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Background
The fractional differential equations have gained a lot of attention of physicists, mathe-
maticians and engineers in the past two decades (Oldham and Spanier 1974; Hilfer 2000; 
Kilbas et al. 1993; Podlubny 1999; Debnath 1997; Yang and Srivastava 2015; Yang et al. 
2015b, c, d; Wang et al. 2014, 2015a, b, c; Jiwari and Mittal 2011). All kinds of interdisci-
plinary problems can be modeled with the help of fractional derivatives. However, it is 
very difficult for us to find their exact solutions to most fractional differential equations, 
so numerical and approximation methods have to be used. So far, many methods have 
been used to solve linear and nonlinear fractional differential equations. For example, 
the Adomain decomposition method (ADM) (Wazwaz 1999), the homotopy pertur-
bation method (HPM) (He 1999), the variational iteration method (VIM) (Safari et al. 
2009), homotopy analysis method (HAM) (Liao 1992, 2004) and differential quadrature 
method (Jiwari et  al. 2012). The time-fractional Cauchy reaction–diffusion equation 
(Verma et al. 2014; Jiwari et al. 2014; Mittal and Jiwari 2011) is one of all the important 
fractional partial differential equations. The time-fractional Cauchy reaction–diffusion 
equations can be used to describe many kinds of linear and nonlinear systems in chem-
istry, physics, ecology, biology and engineering (Britton 1998; Grindrod 1996). Kumar 
(2013) have obtained the approximate solutions of time-fractional Cauchy reaction–dif-
fusion equations by using the homotopy perturbation transform method with the help of 
Laplace transform. In Gejji and Jafari (2006), proposed NIM for solving linear and non-
linear integral and differential equation. The NIM is very easy to understand and imple-
ment and obtain better result than existing methods.

In this paper, we establish a new Sumudu transform iterative method (NSTIM) with 
the help of the Sumudu transform (Chaurasia and Singh 2010) for obtaining analytical 

Abstract 

In this paper, a new Sumudu transform iterative method is established and success-
fully applied to find the approximate analytical solutions for time-fractional Cauchy 
reaction–diffusion equations. The approach is easy to implement and understand. The 
numerical results show that the proposed method is very simple and efficient.

Keywords: Sumudu transform, Caputo fractional derivative, Diffusion equation

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Wang and Liu  SpringerPlus  (2016) 5:865 
DOI 10.1186/s40064‑016‑2426‑8

*Correspondence:  
kangle83718@163.com 
†Kangle Wang and Sanyang 
Liu contributed equally to 
this work 

School of Mathematics 
and Statistics, Xidian 
University, Xi’an 710118, 
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2426-8&domain=pdf


Page 2 of 20Wang and Liu  SpringerPlus  (2016) 5:865 

and numerical solutions of the time-fractional Cauchy reaction–diffusion equations. 
Our iterative method is new and generalizes NIM due to Gejji and Jafari (2006). The 
advantage of this new method which we proposed is to make the calculation simple and 
highly accurate to approximate the exact solution.

Basic definition
In this section, we give some basic definitions and properties of fractional calculus and 
Sumudu transform, which we will use in this paper:

Definition 1 A real function f (x), x > 0, is said to be in the space Cµ, µ ∈ R if there 
exists a real number p, (p > µ), such that f (x) = xpf1(x), where f1(x) ∈ C[0,∞), and it 
is said to be in the space Cm

µ  if f (m) ∈ Cµ, m ∈ N  (Dimovski 1982).

Definition 2 The Riemann–Liouville fractional integral operator of order α ≥ 0, of a 
function f (x) ∈ Cµ, µ ≥ −1 is defined as (Hilfer 2000; Yang et al. 2015a)

where Ŵ(·) is the well-known Gamma function.
Properties of the operator Iα, which we will use here, are as follows
For f ∈ Cµ, µ, γ ≥ −1, α,β ≥ 0,

Definition 3 The fractional derivative of f(x) in the Caputo sense is defined as (Hilfer 
2000; Yang et al. 2015a)

where n− 1 < α ≤ n, n ∈ N , x > 0, f ∈ Cn
−1.

The following are the basic properties of the operator Dα:

Definition 4 The Mittag–Leffler function Eα with α > 0 is defined as (Chaurasia and 
Singh 2010)

(1)Iα f (x) =

{

1
Ŵ(α)

∫ x
0
(x − t)α−1f (t)dt, α > 0, x > 0,

I0f (x) = f (x), α = 0,

(1) IαIβ = Iβ Iα f (x) = Iα+β f (x),

(2) Iαxγ =
Ŵ(γ + 1)

Ŵ(α + γ + 1)
xα+γ .

(2)Dα f (x) = In−αDnf (x) =
1

Ŵ(n− α)

∫ x

0

(x − t)n−α−1f (n)(t)dt,

(1) DαIα f (x) = f (x),

(2) IαDα f (x) = f (x)−

n−1
∑

k=0

f (k)(0+)
x

k!
, x > 0.

(3)Eα(z) =

∞
∑

n=0

zα

Ŵ(nα + 1)
.
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Definition 5 The Sumudu transform is defined over the set of function 
A = {f (t)|∃M, τ1, τ2 > 0, |f (t)| < Me

|t|
τj , ift ∈ (−1)j × [0,∞)} by the following formula 

(Chaurasia and Singh 2010)

Definition 6 The Sumudu transform of the Caputo fractional derivative is defined as 
(Chaurasia and Singh 2010)

The new Sumudu transform iterative method (NSTIM)
To illustrate the basic idea of the NSTIM for the fractional partial differential equation, 
we consider the following equation with the initial condition as

where Dnα
t  is the Caputo fractional derivative operator, Dnα

t = ∂nα

∂tnα , L is a linear operator, 
R is general nonlinear operator, g(x, t) is continuous function.

Applying Sumudu transform on both sides of Eq. (6), we get

Using the property of the Sumudu transform, we can obtain

On simplifying (8), we have

Operating the inverse Sumudu transform on both sides of Eq. (9), we get

Next assume that

(4)S[f (t)] =

∫ ∞

0

e−t f (vt)dt, v ∈ (−τ1, τ2).

(5)S[Dnα
x u(x, t)] = v−nαS[u(x, t)] −

n−1
∑

k=0

v(−nα+k)u(k)(0, t), n− 1 < nα ≤ n.

(6)







Dnα
t u(x, t)+ Lu(x, t)+ Ru(x, t) = g(x, t),

n− 1 < nα ≤ n,
u(x, 0) = h(x).

(7)S
[

Dnα
t u(x, t)

]

+ S[Lu(x, t)+ Ru(x, t)] = S[g(x, t)].

(8)S[u(x, t)] − vnα
n−1
∑

k=0

u(k)(x, 0)+ vnαS[Lu(x, t)+ Ru(x, t)− g(x, t)] = 0.

(9)S[u(x, t)] = vnα
n−1
∑

k=0

u(k)(x, 0)− vnαS[Lu(x, t)+ Ru(x, t)− g(x, t)].

(10)u(x, t) = S−1

[

vnα
n−1
∑

k=0

u(k)(x, 0)

]

− S−1[vnαS[Lu(x, t)+ Ru(x, t)− g(x, t)]].















f (x, t) = S−1[vnα
�n−1

k=0 u
(k)(x, 0)+ vαS[g(x, t)]],

N (u(x, t)) = −S−1[vnαS[Ru(x, t)]],

K (u(x, t)) = −S−1[vnαS[Lu(x, t)]].
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Thus, Eq. (10) can be written in the following form

where f is a known function, K and N are given linear and nonlinear operator of u, 
respectively. The solution of Eq. (11) can be written in the series form

we have

The nonlinear operator N is decomposed as (see Gejji and Jafari 2006)

Therefore, Eq. (11) can be represented as the following form

Defining the recurrence relation

we have

Namely

The m-term approximate solution of Eq. (11) is given by

Similarly, the convergence of the NSTIM, we can refer the paper Gejji and Jafari (2006 
and Bhalekar and Gejji (2011).

(11)u(x, t) = f (x, t)+ K (u(x, t))+ N (u(x, t)),

(12)u(x, t) =

∞
∑

i=0

ui(x, t),

(13)K

(

∞
∑

i=0

ui

)

=

∞
∑

i=0

K (ui).

(14)N

�

∞
�

i=0

ui

�

= N (u0)+

∞
�

i=0







N





i
�

j=0

uj



− N





i−1
�

j=0

uj











.

(15)
∞
�

i=1

ui = f +

∞
�

i=0

K (ui)+ N (u0)+

∞
�

i=0







N





i
�

j=0

uj



− N





i−1
�

j=0

uj











.

(16)











u0 = f ,

u1 = K (u0)+ N (u0),

um+1 = K (um)+ N (u0 + · · · + um)− N (u0 + u1 + · · · + um−1),

(17)(u1 + · · · + um+1) = K (u0 + · · · + um)+ N (u0 + · · · + um).

(18)
∞
∑

i=0

ui = f + K

(

∞
∑

i=0

ui

)

+ N

(

∞
∑

i=0

ui

)

.

(19)u = u0 + u1 + u2 + u3 + · · · + um−1.
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Numerical examples

Example 1 Consider the following time-fractional Cauchy reaction–diffusion equation 
(Kumar 2013)

Applying Sumudu transform on both sides of Eq. (20) and using the differential property 
of Sumudu transform, we obtain

Using the inverse Sumudu transform on both sides of Eq. (21), we get

namely

According to the NSTIM, we have

By iteration, the following results are obtained

Therefore, we have the solution of the problem as follows

The Eq. (24) is approximate to the form u(x, t) = e−x + xe−t for α = 1, which is the exact 
solution of Eq. (20) for α = 1. The result is same as HPTM (Kumar 2013).

(20)







uαt (x, t) = uxx(x, t)− u(x, t),
0 < α ≤ 1,

u(x, 0) = e−x + x.

(21)S[u] = u(x, 0)+ vαS[uxx − u].

(22)u(x, t) = S−1[(e−x + x)] + S−1[vαS[uxx − u]],

(23)u(x, t) = e−x + x + S−1[vαS[uxx − u]].







u0 = e−x + x,

K [u(x, t)] = S−1[vαS[uxx − u]].

u0 = e−x + x,

u1 = −
xtα

Ŵ(α + 1)
,

u2 =
xt2α

Ŵ(2α + 1)
,

u3 = −
xt3α

Ŵ(3α + 1)
,

u4 =
xt4α

Ŵ(4α + 1)
,

. . . . . .

un = (−1)n
xtnα

Ŵ(nα + 1)
.

(24)

u(x, t) = e−x + x

(

1−
tα

Ŵ(α + 1)
+

t2α

Ŵ(2α + 1)
−

t3α

Ŵ(3α + 1)
+ · · · + (−1)n

tnα

Ŵ(nα + 1)

)

= e−x + xEα(−tα).
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Example 2 We consider the following time-fractional Cauchy reaction–diffusion equa-
tion (Kumar 2013) as follows

Applying Sumudu transform on both sides of Eq. (25) and using the differential property 
of Sumudu transform, we obtain

Using the inverse Sumudu transform on both sides of Eq. (26), we have

According to the NSTIM, we can obtain

By iteration, we get the following results as

The solution of Eq. (25) is given as

The series (28) is approximate to the form u(x, t) = ex
2+t for α = 1, which is the exact 

solution of Eq.  (25) for α = 1. The result is complete agreement with HPTM (Kumar 
2013).

(25)







uαt (x, t) = uxx(x, t)− (1+ 4x2)u(x, t),
0 < α ≤ 1,

u(x, 0) = ex
2
.

(26)S[u] = u(x, 0)+ vαS
[

(uxx(x, t)− (1+ 4x2)u(x, t))
]

.

(27)u(x, t) = ex
2

+ S−1[vα
[

S
[

(uxx(x, t)− (1+ 4x2)u(x, t))
]]

.







u0 = ex
2
,

K [u(x, t)] = S−1[vα
�

S[(uxx(x, t)− (1+ 4x2)u(x, t))]
�

.

u0 = ex
2

,

u1 =
ex

2
tα

Ŵ(α + 1)
,

u2 =
ex

2
t2α

Ŵ(2α + 1)
,

u3 =
ex

2
t3α

Ŵ(3α + 1)
,

u4 =
ex

2
t4α

Ŵ(4α + 1)
,

. . . . . .

un =
ex

2
tnα

Ŵ(nα + 1)
.

(28)

u(x, t) = ex
2

(

1+
tα

Ŵ(α + 1)
+

t2α

Ŵ(2α + 1)
+

t3α

Ŵ(3α + 1)
+ · · · +

tnα

Ŵ(nα + 1)

)

= ex
2

Eα(t
α).
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Example 3 Consider the following time-fractional Cauchy reaction–diffusion equation 
(Kumar 2013) as follows

Applying Sumudu transform on both sides of Eq. (29) and using the differential property 
of Sumudu transform, we obtain

Using the inverse Sumudu transform on both sides of Eq. (30), we can get

According to the NSTIM, we have

By iteration, the following results are obtained

Thus, the solution of Eq. (29) can be written in the following form

The exact solution of Eq. (29) is u(x, t) = ex
2+t2 for α = 1.

Remark 1 The above are three examples of the linear fractional Cauchy reaction–
diffusion equation. Figures 1, 2, 3,  4,  5,  6,  7,  8,  9,  10, 11 and 12 respectively show the 

(29)







uαt (x, t) = uxxu(x, t)− (4x2 − 2t + 2)u(x, t),
0 < α ≤ 1,

u(x, 0) = ex
2
.

(30)S[u(x, t)] = u(x, 0)+ vαS
[

uxx(x, t)− (4x2 − 2t + 2)u(x, t)
]

.

(31)u(x, t) = ex
2

+ S−1
[

vαS[uxx(x, t)− (4x2 − 2t + 2)u(x, t)]
]

.

{

u0 = ex
2
,

K [u(x, t)] = S−1
[

vαS[uxx(x, t)− (4x2 − 2t + 2)u(x, t)]
]

.

u0 = ex
2

,

u1 = 2ex
2 tα+1

Ŵ(α + 2)
,

u2 = 4ex
2 Ŵ(α + 3)t2α+2

Ŵ(α + 2)Ŵ(2α + 3)
,

u3 = 8ex
2 Ŵ(α + 3)Ŵ(2α + 4)t3α+3

Ŵ(α + 2)Ŵ(2α + 3)Ŵ(3α + 4)
,

u4 = 16ex
2 Ŵ(α + 3)Ŵ(2α + 4)Ŵ(3α + 5)t4α+4

Ŵ(α + 2)Ŵ(2α + 3)Ŵ(3α + 4)Ŵ(4α + 5)
,

. . .

(32)

u = u0 + u1 + u2 + u3 + u4 + · · ·

= ex
2

+ 2ex
2 tα+1

Ŵ(α + 2)
+ 4ex

2 Ŵ(α + 3)t2α+2

Ŵ(α + 2)Ŵ(2α + 3)

+ 8ex
2 Ŵ(α + 3)Ŵ(2α + 4)t3α+3

Ŵ(α + 2)Ŵ(2α + 3)Ŵ(3α + 4)

+ 16ex
2 Ŵ(α + 3)Ŵ(2α + 4)Ŵ(3α + 5)t4α+4

Ŵ(α + 2)Ŵ(2α + 3)Ŵ(3α + 4)Ŵ(4α + 5)
+ · · ·
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approximate solutions of the linear fractional Cauchy reaction–diffusion equations at 
different values for α = 0.6, 0.8, 1 and the exact solutions for α = 1. It is very easy to find 
that the solution continuously depend on the values of time-fractional derivative.            

Fig. 1 The 10th-order approximate solution of Eq. (20) for α = 0.6

Fig. 2 The 10th-order approximate solution of Eq. (20) for α = 0.8
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Remark 2 Figures 13, 14 and 15 show the absolute error between approximate solutions 
and exact solutions for α = 1. In Tables 1, 2 and  3, we compute the approximate solu-
tions and the exact solutions at different points for α = 1. By comparison, we find that 
it is evident the accuracy and efficiency of this method can be dramatically enhanced by 

Fig. 3 The 10th-order approximate solution of Eq. (20) for α = 1

Fig. 4 The exact solution of Eq. (20) for α = 1
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computing further terms. In this paper, we only use several terms. If we use more terms, 
the accuracy of the approximate solution will be greatly improved. Therefore, the pro-
posed method is accurate and efficient for linear differential equation.

Fig. 5 The 10th-order approximate solution of Eq. (25) for α = 0.6

Fig. 6 The 10th-order approximate solution of Eq. (25) for α = 0.8
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Example 4 In this example, we consider the nonlinear fractional Cauchy reaction–dif-
fusion equation (Momani and Yildirim 2010) as follows

(33)







uαt u = uxx − ux + uuxx − u2 + u,
0 < α ≤ 1,

u(x, 0) = ex.

Fig. 7 The 10th-order approximate solution of Eq. (25) for α = 1

Fig. 8 The exact solution of Eq. (25) for α = 1
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Operating the Sumudu transform on both sides of Eq. (33) and applying the property of 
Sumudu transform for fractional derivative, we get

(34)S[u] = u(x, 0)+ vαS[uxx − ux + uuxx − u2 + u].

Fig. 9 The 5th-order approximate solution of Eq. (29) for α = 0.6

Fig. 10 The 5th-order approximate solution of Eq. (29) for α = 0.8
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Using the inverse Sumudu transform technique on the both sides of Eq. (34), we have

According to the NSTIM, we get

(35)u(x, t) = ex + S−1[vαS[uxx − ux + u]] + S−1[vαS[uuxx − u2]].

Fig. 11 The 5th-order approximate solution of Eq. (29) for α = 1

Fig. 12 The exact solution of Eq. (29) for α = 1
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By iteration, the following result is obtained







u0 = ex,

K [u(x, t)] = S−1[vαS[uxx − ux + u]],

N [u(x, t)] = S−1[vαS[uuxx − u2]].

u0 = ex,

u1 =
extα

Ŵ(α + 1)
,

u2 =
ext2α

Ŵ(2α + 1)
,

u3 =
ext3α

Ŵ(3α + 1)
,

u4 =
ext4α

Ŵ(4α + 1)
,

. . . . . .

un =
extnα

Ŵ(nα + 1)
.

Table 1 Comparison between  the 10th-order approximate solution of  Eq. (20) and  the 
exact solution for α = 1

x t uexa uNSTIM |uexa − u10app|

α = 1

 0.2 0.3 0.9668943972 0.9668943972 0.0× 10
−10

 0.4 0.3 0.9666473343 0.9666473342 1.0× 10
−10

 0.5 0.6 0.8809364777 0.8809364778 1.0× 10
−10

 0.7 0.8 0.8111155787 0.8111155801 1.4× 10
−9

Table 2 Comparison between  the 10th-order approximate solution of  Eq.  (25) and  the 
exact solution for α = 1

x t uexa uNSTIM |uexa − u10app|

α = 1

 0.3 0.4 1.632316221 1.632316221 0.0× 10
−9

 0.5 0.6 2.339646852 2.339646853 1.0× 10
−9

 0.6 0.7 2.886370989 2.886370989 0.0× 10
−9

 0.7 0.8 3.632786555 3.632786553 2.0× 10
−9

Table 3 Comparison between the 5th-order approximate solution of Eq. (29) and the exact 
solution for α = 1

x t uexa uNSTIM |uexa − u5app|

α = 1

 0.2 0.3 1.138828383 1.138828331 0.000000052

 0.4 0.5 1.506817785 1.506807822 0.000009963

 0.3 0.6 1.568312186 1.568253566 0.000058620

 0.7 0.8 3.095656500 3.094024665 0.001631835
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Therefore, the solution of the Eq. (33) is given as

The result is complete agreement with HPM (Momani and Yildirim 2010). when α = 1, 
(36) can be expressed into the following form as

(36)

u(x, t) = ex
(

1+
tα

Ŵ(α + 1)
+

t2α

Ŵ(2α + 1)
+

t3α

Ŵ(3α + 1)
+ · · · +

tnα

Ŵ(nα + 1)

)

= exEα(t
α)

Fig. 13 The absolute error |uexa − u10app| of Eq. (20) for α = 1

Fig. 14 The absolute error |uexa − u10app| of Eq. (25) for α = 1
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Remark 3 The Eq. (37) is the exact solution of Eq. (33) for α = 1.

Remark 4 In this example, we apply the NSTIM to solve the nonlinear Cauchy reac-
tion–diffusion equation. In Table 4, we compute the different values between the 10th-
order approximate solution and the exact solution of Eq. (33) for α = 1. Figs. 16, 17, 18 
and 19 show 10th-order approximate solutions for α = 0.6, α = 0.8, α = 1, and the 
exact solution of Eq. (33). Figure 20 show the absolute error between approximate solu-
tion and exact solution for α = 1. By comparing Table 4 with Figs. 16, 17, 18 and 19, we 
can find the NSTIM is very accurate and efficient to solve the nonlinear Cauchy reac-
tion-equation. The accuracy of this method depends on the number of terms. So, the 
NSTIM is a very efficient method to solve the nonlinear fractional differential equation.

(37)u(x, t) = exE(t) =

∞
∑

k=0

tk

Ŵ(1+ k)
= ex

∞
∑

k=0

tk

k!
= ex+t .

Fig. 15 The absolute error |uexa − u5app| of Eq. (29) for α = 1

Table 4 Comparison between  the 10th-order approximate solution of  Eq. (33) and  the 
exact solution for α = 1

x t uexa uNSTIM |uexa − u10app|

α = 1

 0.2 0.2 1.491824698 1.491824698 0.0× 10
−9

 0.4 0.3 2.013752707 2.013752707 0.0× 10
−9

 0.6 0.4 2.718281828 2.718281129 1.0× 10
−9

 0.7 0.8 4.481689070 4.481689066 4.0× 10
−9
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Conclusion
In this paper, the new Sumudu transform iterative method has been successfully applied 
for finding the approximate solution for the time-fractional Cauchy reaction–diffu-
sion equation. The advantage of the new Sumudu transform iterative method (NSTIM) 
is to combine new iterative method (NIM) and Sumudu transform for obtaining exact 

Fig. 16 The 10th-order approximate solution of Eq. (33) for α = 0.6

Fig. 17 The 10th-order approximate solution of Eq. (33) for α = 0.8
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and approximate analytical solutions for the time-fractional Cauchy reaction–diffusion 
equations.The numerical results show that the Sumudu transform iterative method is 
highly efficient and accurate with less calculation than existing methods.

Fig. 18 The 10th-order approximate solution of Eq. (33) for α = 1

Fig. 19 The exact solution of Eq. (33) for α = 1
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