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Background
Defect detection is highly important to fabric quality control. Traditionally, defects are 
detected by human eyes. The efficiency of this manual method is low and the missed 
rate is high because of eye fatigue. In the best case, a quality control person cannot 
detect more than 60–70 % of the present defects (Çelik et al. 2014b). Hence, an auto-
matic inspection system is necessary for textile industry. In the literature, fabric defect 
detection methods were categorized into six groups: statistical, spectral, model based, 
learning, structural, and motif-based (Ngan et al. 2011). Spectral and structural meth-
ods, as well as defect classification by neural networks, are still popular topics in this 
field. Spectral methods include Fourier transform, wavelet transform, Gabor transform, 
and so on. The Fourier transform is the classic method for fabric analysis. However, 
Fourier transform was usually used with other approaches in the latest works (Schnei-
der and Merh 2015; Hu et al. 2015; Mohamed et al. 2014; As et al. 2013). Schneider pre-
sented an automatic method for plain and twill fabric detection by combining Fourier 
analysis, template matching and fuzzy clustering (Schneider and Merh 2015). The sys-
tem proved to be robust and versatile as a 97 % detection accuracy could be achieved. 
An unsupervised approach for the inspection of periodic pattern fabric by applying 
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Fourier analysis and wavelet shrinkage was proposed (Hu et al. 2015). The advantage 
of this method is that no reference image is needed. Wavelet transforms elicited much 
attention in the fabric detection field because of its good local time–frequency char-
acteristics (Zhu et  al. 2015; Li et  al. 2015; Hu et  al. 2014; Wen et  al. 2014). Wavelet 
methods perform well in defects with outstanding edges, but poorly in flat defects with 
smooth grayscale differences. Gabor filters are suitable for emulating the biological fea-
tures of human eyes and were employed in fabric detection (Ibrahim et  al. 2015; Hu 
2015; Bissi et al. 2013; Jing et al. 2014). However, given that Gabor filters perform fil-
tering of multi-scale and multi-orientation, which results in high computational com-
plexity, real-time requirements are difficult to meet. To decrease the computational 
complexity, the optimal Gabor filter is built via genetic algorithm, in which the filter 
is only performed at one scale and one direction (Hu 2015; Jing et al. 2014). In recent 
years, neural networks have also been utilized for fabric defect detection and classifica-
tion (Çelik et  al. 2014a, b; Furferi and Governi 2008). Furferi and Governi proposed 
an ANN-based method to detect and classify defects, according to 23 parameters 
extracted from each acquired image (Furferi and Governi 2008). The advantage of this 
method is that no experimental thresholds are needed. In addition to the classic back-
propagation (BP) networks, an emerging neural network, namely, Pulse Coupled Neu-
ral Network, is also applied to identify the defect area on plain fabric (Song et al. 2008; 
Zhu and Hao 2013).

There may exist many types of defects in raw fabrics, such as loom fly, thin bar, broken 
end, etc. Furferi and Governi grouped these defects into three categories: dark and light 
area or point defects, dark and light localized defects and other defects (Furferi and 
Governi 2008). The most common defects of warp-knitting fabrics are linear defects of 
vertical orientation caused by the broken end of warp yarns (Du et al. 2012), which are 
shown as Fig. 1. The defects will become larger and larger if the warp-knitting machine 
is not stopped. So the target of an online vision inspection system is to detect defects 
and stop the warp-knitting machine as early as possible once defects appear on fabrics.

Though many researchers have focused on fabric defect detection in past years, it is 
still difficult to inspect defects of warp-knitted fabrics in practice due to the following 

Fig. 1  Common defects in warp-knitting fabrics
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reasons: (1) The quality of images captured by smart cameras in a factory is not as good 
as that in the laboratory because it is affected by lighting variation, machine vibration, 
dust, electromagnetic interference and other factors. Generally, the illumination device 
is very essential for image acquisition quality in machine vision system. However, to save 
cost and installation space, there are no specific lightening units in our system except 
fluorescent lamps installed along the web. (2) The typical defect caused by a broken 
yarn is not obvious, especially with the very thin yarn. All the above factors make defect 
detection is challenging in practice.

To deal with the difficulties, two issues are addressed in our study. First, Gabor filtering 
is performed on the images with specific parameters to enhance the image contrast. Sec-
ond, a parameter adaptive PCNN is employed to segment the images with high precisions.

The other parts of this paper are structured as follows. The first section presents the 
system architecture. The second section proposes the fabric inspection algorithm. The 
third section focuses on the experimental results and discussions. The fourth section 
describes the actual operations. The final section concludes the research.

System architecture
The inspection system consists of smart cameras and an HMI controller. Smart cameras 
are powered by POE, and can be accessed from the HMI controller through local area 
network. Alarm messages will be sent to HMI once a camera has detected a defect, and 
then HMI will trigger AC contactor to stop the main motor of warp-knitting machine. 
The system diagram is shown in Fig. 2.

In the past years, some machine vision systems have been developed to detect fab-
ric defects automatically (Çelik et  al. 2014b; Dorian et  al. 2012, 2014). These systems 
have similar architectures, which consist of industrial cameras, frame grabber, lighting 
unit and a computer. In contrast to the existing PC-based methods, the advantages of 
the embedded system are obvious, which include small size, easy to install, low power 
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Fig. 2  Automatic inspection system diagram
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consumption, low cost, etc. In practice, multiple cameras are installed on the beam of 
warp-knitting machine. Each smart camera covers about 900 mm width of the web.

The smart camera consists of a SOC processor, FPGA-based Image Processing (ISP) 
module, DDR memories, FLASH memories and GigE Ethernet interface. Figure 3 shows 
the hardware diagram of the smart camera.

• • ISP module: A low cost CMOS image sensor with 1920  ×  1080 resolutions is 
employed, and then the raw data output from CMOS sensor are processed by an 
FPGA processor. After processing, image data are transferred into the memory of 
SOC in YUV422 format.

• • SOC processor: TMS320DM6467 is chosen as host processor, which has an ARM9 
core and a DSP core of 1 GHz. The detection algorithm is running on the DSP core 
and other tasks are implemented on the ARM9 core.

• • GigE port: The Ethernet port is included for information interaction between smart 
cameras and HMI controller.

• • Memory: There are128  MB DDR memories and 64  MB FLASH memories on the 
board.

Hybrid method for fabric defect inspection
Fabric inspection algorithm is the key component of the smart camera software. The 
algorithm consists of two phases: image enhancement and image segmentation. Image 
enhancement is implemented by Gabor filtering with optimal parameters, which makes 
the defects more obvious. In this paper, a parameter adaptive PCNN is utilized to seg-
ment defects layer by layer.

Gabor filters

A group of multi-scale and multi-orientation Gabor filters are suitable to characterize 
the texture features of the fabrics. So Gabor filters are widely used in the field of fabric 
defect inspection. The real part of the 2-D Gabor function is defined as:
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Fig. 3  Hardware diagram of smart cameras
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where f is the sinusoidal wave frequency, θ is the rotated orientation, σx and σy are vari-
ances along the x-axis and y-axis respectively.

The traditional Gabor filters perform filtering at multi-scale and multi-orientation, 
which result in high computational complexity. The real-time requirements are difficult 
to meet with our system. To simplify the Gabor filter operation, we only perform filter-
ing at a specific orientation and scale. In fact, the outputs of Gabor filters are greatly 
affected by the parameter θ when applying Gabor filters to warp-knitted fabrics. Figure 4 
gives a group results corresponding to different orientations. Figure 4a is the raw fab-
ric image. The orientations of (b), (c), (d), (e), (f ) and (g) are 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ 
respectively. To demonstrate the effect of Gabor filter, three “handcrafted defects”, i.e., 
horizontal defect, vertical defect and diagonal defect, were added into the raw fabric 
image manually. It is clearly seen that the vertical texture defect is enhanced significantly 
by Gabor filtering with 90◦ orientation, which is shown as Fig. 4e. In contrast, the hori-
zontal defect is enhanced by Gabor filtering with 0◦ orientation and greatly suppressed 
by Gabor filtering with 90◦ orientation. Since the defects of warp-knitting fabrics are 
usually of the vertical linear shape, so the Gabor filtering is only performed at the 90◦ 
orientation in our scheme.

We also found that the scale parameter doesn’t have much affection on texture fea-
tures of warp-knitted fabrics. So only one scale is used in our method. In contrast to 
multi-scale and multi-orientation methods, our scheme can decrease the computation 
complexity, meanwhile remain the advantage of Gabor filters.

Pulse coupled neural network

PCNN model, inspired by synchronous dynamics of neuronal activity in cat visual cor-
tex, was developed by Johnson et al. on the basis of Echorn’s cortical model (Eckhorn 
et al. 1990; Johnson and Padgett 1999). Nowadays PCNN becomes the most potential 
method in image processing (Chen et al. 2011). In this study, we use a simplified version 
of PCNN (Zhu and Hao 2013) to decrease the computational complexity while remain-
ing the advantages of cortical model. The simplified PCNN model is shown in Fig. 5.

PCNN is 2-D networks with a single layer. Each neuron of PCNN is corresponding to 
a pixel when applying PCNN to image processing. Suppose the image to be processed is 
Sij, n is the iteration number, PCNN in Fig. 4 can be described as follows:
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Fig. 4  Results of Gabor filtering at different orientations. a The raw fabric image, b Gabor filtering with 0◦,  
c Gabor filtering with 30◦, d Gabor filtering with 60◦, e Gabor filtering with 90◦, f Gabor filtering with 120◦,  
g Gabor filtering with 150◦
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where F(n) is the feeding input, W is the link weights which represents the impact of the 
around pixels, Y(n) is the binary state of each neuron, L is the linking input which is a 
convolution of W and Y(n). The internal activity term U(n) is the image pixel value mod-
ulated by the linking input. E(n) is the dynamic threshold of neurons. Once the internal 
activity U(n) is larger than the E(n), the neurons will fire and the sates in Y(n) will update 
to ‘1’. After firing, the dynamic threshold E(n) will increase suddenly, which makes the 
neurons couldn’t fire in a period.

There are four parameters in the simplified PCNN model: W, β, �t and Ve. W is the 
link weights which represent the impact of the around pixels. Usually W is defined as the 
inverse of Euclidean distance. β at the linking strength in the linking input. A larger value 
of β means a neuron is affected strongly by its neighboring neurons. �t is the decay step 
inverse to segmentation precision. A small value of �t could get a better segmentation 
precision. Ve is the amplitude of dynamic threshold E(n). Parameter setting is crucial to 
PCNN. Song proposed a learning method to determine optimal parameters from defec-
tiveless reference images (Song et  al. 2008). Chen et  al. attempted to build a relation-
ship between dynamic behaviors of neurons and the static properties of the image, and 
proposed an automatic parameter setting method based the relationship (Chen et  al. 
2011). Zhou proposed an automatic setting method based on the relationship between 
the dynamic threshold and the average of the firing area (Zhou et al. 2014). Herein, we 
present an adaptive setting method described as follows:

(4)
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Fig. 5  A simplified PCNN model
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where N is the total iteration number. In addition to these parameters, the iteration 
number Nbest with optimal segmentation should also be considered when using PCNN 
in defect detection. Researchers have developed some criterions to determine the opti-
mal iteration number, such as Maximum Entropy, Minimum Cross Entropy, Maximum 
Variance of Inter-class and Minimum Variance of Intra-class. However, these criterions 
couldn’t obtain satisfied segmentation results. We propose a novel criterion based on 
firing time sequences, which is successfully used in defect detection of warp-knitted fab-
rics. The firing time sequences T (n) is defined as the number of fired neurons of itera-
tions. The best iteration number is determined when T(n) increases suddenly, and the 
criterion is defined as:

The defects can be segmented out from the fabric images accurately by PCNN itera-
tions. After iterations we can get N frames of intermediate binary images. At last, the 
Nbest-th frame image is chosen as the final segmentation result. Suppose S is the input 
image, the iteration procedures are described as follows:

Initialize Y(0), E(0), W, β, Δt and Ve
for i = 1 to N do

   F(i) ← S
   L(i) ← W * Y(i − 1)
   U(i) ← F(i)(1 + βL(i))
   Y(i) ← U(i) ≥ E(i − 1)
   E(i) ← E(i − 1) − ∆t + Ve Y(i)
   T(i) ← sum(Y(i))

end for
Determine Nbest according to formula (11)

Hybrid inspection method

In this section, a hybrid detection method combing Gabor filters and PCNN is pre-
sented. The flowchart of the method is shown in Fig. 6.

First, images captured by smart cameras are enhanced by Gabor filtering with 90◦ ori-
entation. Second, defect areas are segmented by PCNN with adaptive parameter setting. 
Finally the optimal segmentation is determined according to firing time sequences, and 
noises are removed by morphology filtering.

(10)�t =
Ve − Vaver

N

(11)Nbest = n, T (n+ 1)− T (n) ≥ 2T (n)

Test 
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Fig. 6  Flowchart of hybrid detection algorithm
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Experimental results and discusses
To evaluate the performance of the proposed hybrid method, we compared it with 
Gabor and wavelet methods. The testing code was implemented under MATLAB ver-
sion R2012B. The testing computer was configured with an AMD Athlon processor with 
3.01 GHz frequency and 3.25 GB memories.

The available detection area of web on the warp-knitting machine is limited to a nar-
row rectangle. In the experiment, two images (labeled as Image  1 and 2) captured by 
smart cameras are used as test pictures, which are shown as Fig. 7a. The vertical linear 
defect is very unsharp. As mentioned before, the defect area is enhanced by Gabor filter-
ing at specific orientation and scale. In this experiment, the parameters of Gabor filter 
are set as follows: σx = 1.0, σy = 1.7, θ = π/2, f = 5.5. The filtering results of Gabor are 
shown as Fig. 7b. From Fig. 7, we can see that the defects are really enhanced.

Next, the processed image is segmented by PCNN. Ve and �t are determined accord-

ing to (8)–(10). The total iteration number N  =  20, W =





0.5 1 0.5
1 0 1
0.5 1 0.5



, β = 0.1. The 

image in Fig.  7b is segmented layer by layer, so we can obtain 20 frames of binary 
sequences. Figure 8 shows part of the intermediate segmentation results of Image 1.

How to choose the best result among the 20 iterations? Herein we propose an opti-
mal criterion based on the firing time sequences of PCNN. Firing time sequences are 
the numbers of fired neurons of iterations, which include the temporal information of 
the image segmentation. The firing time sequence of Image 1 is shown as Fig. 9a. We 
can determine the best iteration number of Image 1 as 11 according to the formula (11). 
Figure 8 shows the segmentation results of the 10-th, 11-th, 12-th and 13-th iterations 
respectively. We can see that the 10-th segmentation is incomplete, while the 12-th and 
13-th results include too many noises. So the 11-th segmentation is the best result. The 
firing time sequence of Image  2 is shown as Fig.  9b, and the best iteration number is 
determined as 17. However the intermediate binary results of Image 2 are omitted here 
to save space.

Figure  10 is the comparisons between the wavelet method, Gabor method and the 
proposed hybrid method. DB4 wavelets are employed to perform 2-level decomposition 
of the fabric images. Because the broken end defects are vertical linear, so the vertical 
sub-image at composition level 2 is used for defect detection. Figure 10c are the binary 
thresholding and morphology filtering results of the wavelet sub-image. To demonstrate 
the significance of the proposed hybrid method, Gabor only method is used for com-
parisons. Figure  10d are the binary thresholding and morphology filtering results of 

a                             b 

Image 1: 

Image 2: 

Fig. 7  The effect of Gabor filtering. a Test images, b results of Gabor filtering
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the Gabor filtering image. Figure 10e are the binary images segmented by the proposed 
hybrid method. Comparing to the ground-truths of Fig. 10b, we can see that the detec-
tion results of hybrid method are more accurate than other methods.

Further, a group of metrics, including accuracy (ACC), true positive rate (TPR) and 
positive predictive value (PPV), is employed to quantify the detection accuracy (Li et al. 
2016). The definition of ACC, TPR, PPV are described as (12)–(14)

a 

b 

c 

d 
Fig. 8  Intermediate segmentations of Image 1 by PCNN. a Result of the 10-th iteration, b result of the 11-th 
iteration, c result of the 12-th iteration, d result of the 13-th iteration

Fig. 9  Firing time sequences. a Results of Image 1, b results of Image 2
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where true positive (TP), true negative (TN), false positive (FP), false negative (FN) are 
labeled in Fig. 11.

The ACC, TPR and PPV metrics of the three methods are listed as Table 1, and the 
best results are marked in italics. We can see that the hybrid method is significantly bet-
ter than the wavelet and Gabor methods, and get the highest scores of all testing items. 

Actual operations
The proposed hybrid method is suitable to run on an embedded system because of the 
low computation. There are no complex operations in the simplified PCNN model. We 
have developed a prototype system installed on a 210 in. warp-knitting machine. The 
system consists of six smart cameras and an HMI controller. The processing speed is 
about 5 frames per second, which can meet the real-time detection demands of warp-
knitting machine. The actual operations proved the system is effective with a detection 
accuracy of 98.6 %.

(12)ACC = (TP + TN )/(TP + TN + FP + FN )

(13)TPR = TP/(TP + FN )

(14)PPV = TP/(TP + FP)

a 

b

c

d

e 

Image 1 Image 2 

Fig. 10  Detection results comparisons of wavelet (wavelet + binary thresholding + morphology filtering), 
Gabor (Gabor + binary thresholding + morphology filtering) and the hybrid (Gabor + PCNN + morphology 
filtering) methods. a The original images, b the ground-truths labeled by manual, c segmentation results of 
wavelet method, d segmentation results of Gabor method, e segmentation results of hybrid method
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Detection 

Result 
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Fig. 11  Definitions of TN, FN, TP and FP
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Conclusions
This paper presents an automatic fabric inspection system that consists of smart cameras 
and an HMI controller. The system can be applied to defect inspection for warp-knitting 
machine. The key part of the system is the hybrid inspection algorithm combining Gabor 
filters and PCNN with adaptive parameter setting. The performance of the system was 
verified on a warp knitting machine successfully. Future work will investigate the effec-
tiveness of the proposed method for defect inspection of more complex fabrics.
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