Experiments were conducted to compare our approach with the second topology
shown in Fig. 9 of Saadaoui et al. (2014), for which both input and output rulesets are

0
100
200
300
400
500
600
700
800

SE
CU

RI
TY

 R
IS

K

Best Case Worst Case
Given Policy FAME
ACOFAME

Fig. 10  Security risk

Table 15  Advantage of adaptive rule reordering mechanism

Policy no. Time taken for adaptive
checking one rule (s)

Time taken by ACO
to recheck n + 1 rules (s)

Policy 1 0.002 0.198

Policy 2 0.002 0.987

Policy 3 0.004 4.620

Policy 4 0.006 118.57

Policy 5 0.007 1853.44

Page 28 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

available for comparison. The ruleset related to that topology is shown in Table 16. The
implementation was done on the Java platform.

Based on the security policy given and the topology, RVs for all of the destinations
were calculated based on the framework discussed in ““Trust Factor”-based and auto-
mated “Action Constraint Generation”” section. This framework is a modified version
of the CVSS framework discussed in “Action constraint generation” section. A few
assumptions were made in calculating the RVs of all of the subzones presented in Fig. 9
of Saadaoui et al. (2014) because we cannot obtain all of the details of the parameters
required to calculate RV. However, the assumptions are valid because the security pol-
icy and the administrator’s experience are considered. TFs are also assigned to all of
the subzones of the second topology provided in Fig. 9 of Saadaoui et al. (2014) based
on the security policy they provided. Any subzone can be either source or destination.
TFs are assigned to sources as shown in Table 17, and RVs are assigned as shown in
Table 18 to destinations. A TF of 0.4 (anything less than half) is assigned to 10.0.0.1 and
192.168.0.0/24 because they were mentioned in the security policy and were denied
access to subzone31. Other sources are assigned 0 because there are no data available
regarding these sources in the security policy. Concerning RVs, subzone31 was men-
tioned in the security policy. Because servers or systems in that zone are typically asso-
ciated with high risk, 8 was assigned. For all other destinations, an average risk of 5 is
assumed. Table 19 shows the output of ACOFAME, and it can be verified that the output
also conforms to the security policy mentioned in Saadaoui et al. (2014). Table 19 also

Table 16  Ruleset of Saadaoui et al. (2014)

Rule no. Action Protocol Port no. SIP DIP

R1 Accept TCP 80 10.0.0.0/16 172.16.0.22/30

R2 Accept TCP 80 10.1.0.0/16 172.16.0.22/30

R3 Deny TCP 80 192.168.0.0/23 172.16.0.22/30

R4 Deny TCP 80 10.0.0.0/15 172.16.0.22/30

R5 Deny TCP 80 192.168.0.0/24 172.16.0.22/30

R6 Deny TCP 80 192.168.1.0/24 172.16.0.22/30

R7 Deny TCP 80 10.0.0.1 172.16.0.0/16

R8 Deny TCP * 10.0.0.1 172.16.0.22/30

R9 Accept TCP 80 192.168.0.0/24 172.16.0.0/16

Table 17  List of source addresses and their trust factors assigned based on the topology
and security policy given in Saadaoui et al. (2014)

Source IP address

172.16.0.22/30 0

10.0.0.1 0.4

10.0.0.0/16 0

10.1.0.0/16 0

192.168.0.0/24 0.4

192.168.1.0/24 0

Page 29 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

shows that the ACOFAME has produced fewer rules compared with the approach of
Saadaoui et al. (2014) but at the same time conforming to the security policy.

Results when algorithm of Saadaoui et al. (2014) is applied to ruleset of Table 2 with security

policy of Table 1

The ruleset of the study listed in Table 2 was also processed through the approach pro-
posed in Saadaoui et al. (2014). At level 1, all shadowed and redundant rules are elimi-
nated. Rules 7, 8, 9, 12, and 13 were shadowed by rule 4 and hence were removed. Rule 1
was redundant with respect to rule 4; hence, rule 1 was eliminated. The output after level
1 is shown in Table 20. Java programming was used in the implementation.

The output of level-1 is now applied to level-2, the conflict rule-class anomalies
resolver. Rules 4 and 5 (5 and 6 in the actual input) were correlated, and based on secu-
rity policy, a new rule is added before rule 5 saying allow communication through the
correlated part. The final resolved output is shown in Table 21. Comparing this output

Table 18  Risk values based on security policy

Destination IP address

172.16.0.22/30 8

10.0.0.0/16 5

10.1.0.0/16 5

192.168.0.0/24 5

192.168.1.0/24 5

Table 19  Resolved output of ACOFAME for the ruleset of Table 3 of Saadaoui et al. (2014)

Original rule no. Order Action Protocol Port no. SIP DIP

R2 R1 Accept TCP 80 10.1.0.0/16 172.16.0.22/30

R4 R2 Deny TCP 80 10.0.0.0/15 172.16.0.22/30

R3 R3 Deny TCP 80 192.168.0.0/23 172.16.0.22/30

R9 R4 Accept TCP 80 192.168.0.0/24 172.16.0.0/16

R8 R5 Deny TCP * 10.0.0.1 172.16.0.22/30

Table 20  Output after level 1 of Saadaoui et al. (2014) is applied to the ruleset of Table 2
of this study

Original
order

New rule
no.

Protocol Source IP Source
port

Destination
IP

Destination
port

Action

2 1 TCP 172.19.55.* * 10.12.32.21 80 Allow

3 2 TCP 192.168.5.64 * 10.12.32.23 23 Allow

4 3 * 172.19.55.121–
172.19.55.124

* 10.12.32.* * Allow

5 4 * 10.45.48.34 * 10.12.32.* * Deny

6 5 * 10.*.*.* * 10.12.32.21 80 Allow

10 6 TCP 192.168.15.253 * 10.12.32.23 23 Allow

11 7 TCP 10.44.128.112 * 10.12.32.23 23 Allow

14 8 * 172.19.64.221 * 10.12.32.* * Deny

Page 30 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

with Table 11, which is the output of ACOFAME, Table 21, which was generated by
Saadaoui et al. (2014) has fewer rules than does Table 11, which was generated by ACO-
FAME. However, rules 1, 2, 3, 4, 6, 9, 10 in Table 21 conform to the security policy of
Fig. 1, whereas rules 5, 7, and 8 do not conform to the security policy. Therefore, with the
help of modified TF-based RV calculations and by applying the ACO search based on
the CRS, the proposed approach is feasible and has added value to existing approaches.

Conclusion and future scope
In this study, an ACOFAME was proposed that can automatically detect and resolve
packet-filter firewall anomalies. A relationship between the Security Policy and the
resolver was established by introducing the concept of TF. The TF-based Action Con-
straint Generation has reduced the Availability Loss and increased the chance of the
resolved ruleset conforming to the security policy. The bio-inspired Ant Colony Opti-
mization algorithm proved successful in finding the best possible reordering of firewall
rules, which can resolve more conflicts than existing methods can at a cost of increased
computational time for larger rule sizes. ACOFAME also eliminated the need for a
separate rule redundancy phase. The adaptive reordering technique will be helpful in
reducing the significant amount of time required to mitigate anomalies when a new rule
is appended. This research proposes a practically feasible and implementable solution
that will be of great help to administrators and organizations that maintain a packet-
filter firewall. A limitation that is worth mentioning is that the source IP address can be
subject to spoofing attacks and must be addressed separately. As a future work, other
bio-inspired optimization techniques can be considered and compared. This work can
also be extended to distributed firewalls. Furthermore, research might be warranted
to inquire about other possible Action Constraint Generation strategies such as High
Authority Override or other techniques, and situational-based usage of strategies can be
verified.
Authors’ contributions
All the authors of this article have equally contributed in planning, implementation, result analysis and approving the
final version for submission. All authors read and approved the final manuscript.

Table 21  The final resolved ruleset of input rule of Table 2 applied to the algorithm
of Saadaoui et al. (2014)

Original
order

New rule
no.

Protocol Source IP Source
port

Destination
IP

Destination
port

Action

2 1 TCP 172.19.55.* * 10.12.32.21 80 Allow

3 2 TCP 192.168.5.64 * 10.12.32.23 23 Allow

4 3 * 172.19.55.121–
172.19.55.124

* 10.12.32.* * Allow

New 4 * 10.45.48.34 * 10.12.32.21 80 Allow

5 5 * 10.45.48.34 * 10.12.32.* * Deny

6 6 * 10.*.*.* * 10.12.32.21 80 Allow

10 7 TCP 192.168.15.253 * 10.12.32.23 23 Allow

11 8 TCP 10.44.128.112 * 10.12.32.23 23 Allow

14 9 * 172.19.64.221 * 10.12.32.* * Deny

Page 31 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Author details
1 MVGR College of Engineering, Vizianagaram, AP, India. 2 Andhra University College of Engineering, AU, Visakhapatnam,
AP, India. 3 University College of Engineering, JNTU Kakinada, Kakinada, AP, India.

Acknowledgements
The authors would like to thank the anonymous reviewers whose valuable comments and suggestions helped to
improve the quality of this manuscript.

Competing interests
All the authors of this article declare that we do not have any competing interest of any kind.

Received: 27 February 2016 Accepted: 1 June 2016

References
Abbes T, Bouhoula A, Rusinowitch M (2008) An inference system for detecting firewall filtering rule anomalies. In: Pro-

ceedings of the 2008 ACM symposium on applied computing (SAC), Fortaleza Ceara, Brazil
Alex XL (2009) Firewall policy verification and troubleshooting. Comput Netw 53(2009):2800–2809
Al-Shaer E, Hamed H (2004) Discovery of policy anomalies in distributed firewalls. In: IEEE INFOCOM 04, vol 4, pp

2605–2615
Al-Shaer E, Hamed H (2004b) Modeling and management of firewall policies. IEEE Trans Netw Serv Manage 1(1):2–10
Ben Neji N, Bouhoula A (2011) Towards safe and optimal filtering rule reordering for complex packet filtering. In: Proceed-

ings of the 5th international conference on network and system security (NSS ‘11), Milan, Italy
Benelbahri M, Bouhoula A (2007) Tuple based approach for anomalies detection within firewall filtering rules. In: 12th

IEEE symposium on computers and communications, Aveiro, pp 63–70
Binoy BN, Mohandas V, Sakthivel N (2011) Predicting stock market trends using hybrid ant-colony-based data mining

algorithms: an empirical validation on the Bombay Stock Exchange. Int J Bus Intell Data Mining 6(4):362–381
Bonabeau E, Dorigo M, Theraulez G (1999) Swarm intelligence, from natural to artificial systems. Oxford University Press,

New York
Bouhoula A, Trabelsi Z, Barka E, Benelbahri M-A (2008) Firewall filtering rules analysis for anomalies detection. Int J Secur

Netw 3(3):161–172
Broderick C, Soto R, Franklin J, Eric M, Fernando P (2014) A max–min ant system algorithm to solve the software project

scheduling problem. Expert Syst Appl 41(15):6634–6645
Dorigo M (1992) Optimization, learning and natural algorithms. Politecnico di Milano, Milan
Dorigo M, Caro DG (1997) Ant colony algorithm for the travelling salesman problem. BioSystems 43(2):73–81
Dorigo M, Caro DG (1999) Ant colony optimization meta heuristic. In: Corne D, Dorigo M, Glover F (eds) New ideas in

optimization. Mc Graw Hill, Maidenhead, pp 11–32
Dorigo M, Thomas S (2004) Ant colony optimization. MIT Press, Cambridge
Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical Report 91-016. Dipartimento di

Elettronica, Politecnico di Milano, Milano
Dorigo M, Maniezzo V, Colorni A (1996) The ant system, optimization by a colony of cooperating agents. IEEE Trans Syst

Man Cybern Part B 26(1):29–41
Hari A, Suri S, Parulkar G (2000) Detecting and resolving packet filter conflicts. In: INFOCOM 2000, Tel Aviv, pp 1203–1212
Hu H, Ahn G-J, Kulkarni K (2012) Detecting and resolving firewall policy anomalies. IEEE Trans Dependable Secure Com-

put 9(3):318–331
Jabbarpour M, Malakooti H, Noor R, Anuar N, Khamis N (2014) Ant colony optimisation for vehicle traffic systems: applica-

tions and challenges. Int J Bioinspired Comput 6(1):32–56
Jensen R, Shen Q (2003) Finding rough set reducts with ant colony optimization. In: Proceedings of the 2003 UK work-

shop on computational intelligence, pp 15–22
Liang X, Xia C, Jiao J, Hu J, Li X (2014) Modeling and global conflict analysis of firewall policy. Commun China

11(5):124–135
Liangjun K, Zuren F, Zhigang R (2008) An efficient ant colony optimization approach to attribute reduction in rough set

theory. Pattern Recogn Lett 29:1351–1357
Majdi M, Derar E (2013) Ant colony optimization based feature selection in rough set theory. Int J Comput Sci Electron

Eng 1(2):244–247
Matsumoto S, Bouhoula A (2008) Automatic verification of firewall configuration with respect to security policy require-

ments. In: Corchado E, Zunino R, Gastaldo P, Herrero Á (eds) Advances in soft computing, vol 53. Springer, Berlin, pp
123–130

Mell P, Scarfone K, Romanosky S (2007) A complete guide to the common vulnerability scoring system version 2.0. Forum
of Incident Response and Security Teams (FIRST). www.first.org

Muhammad A, Syeda N, Latifur K, Thuraisingham B (2006) Detection and resolution of anomalies in firewall policy rules.
In: Damiani E, Liu P (eds) Data and application security. LNCS. Springer, Berlin, Heidelberg, pp 15–29

Nigib S, Arun N, Ravi V (2013) An ant colony optimisation and Nelder–Mead simplex hybrid algorithm for training neural
networks: an application to bankruptcy prediction in banks. Int J Inf Decis Sci 5(2):188–203

Pozo S, Ceballos R, Gasca R (2008) Fast algorithms for consistency based diagnosys of firewall rule sets. In: 3rd interna-
tional conference on availability, reliability and security, Barcelona, pp 229–236

Ravi Kiran Varma P, Valli Kumari V, Srinivas Kumar S (2015) A novel rough set attribute reduction based on ant colony
optimization. Int J Intell Syst Technol Appl 14(3/4):330–353

"http://www.first.org"

Page 32 of 32Penmatsa et al. SpringerPlus (2016) 5:1032

Saadaoui A, Youssef NB, Souayeh B, Bouhoula A (2014) Formal approach for managing firewall misconfigurations. In: IEEE
eighth international conference on research challenges in information science (RCIS), Marrakesh, Morocco

Socha K, Knowles J, Sampels M (2002) A max–min ant system for the university course timetabling problem. In: Dorigo
M, Di Caro G, Sampels M (eds) Ant algorithms. Lecture notes in computer science, vol 2463. Springer, Berlin, Heidel-
berg, pp 1–13

Sreelaja NK, Vijayalakshmi PG (2010) Ant colony optimization based approach for efficient packet filtering in firewall. Appl
Soft Comput 10(4):1222–1236

Turker TE, Serhat O, Selahattin G, Nevzat T (2014) Ant colony optimization based feature selection method for QEEG data
classification. Psychiatry Investig 11(3):243–250

Wool A (2004) A quantitative study of firewall configuration errors. Computer 37(6):62–67
Wool A (2010) Trends in firewall configuration errors: measuring the holes in Swiss chese. IEEE Internet Comput

14(4):58–65
Yuan L, Chen H, Mai J, Chuah C, Su Z, Mohapatra P, Davis C (2006) Fireman: a took kit for firewall modeling and analysis. In:

Proceedings of the IEEE symposium on security and privacy, vol 213, p 15
Zhang Y, Liu Y-C (2011) An improved ant colony optimisation and its application on multicast routing problem. Int J Wirel

Mob Comput 5(1):18–23

	Ant colony optimization-based firewall anomaly mitigation engine
	Abstract
	Background
	Firewall anomalies
	Shadowing
	Generalization
	Correlation
	Redundancy

	Related work
	Contributions of this study

	Anomaly detection methodology
	Segmentation
	Anomaly identification using grid representation

	Anomaly resolving
	Action constraint generation
	Rule reordering and redundancy removal

	ACOFAME
	“Trust Factor”-based and automated “Action Constraint Generation”
	Motivation for applying ACO
	ACO heuristic for the problem domain and the resolver algorithm
	ACO algorithm applied to reorder the rules to resolve anomalies
	Adaptive detection and resolution

	Experimentation results and comparison
	Lab environment and datasets
	Resolved and reordered output of ACOFAME
	Performance evaluation parameters and comparison
	Availability loss
	Security risk
	Comparison of evaluation parameters

	Advantage of adaptive reordering when a new rule is appended
	Case study 1: Comparison of ACOFAME with Saadaoui et al. (2014)
	Results when ACOFAME applied to the ruleset data of Saadaoui et al. (2014)
	Results when algorithm of Saadaoui et al. (2014) is applied to ruleset of Table 2 with security policy of Table 1

	Conclusion and future scope
	Authors’ contributions
	References

