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Background
To provide and distribute desired services of a road project, it is important to maintain 
road pavements in a good or at least serviceable performance over its service life. Unfor-
tunately, due to road usage and environmental effects, the pavement performance of a 
road will gradually deteriorate with time. In this situation, different maintenance actions 
have come into effect to improve the pavement performance. A substantial amount of 
cost will unavoidably incur to take these measures. However, maintenance budgets of 
government agencies are always limited towards these maintenance actions. A road 
maintenance decision is thus a trade-off that balances the improvement of pavement 
performance and the expenditures of maintenance actions over the service life of a road 
project. As a result, this decision will be carried out on the basis of an accurate knowl-
edge of modeling the change of pavement performance over the service life of a road 
project and an effective method of evaluating the rewards of maintenance actions on 
both the performance improvement and the costs (Hong and Hastak 2007; Yoon et al. 
2014).

Abstract 

Reward criterion is an important decision factor in a Markov-based road mainte-
nance optimization model. At present, average reward criterion or discounted reward 
criterion is widely used to optimize life cycle costs of road maintenance. However, the 
former one cannot reflect the time value of life cycle costs whereas the latter one tends 
to neglect the costs accumulated in the later periods over the decision horizon. In this 
regard, a weighted reward criterion is developed for the Markov-based road mainte-
nance optimization model. It measures the trade-off of the average reward and the 
discounted reward by setting the weights of two rewards. In addition, the existence 
of the optimal plan under the weighted reward criterion is proven by two numerical 
examples under two scenarios with and without considering the inflation on main-
tenance costs. Finally, comparison is conducted between the proposed criterion and 
the average reward criterion/the discounted reward criterion to check the impacts of 
discount rates and inflation rates on the optimal plan.
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The pavement deterioration of a road segment can usually be modeled by a stochastic 
process, which holds the Markovian property. The Markovian property indicates that (1) 
the state of a road segment at a future time points only depends on its current state and 
the maintenance action to be taken; and (2) the future state of a road segment is inde-
pendent of all its previous states and maintenance actions. In particular, the transition 
probability matrix describes the probabilities that a road segment will stay in the cur-
rent state or transit to another state at the next time point when it holds a certain state 
and receives a maintenance action at the current time points. Based on the pavement 
deterioration modelling, the decision of road maintenance can be figured out in terms of 
the Markov decision process (MDP). The MDP is a stochastic control process that con-
sists of the key aspects of decision epochs, states, actions, transition probabilities and 
rewards (Puterman 2005). Currently, some mathematical models have been proposed to 
manage roads and other infrastructure assets from the perspective of the MDP (Smi-
lowita and Madanat 2000; Jiang et al. 2000; Ferreria et al. 2002; Guillaumot et al. 2003; 
Madanat et  al. 2006; Zhang and Gao 2010, 2012a; Gao and Zhang 2013; Zhang et  al. 
2013; Adey et al. 2014).

In existing MDP models for road maintenance, the average reward criterion (Smilow-
ita and Madanat 2000; Madanat et al. 2006) or the discounted reward criterion (Jiang 
et al. 2000; Guillaumot et al. 2003) is the commonly used reward criterion to find the 
optimal life cycle costs. On the one hand, average reward criterion tends to minimize the 
average costs over the service life and cannot capture the time value and the influence 
of the inflation on the maintenance decisions. On the other hand, discounted reward 
criterion considers the time value so that it emphasizes on the costs in the early peri-
ods and may neglect the costs accumulated in the later periods over the service life. In 
other words, average reward criterion is suitable for a long-term decision (e.g. more 
than 50 years) whereas discounted reward criterion is appropriate for a short-term deci-
sion (e.g. 3–5 years). However, the service life of a road project in general will be about 
20–30 years, which is a time span between a short-term period and a long-term period. 
It is therefore necessary to tradeoff between the long-term average reward and the short-
term discounted reward in the decision of road maintenance (Zhang and Gao 2012b).

In this paper, we first identify the pavement performance states and maintenance 
actions. Then, a weighted reward criterion, which considers both the average reward and 
the discounted reward, is developed for the Markov-based road maintenance optimiza-
tion models over a finite decision horizon and an infinite decision horizon. The decisions 
are made at the network level to achieve a better result in terms of optimal utilization of 
resources and improved economies of scale than those made separately for individuals 
(Chi et al. 2013). In addition, two scenarios with and without considering the inflation 
over the decision horizon are taken into account in the illustrative example. The models 
using the two commonly used reward criteria and the proposed weighted reward crite-
rion are further compared under two scenarios. The observations show that the effec-
tiveness of the developed weighted reward criterion in the decision of road maintenance. 
Finally, the conclusions are given.
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Performance modeling of road pavement
Performance indicator and performance states of road pavement

Roughness is a measure of pavement surface distortion that reflects the ability of the 
pavement to provide a comfortable ride to the users. Therefore, it is viewed as a pri-
mary consideration with respect to serviceability. Its structural deficiencies and acceler-
ated pavement deterioration are largely due to vehicle operating costs, safety, comfort, 
and speed of travel. Roughness is traditionally measured by the International rough-
ness index (IRI). However, IRI has unbounded value scopes such that there is no basis 
to classify the IRI into a certain number of performance states. In this paper, the IRI 
is converted into the Ride Quality Index (RQI) to measure the pavement performance 
for bituminous pavement (Gao and Zhang 2013). Based on the RQI, the performance 
of a road segment is indicated by five classified performance states. The set of possible 
states is expressed as S = {s1, s2, s3, s4, s5}, where s1 = excellent (4 ≤ RQI ≤ 5), s2 = good 
(3 ≤ RQI < 4), s3 = fair (2 ≤ RQI < 3), s4 = poor (1 ≤ RQI < 2), and s5 = unacceptable 
(0 ≤ RQI < 1). Table 1 presents the representative value of RQI and the corresponding 
IRI of each performance state for flexible pavement (Gao and Zhang 2013).

Effects of maintenance actions

According to the maintenance administrative handbook (Highways Department 2001), 
the major road maintenance actions usually are reconstruction, resurfacing, and routine 
maintenance (e.g., crack sealing and road cleansing). In this paper, without the loss of 
generality, all road maintenance actions are standardized as the aforementioned three 
types. That is to say, it is assumed that there are three alternative maintenance actions 
for any road segment in any state: a1 = reconstruction, a2 = resurfacing, a3 = do noth-
ing. The action set A is expressed asA =  {a1, a2, a3}. Different actions have different 
effects: “Reconstruction” can improve a road segment to the excellent state; “do nothing” 
is considered to have no effect on the road performance; and the effect of a resurfacing 
work can be estimated by the reduction of IRI in Gao and Zhang (2013).

Markov‑based road maintenance decision model using weighted reward 
criterion
Decision epochs and decision periods

Decision epochs are the time points at which the decisions are made. In the MDP, the 
decision horizon is divided into M periods by decision epochs. If M is infinite, the deci-
sion is made on an infinite horizon. Otherwise, the decision is made on a finite horizon if 

Table 1 Representative RQI and  IRI values of  each performance state (Gao and  Zhang 
2013)

Performance state Range of RQI Representative  
RQI value

Representative 
IRI value (m/km)

s1 4 ≤ RQI ≤ 5 4.5 0.683

s2 3 ≤ RQI < 4 3.5 1.784

s3 2 ≤ RQI < 3 2.5 3.405

s4 1 ≤ RQI < 2 1.5 5.544

s5 0 ≤ RQI < 1 0.5 8.202
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M is finite. It is generally assumed that decisions are made annually. That is, the decision 
period is 1 year and the decision epoch is the beginning of each year. Also, we assume 
that all maintenance actions are conducted at the beginning of each year.

Weighted reward criterion

A weighted reward criterion consists of a weighted combination of the average reward 
criterion and the discounted reward criterion. The decision maker can pay more or less 
emphasis on the long-term reward versus short-term reward by changing their associ-
ated weights. Krass et al. (1992) presented a general formula as shown in Eq. (1) to cal-
culate the weighted reward in terms of the average reward and the discounted reward. 
This “weighted reward” is a convex combination of the average reward and discounted 
reward by varying their weights (Krass et al. 1992).

where CW = weighted reward; CE = average reward; CD = discounted reward; α = weight 
of average reward; β = weight of discounted reward, α + β = 1; and λ = (1 + r)−1, λ < 1, 
r = discount rate.

Optimization models based on the weighted reward criterion

In this section, an optimization model using the developed weighted reward criterion 
is first formulated to minimize the expected life cycle maintenance costs over a finite 
decision horizon. The decision variables are the distribution of road segments associated 
with each state-action pair [a state-action pair (i, a) means that a maintenance action a is 
taken when the segment is in state i] at the beginning of each year over a finite decision 
horizon. Then, an infinite-time model will be developed to extend the optimization to an 
infinite decision horizon. The results show that the model using the developed weighted 
reward criterion will converge to the model using the average reward criterion if the 
decision horizon tends to be infinite.

Finite‑time optimization model

The finite-time model seeks an optimal distribution of road segments for each state-
action pair that minimizes the expected life cycle road maintenance costs over a finite 
decision horizon. The objective functions of finite-time MDP models using the criteria 
of average reward and discounted reward are formulated as follows:

where CE(π) = the expected average life cycle costs of maintenance plan π; CD(π) = the 
expected discounted life cycle costs of maintenance plan π; ct(i, a) = maintenance cost 

(1)CW = αCE + β(1− �)CD

(2)Min CE(π)finite =
1

T

T
∑

t=1

∑

i∈S

∑

a∈A

Nct(i, a)dt(i, a)

(3)Min CD(π)finite =

T
∑

t=1

∑

i∈S

∑

a∈A

Nct(i, a)�
t−1dt(i, a)
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associated with state-action pair (i, a) on road segments in year t; dt(i, a) = distribution 
of road segments in state-action pair (i, a) at the beginning of year t; T = decision hori-
zon; N = number of road segments; S = state space; and A = action set.

According to Eq. (1), the objective function of a finite-time road maintenance optimi-
zation model using the weighted reward criterion is formulated as:

where CW(π) = the expected life cycle costs of maintenance plan π using the weighted 
reward criterion.

The decision variables of a finite-time model are the road segment distributions in 
each state-action pair at the beginning of each year, which is dependent of the initial 
state distribution. The model constraints on the road segment distribution, state transi-
tion, available budget and performance requirement are described as follows:

1. The distribution of road segments in each state-action pair should be non-negative:

2. The initial road segment distribution of state i is specified as:

where d1(i) = initial road segment distribution of state i;
3. The summation of road segment distributions in all state-action pairs at the begin-

ning of year t should be equal to 1:

4. The state transition should satisfy the following equation:

where pji(a) = the transition probability of a road segment from state j to state i when 
maintenance action a is taken;

5. Budget constraints (the average annual maintenance budget for the road):

where Bt = available budget of year t;
6. Performance requirements (the minimum RQI to be maintained for the road):

where Rt = the minimum RQI to be maintained in year t; and r(i) = the representa-
tive RQI of state i.

(4)

Min CW (π)finite = αCE(π)finite + β(1− �)CD(π)finite

=

T
∑

t=1

∑

i∈S

∑

a∈A

N

[

α
1

T
ct(i, a)dt(i, a)+ β(1− �)ct(i, a)�

t−1dt(i, a)

]

(5)dt(i, a) ≥ 0 ∀ i ∈ S, a ∈ A, t = 1, 2, . . . , T

(6)

∑

a∈A

d1(i, a) = d1(i) ∀ i ∈ S

(7)

∑

i∈S

∑

a∈A

dt(i, a) = 1 ∀ t = 1, 2, . . . , T

(8)

∑

a∈A

dt(i, a) =
∑

j∈S

∑

a∈A

dt−1(j, a)pji(a) ∀ i ∈ S, t = 2, . . . , T

(9)

∑

i∈S

∑

a∈A

Nct(i, a)dt(i, a) ≤ Bt ∀ t = 1, 2, . . . , T

(10)

∑

i∈S

∑

a∈A

r(i)dt(i, a) ≥ Rt ∀ t = 1, 2, . . . , T + 1
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Infinite‑time optimization model

In an infinite-time maintenance optimization model, the annual maintenance cost is 
constant over the service life of a road project. Given that the number of road segments 
is N and the decision horizon tends to be infinite, according to Eqs.  (2) and (3), the 
objective functions of the infinite-time models using the average reward criterion and 
the discounted reward criterion can be written as follows:

where c(i, a) = annual maintenance cost associated with state-action pair (i, a) on seg-
ments; and d(i, a) = annual distribution of road segments that are in state-action pair (i, 
a).

According to Eq.  (1), the objective function of the infinite-time model using the 
weighted reward criterion is established as follows:

It is found that Eq.  (13) is equal to the objective function of the infinite-time model 
using the average reward criterion as shown in Eq. (11). That is to say, the model using 
the weighted reward is equal to the model using the average reward when the decision 
horizon tends to be infinite. This result proves the developed weighted reward criterion 
for the finite-time model is feasible because the average reward criterion is the most 
appropriate for the infinite decision horizon.

Optimal maintenance plan

The optimal maintenance plan over the decision horizon can be denoted as a sum of πt(i, 
a) at the beginning of each year. It is calculated as follows:

where πt(i, a) =  the distribution of road segments in state i for which maintenance 
action a is taken at the beginning of year t.

(11)

Min CE(π)infinite = lim
T→∞

1

T

T
∑

t=1

∑

i∈S

∑

a∈A

Nc(i, a)d(i, a)

=
∑

i∈S

∑

a∈A

Nc(i, a)d(i, a)

(12)

Min CD(π)infinite = lim
T→∞

T
∑

t=1

∑

i∈S

∑

a∈A

Nc(i, a)�t−1d(i, a)

=
1

1− �

∑

i∈S

∑

a∈A

Nc(i, a)d(i, a)

(13)

Min CW (π)infinite = αCE(π)infinite + β(1− �)CD(π)infinite

=
∑

i∈S

∑

a∈A

N

[

αc(i, a)d(i, a)+ β(1− �)c(i, a)
d(i, a)

(1− �)

]

=
∑

i∈S

∑

a∈A

Nc(i, a)d(i, a)

(14)πt(i, a) =
dt(i, a)

∑

a∈A

dt(i, a)
∀ i, a, t
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Illustrative example
In this paper, the maintenance of Lung Cheung Road, which is a part of Route 7 Express-
way in Hong Kong, will be used as an example to illustrate the proposed decision model.

Model inputs

Initial state distributions of road segments

The total length of the selected road section is 10 km. The road has dual three-lane with 
4 m wide for each lane. Each road segment occupies three lanes and the length of each 
segment is 50 m. The area of each segment is 600 m2. The number of road segments is 
400. Road pavement is asphalt concrete. All road segments are assumed to have simi-
lar deterioration processes. The representative RQI and IRI values as shown in Table 1 
are used to calculate the average performance of road segments. The initial state distri-
butions of road segments are listed in Table 2. The initial RQI of the road section is 4. 
The annual minimum performance requirement of the road section on RQI value is 3.5, 
which is assumed to be constant over the decision horizon. The transition probabilities 
are referred to Gao and Zhang (2013) and shown in Table 3.

Costs of alternative maintenance actions

A “reconstruction” action involves the reconstruction of a subgrade layer, a sub-base 
layer, a 200 mm base course of crushed rock, and a 60 mm asphalt layer. A “resurfac-
ing” action involves the placement of a 40 mm asphalt overlay. The estimated costs for 
“reconstruction” and “resurfacing” are HK $390/m2 and HK $150/m2, respectively. The 
“do nothing” is assumed to be no expense. Table 4 shows the maintenance costs of alter-
native maintenance actions for individual road segment.

Analysis scenarios

In this paper, we analyze two scenarios with and without considering the inflation over 
the decision horizon, which is set on 30 years.

Table 2 Initial road segment distributions in each state

State s1 s2 s3 s4 s5 Total

Distribution of road segments 60 % 30 % 10 % 0 0 100 %

Number of road segments 240 120 40 0 0 400

Table 3 Transition probabilities of alternative maintenance actions

a1 a2 a3

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

s1 0.74 0.26 0 0 0 0.74 0.26 0 0 0 0.74 0.26 0 0 0

s2 0.74 0.26 0 0 0 0.74 0.26 0 0 0 0 0.82 0.18 0 0

s3 0.74 0.26 0 0 0 0.28 0.61 0.11 0 0 0 0 0.86 0.14 0

s4 0.74 0.26 0 0 0 0 0.19 0.7 0.11 0 0 0 0 0.87 0.13

s5 0.74 0.26 0 0 0 0 0 0.09 0.8 0.11 0 0 0 0 1
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  • Scenario 1 The costs and budgets are assumed to be constant over the decision hori-
zon. The costs of maintenance actions “a1”, “a2” and “a3” are shown in Table 4.

  • Scenario 2 The costs and budgets are assumed to be annually increased with an infla-
tion rate. Similarly, the annual budget available for the selected road section will be 
annually increased with the same inflation rate. The base costs and budget of first 
year are equal to the constant values in Scenario 1.

Model outputs

Optimal annual maintenance budget

In this example, we first test the maintenance budget with a gradient HK $ 10,000 to find 
the optimal annual budget with the assumption that the costs and budgets are constant 
over the decision horizon. According to the test results, the minimum required annual 
budget is HK $ 4,990,000. If the budget is lower than this value, the model cannot obtain 
a feasible solution. When the budget is increased from the minimum required budget, 
the expected life cycle cost will be steeply decreased to touch the bottom. Then, it will 
be mildly increased if the budget keeps increasing. The results are shown in Fig. 1. The 
optimal annual maintenance budget is HK $5,120,000.

Outputs of scenario 1

In scenario 1, decision models using three reward criteria are solved and compared 
when the maintenance budget is HK $5,120,000. Following results are observed:

  • When the average reward criterion is used, the annual state distributions tend to 
be steady state distributions around the beginning of the 20th year, which is almost 
same to the optimal state distributions obtained from the infinite-time model as 

Table 4 Maintenance costs of  alternative maintenance actions for  individual road seg‑
ment

Maintenance action a1 a2 a3

Maintenance cost (HK $) 234,000 90,000 0

Fig. 1 Expected life cycle cost with the change of annual maintenance budget
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shown in Table 5. That is to say, in this example, the model with a decision horizon 
over 20 years tends to be an infinite-time model. In this case, the decision using the 
weighted reward is equal to the decision using the average reward which is explained 
by Eq. (13).

  • When the discounted reward criterion is used and the discount rate is set on 5 %, 
the minimized life cycle costs are same to those obtained from the model using the 
average reward criterion. That is to say, the optimal state distributions of road pave-
ments at the beginning of each year obtained from two models are same. When the 
discount rate is a larger one, e.g. 20 %. The difference of minimized life cycle costs 
in two models are HK $25 (HK $139,460,364 and HK $139,460,389 for the average 
reward and the discounted reward), which is very tiny. The optimal state distribu-
tions are almost same. The impact of the discount rate on the optimal state distribu-
tions can be neglected if the model tends to be an infinite-time model.

  • From the above observations, it can be concluded that the optimal state distributions 
obtained from decision models using three reward criteria are same if a finite-time 
model tends to be an infinite-time model. That is to say, the average reward is pre-
ferred in the maintenance decision. Table 6 shows the optimal state distributions of 
road segments at the beginning of each year (only the year 5, 10, 15, 20, 25 and 30 
are shown to save the space) obtained from the model using the weighted reward 
criterion.

Outputs of scenario 2

In Scenario 2, the inflation is involved and tested from 1 to 10 %. Decision models using 
three reward criteria are solved and compared when the base maintenance budget at the 
beginning of first year is HK $5,120,000. Following results are further observed:

  • The minimized life cycle costs of the model using the average reward criterion and 
the model using the discounted reward criterion (two discount rates, i.e., 5 and 10 % 
are used) are same if the inflation rate is lower than or equal to 3 %. When the infla-
tion rate is larger than 3 %, the outputs are different. The results are shown in Table 7. 
It means that, in this case, the optimal state distributions obtained from decision 
models using three different reward criteria will not be same when the inflation rate 
on the costs and budget is larger than 3 %.

  • When the inflation rate is lower than or equal to 7 %, the minimized life cycle costs 
obtained from two models using two different discount rates are same. When the 
inflation rate is larger than 7 %, the outputs are different. The results are also shown 
in Table 7. It shows that the discount rate has a larger impact on the optimal state 
distributions due to the existence of the inflation on the costs and budget.

Table 5 Steady state distributions obtained from the infinite‑time model

s1 s2 s3 s4 s5

a1 0 0 0 0 0

a2 0 0 0.139 0 0

a3 0.149 0.709 0 0.003 0
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  • In terms of those two observations, the paper solves the model using the weighted 
reward criterion with assuming that the weights of the average reward and the dis-
counted reward in the optimization model are 0.7 and 0.3. The discount rate is 10 %. 
The inflation rate is 5 %. Table 8 shows the optimal state distributions of road seg-
ments at the beginning of each year (only the year 5, 10, 15, 20, 25 and 30 are shown 
to save the space).

  • The minimized life cycle costs of models using the average reward criterion and the 
discounted reward criterion are HK $ 322,045,264 and 322,182,333, respectively. 
The minimized life cycle cost of models using the weighted reward criterion is HK 
$ 321,952,277. It shows that the weighted reward criterion is more suitable than the 
other two criteria.

Optimal maintenance plan

Based on the state distribution as shown in Table 8 and Eq. (14), the optimal policy for 
the road segments in each year of the 30-year planning horizon can be obtained, which 
is shown in Table  9. It is noted that πt(i, a) in Eq.  (14) specify a distribution of road 
segments in state i on which maintenance action a will be taken. That is to say, a road 
segment that are in state i may have one or more selection of the maintenance actions. 
However, this randomness is limited. In the most cases, the selection of maintenance 
action for a road segments in a state is limited to one. In Table 9, the value “1” for state-
action pair (s1, a3) means that the probability to take the action a3 is 1 when a segment 
stays in the state s1. It is observed that the randomness of selecting “resurfacing” and 

Table 8 Optimal state distributions under the weighted reward criterion in scenario 2

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

5th year 10th year 15th year

a1 0 0 0 0 0.004 0 0 0 0 0.001 0 0 0 0 0.001

a2 0 0 0.133 0 0 0 0 0.139 0 0 0 0 0.139 0 0

a3 0.237 0.582 0.007 0.037 0 0.148 0.69 0.003 0.019 0 0.139 0.709 0.004 0.008 0

20th year 25th year 30th year

a1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a2 0 0 0.141 0 0 0 0 0.142 0 0 0 0 0.143 0 0

a3 0.136 0.715 0.003 0.005 0 0.133 0.72 0.001 0.004 0 0.132 0.722 0.001 0.002 0

Table 9 Optimal road maintenance plan

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

5th year 10th year 15th year

a1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

a2 0 0 0.95 0 0 0 0 0.979 0 0 0 0 0.972 0 0

a3 1 1 0.05 1 0 1 1 0.021 1 0 1 1 0.028 1 0

20th year 25th year 30th year

a1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

a2 0 0 0.979 0 0 0 0 0.993 0 0 0 0 0.993 0 0

a3 1 1 0.021 1 0 1 1 0.007 1 0 1 1 0.007 1 0
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“do nothing” is only existed in state s3, in which the “resurfacing” is the major choice. In 
other states, there is only one choice in selecting maintenance actions. Thus, the optimal 
maintenance plan is feasible in the actual maintenance decision.

Conclusions
Markov-based optimization models using the average reward criterion or the discounted 
reward criterion are widely utilized in current road maintenance. However, both of the 
two reward criteria have deficiencies in modeling a road project whose service life com-
monly is 20–30 years. In this regard, a weighted reward criterion is developed to balance 
both the average reward and the discounted reward. The illustrative example analyzes 
two scenarios with and without considering the inflation over the decision horizon. 
When the inflation is not considered and in case of a finite-time model tends to be an 
infinite-time model, the average reward is preferred and the optimal state distribu-
tions obtained from decision models using three reward criteria are same. However, if 
the inflation is considered, a finite-time model cannot tend to be an infinite-time model 
due to the inflation rate. The optimal state distributions obtained from decision models 
using three reward criteria are different from each other. In particular, the model using 
the weighted reward criterion could get the smallest life cycle cost. It means that the 
weighted reward criterion is more suitable than the other two commonly used reward 
criteria. In addition, the example also proves the existence of optimal road maintenance 
plan under the weighted reward criterion.
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