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Background
Three-dimensional modeling of geo-objects (like rock mass, underground tunnel, etc.) 
plays an important role in various fields of engineering, like rock mechanics, geology, 
civil and mining. Some of the existing methods for 3D modeling of geo-objects include 
models generated from laser scanner, CAD based 3D modeling of underground tunnels 
and traditional surveying. However, CAD-based modelling is a completely manual pro-
cess. Modelling of a large-scale environment using CAD-based modelling softwares is 
extremely difficult, mainly due to the irregular geometries of the objects present in the 
scene being modelled.

Abstract 

3D reconstruction of geo-objects from their digital images is a time-efficient and 
convenient way of studying the structural features of the object being modelled. This 
paper presents a 3D reconstruction methodology which can be used to generate 
photo-realistic 3D watertight surface of different irregular shaped objects, from digital 
image sequences of the objects. The 3D reconstruction approach described here is 
robust, simplistic and can be readily used in reconstructing watertight 3D surface of 
any object from its digital image sequence. Here, digital images of different objects are 
used to build sparse, followed by dense 3D point clouds of the objects. These image-
obtained point clouds are then used for generation of photo-realistic 3D surfaces, 
using different surface reconstruction algorithms such as Poisson reconstruction and 
Ball-pivoting algorithm. Different control parameters of these algorithms are identified, 
which affect the quality and computation time of the reconstructed 3D surface. The 
effects of these control parameters in generation of 3D surface from point clouds of 
different density are studied. It is shown that the reconstructed surface quality of Pois-
son reconstruction depends on Samples per node (SN) significantly, greater SN values 
resulting in better quality surfaces. Also, the quality of the 3D surface generated using 
Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle 
threshold values. The results obtained from this study give the readers of the article a 
valuable insight into the effects of different control parameters on determining the 
reconstructed surface quality.
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Laser-scanner based 3D reconstruction of rock-face is fast and accurate; it also gives 
photo-realistic textured 3D models of a scene or object. However, as laser scanners are 
very expensive, they are not widely used to study the geo-mechanical characteristics 
of rocks, underground tunnels, etc. These problems in the existing 3D modelling tech-
niques have inspired researchers in using photogrammetry to create photo-realistic 3D 
objects from digital images of different scenes. 3D reconstruction using digital images 
can be used for mapping and photo-realistic modelling of outdoor geo-objects like rock 
mass. As digital cameras and computers are pretty common in households and indus-
tries these days, the cost of image-based reconstruction process is negligible.

In this paper, a 3D surface reconstruction framework is discussed using which photo-
realistic 3D models of irregular shaped rock mass and other geo-objects can be obtained, 
using digital images of the objects. Using correspondence matching across the digital 
image sequences, a dense 3D point cloud of the geo-object is obtained. Then, surface 
reconstruction algorithms are run on the point cloud to generate a watertight surface 
over those points. The Poisson Surface Reconstruction and Ball-Pivoting algorithms for 
surface reconstruction are used in several dense point cloud of geo-objects (obtained 
from digital image sequence), changing the parameters affecting the reconstruction pro-
cess. The effects of these control parameters on the quality of the generated surface are 
studied. The variation of computation time with respect to the control parameters is also 
studied.

Related work
3D surface reconstruction from a digital image sequence of a scene or object is a chal-
lenging and important task in computer vision. Several surface reconstruction algo-
rithms have been used by different authors over the past decade, in order to get a 
photo-realistic and accurate surface reconstruction from image sequences of different 
objects.

Boissonnat (1984) proposed an algorithm based on tangent plane estimation. In this 
algorithm, for a given point cloud, the neighborhood of each point is selected. The 
selected points are then projected on a tangent plane. Tangent planes are computed for 
each point in the point cloud using Delaunay triangulation. From these tangent planes, 
the approximate surface surrounding the point cloud can be found out. However, this 
method is computationally exhaustive, as the tangent plane needs to be calculated at 
each point in the cloud. Also, this algorithm is highly susceptible to noise.

The approach proposed by Hoppe et  al. (1992) works on principle of tangent plane 
estimation and tracking of contours, generated from point clouds. Here, principle com-
ponent analysis (PCA) is used for estimation of tangent planes. The direction vectors of 
the normals of the tangent planes are found out by estimating the eigenvectors gener-
ated from PCA. Then, the marching cubes algorithm is used to extract surface from 3D 
points. However, this algorithm fails where the point clouds are of low density. This is 
because tangent planes can’t be accurately estimated for sparse point cloud.

Delaunay triangulation/Voronoi diagram based reconstruction is another popular 
reconstruction approach, used by many researchers in this field. Voronoi-based surface 
reconstruction algorithm was first proposed by Amenta et  al. (1998). The Crust algo-
rithm, as described by Amenta et al. (2000), computes the Voronoi diagram of the points 
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in the point cloud. Then, Delaunay Triangulation is computed using the Voronoi dia-
grams over the point cloud. A 3D crust is reconstructed by obtaining the all triangles 
connecting three points from the Delaunay triangulation. The time complexity of this 
algorithm is O (n log n).

The Tight Cocone Algorithm proposed by Dey and Giesen (2002) uses Cocone trian-
gles (Amenta et al. 2000) of the point cloud. After computation of Cocone triangles, tet-
rahedral triangles are marked as ‘in’ or ‘out’. The reconstructed surface is generated by 
joining the triangles marked as ‘in’. This algorithm has a computational complexity of 
O (n2). Also, this algorithm is not robust enough to handle noisy and low density point 
cloud.

The main idea behind the Power Crust algorithm (Amenta et al. 2001) is an approxi-
mation of the reconstructed surface, taking the union of median balls. The surface is 
represented as a polygon, obtained from the polar balls using the Voronoi diagram. This 
algorithm is robust as it is expressed in terms of boundary cells of a solid object. No 
hole-filling mechanism is required in this surface reconstruction algorithm, as it cap-
tures the actual geometry of the surface. However, noisy data cause scattering of points 
away from the surface.

The Ball-Pivoting algorithm (BPA) (Bernardini et al. 1999) is used for surface recon-
struction from a dense point cloud. A seed triangle is selected as the starting point of the 
mess generation. A ball of predefined radius is then pivoted along an edge of the triangle 
and rolled through the point cloud until it touches another point in the point cloud. The 
newly found point is joined with the pivoting edges to form another triangle. As the ball 
rolls through the entire point cloud, a 3D mesh is formed, joining the triangles that are 
created by the rolling ball. This 3D mesh is the output of the BPA algorithm. As the ball 
is pivoted until all the points in the point cloud is scanned, this process is data driven 
and sensitive to noise.

The ball-pivoting takes a lot of time to complete and is memory intensive. So, parallel 
processing of this algorithm was implemented for this algorithm in by Digne (2014) in 
his paper. For point cloud of varying density, BPA was done with multiple ball radii. A 
hole-filling algorithm was implemented for portions of point cloud having low-density. 
Also, adaptive ball radius was used for reconstructing point clouds of non-uniform den-
sity. Ball radius was taken as a function of sampling density of the point cloud.

Poisson surface reconstruction (Kazhdan et  al. 2006) forms a Poisson equation for 
solving the best-fit surface of a dense point cloud. In this approach, point clouds with 
oriented normal are required as input. An indicator function is defined whose value is 
one inside and zero outside the reconstructed. The gradient of the indicator function is 
then equated to a vector field, built from the point cloud normal vectors. Then, Poisson 
equation is formed and is solved to get the indicator function. The watertight surface is 
reconstructed using the marching cubes algorithm and stored in an octree.

In original Poisson reconstruction approach (Kazhdan et  al. 2006), all points in a 
point cloud were used to extract the reconstructed surface. Kazhdan and Hoppe (2013) 
extended the Poisson surface reconstruction technique, incorporating sample weight 
values assigned for interpolation of missing points. Li et al. (2010) proposed an improve-
ment to the Poisson reconstruction algorithm. The marching cube (MC) algorithm, used 
for surface extraction from indicator function, was improved to use interpolation and 
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fast searching between points in the point cloud. This modification made the surface 
reconstruction computationally efficient. Also, the reconstructed surface came out to be 
more detailed.

Methods
The methodology applied for 3D surface reconstruction of geo-objects from a digital 
image sequence is pictorially described in Fig. 1. The main input of the surface recon-
struction process is a digital image sequence of the scene or object being reconstructed. 
Figures  2 and 3 shows some images of the two image sequences, which were used as 
inputs in this paper. The basic concepts of surface reconstruction from uncalibrated 
image sequence can be found in (Koch et al. 2000).  

Detection of feature points

The first step in 3D reconstruction of an object from its digital images is correspondence 
matching. Corresponding points refer to those points across the images, which are the 
projection of a same 3D point of the object being imaged. For correspondence match-
ing, a set of distinctive feature-points are detected in each image. These feature points 
are searched for correspondence across the rest of the images. All the feature points are 
then matched across the images, for the correspondence matching to be complete.

Detecting the feature points in an image reduces the number of points to be matched 
for correspondence. Exhaustive matching of all the pixels of an image with the pixels of 
another image is computationally expensive. Also, the robust feature points are readily 
distinguishable and invariant to image transformations. Thus, the computation time of 
correspondence matching is greatly reduced by detecting feature points in the images. 

Fig. 1  Flow diagram of the surface reconstruction process

Fig. 2  Image sequence of a rock-mass
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SIFT (Scale-Invariant Feature Transform) algorithm is used for detection of feature-
points in an image.

Structure from motion

Structure from motion (Sfm) is an iterative process of calculating the 3D positions of the 
corresponding matched points along with the camera parameters, from a set of matched 
points in an image sequence. This process is successfully implemented in sparse point 
cloud building from large image sequences, as has been described in (Agarwal et  al. 
2009).

Correspondence matching of feature points

The first task in structure-from-motion process is finding out the correspondence 
matches for the SIFT detected feature points, across the images. Here, approximate 
nearest neighbor search is used for finding out the matched points as algorithms like 
normalized cross correlation (NCC) and brute force method are computationally expen-
sive, hence infeasible. Approximate nearest neighbor (ANN) search uses the three 
dimensional k-d tree data structure for implementation of correspondence matching. 
The following steps are followed in feature matching between images:

(a)	 An image pair, having some overlapping portion of the scene/object between them, 
is selected from the image sequence.

(b)	 All the feature points from one image are inserted into the leaves of the k-d tree. 
The feature points belonging to the other image of the pair are used as queries to 
the first image. The complexity of building the k-d tree in O (n.log n).

(c)	 Then, the k-d tree is used for efficient search of K-nearest neighbor of a feature 
point X. The threshold distance R is selected according to the image resolution. The 
time complexity of this search is ~O (log n).

(d)	 This search across the k-d tree leaves result in correspondence matching of the fea-
ture points in the image pair.

Fig. 3  Image sequence of a stair case
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(e)	 The matched points are then checked for accuracy using RANSAC based estima-
tion of the fundamental matrix. Those matched points, which are not satisfying the 
fundamental matrix equation, are rejected as mismatches.

Sparse point cloud building using bundle adjustment

After finding out the matched points across the image sequence, all sets of matched 
point sets are triangulated to retrieve the 3D location of the points in the object. This tri-
angulation process builds a three-dimensional point cloud in space, each point belong-
ing to some portion of the object/scene being reconstructed. This triangulation process 
is done using Bundle Adjustment (BA) method.

Bundle adjustment is a non-linear least-square optimization technique. A number of 
authors have used this optimization technique, including Lhuillier and Quan (2005), 
Agarwal et al. (2009). It is used to add and refine triangulated 3D points in an iterative 
approach by estimation of camera poses and relative motion between the image frames. 
BA uses a cost function to minimize the reprojection error between the 3D point trian-
gulated by structure-from-motion and the observed location of the 3D point. After a 3D 
point is triangulated from a corresponding point pair, several more images are added 
to the system having the same sets of corresponding points. All the matched points are 
iteratively added to the triangulation. The error being propagated by triangulation is 
minimized as more and more matched points are used to triangulate a 3D point. Sparse 
point cloud generated from structure-from-motion process is shown in Figs. 4 and 5.

Dense correspondence matching

Sparse point cloud generated using sfm only have 3D coordinates of SIFT identified 
feature points in it. The resulting point cloud is of low density and is inappropriate for 
reconstruction, as it does not contain finer details of the object being reconstructed. 
Hence, dense correspondence matching is needed to obtain a dense point cloud. While 
interpolating the sparse point cloud to build the dense point cloud can be done, several 
finer details in the object are missed out during the process, and object geometry cannot 
be retained exactly by interpolation methods. In dense correspondence matching, all the 

Fig. 4  Sparse point cloud of a rock mass
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points in the image are searched for corresponding points across the image sequence. 
The dense correspondence matching process, as described in (Alcantarilla et al. 2013), 
gives a dense 3D point cloud from a large image sequences, accurately describing the 
geometry of the scene or object being reconstructed.

As there are several million pixels in a standard digital camera image, exhaustive 
search for all the pixels in the images are computationally exhaustive and thus infeasible. 
The following steps are undergone during a dense stereo matching:

(a)	 A few image frames with minimal camera motion is selected from the image 
sequence. By doing this, image redundancy is addressed as image frames having 
large camera motion between them have less amount of overlapping object regions. 
So, adding two frames with large camera motion does not give many corresponding 
points.

(b)	 Dense stereo matching is run in these camera frames to obtain a dense 3D point 
cloud of the overlapping object region. Real-time plane sweeping algorithm is used 
in each of the image frames during stereo matching. The basic idea behind this pro-
cess is epipolar geometry. Two corresponding points in a stereo setup follow an 
epipolar constraint, because of which, the corresponding point in an image frame 
will lie along the epipolar line. This constraint reduces the correspondence point 
search area from 2-D plane across the entire image, to a one dimensional epipolar 
line existing in the stereo image pair counterpart.

(c)	 Real-time plane-sweeping method is implemented by sweeping a plane through 3D 
space, across the image frames following the camera positions. Light rays from all 
the pixels of the images are projected into the respective imaging planes.

(d)	 These rays, when back projected towards the object/scene being reconstructed, 
intersect each other at 3D points. These points come from all the points across the 
images. So, the intersection of these rays results in a dense collection of points in 

Fig. 5  Sparse point cloud of a stair case
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3D space, which represent the object/scene being imaged. The obtained point cloud 
preserves the object geometry and form a dense 3D point cloud.

Figures  6 and 7 show dense point cloud obtained through the above process, from 
sparse point clouds in Figs. 4 and 5. The point cloud stores the 3D (X, Y, Z) coordinates 
and preserve RGB color information. Additionally it has normal vectors (nx, ny, nz) at 
each of the 3D points.

Generation of 3D watertight surface from dense 3D point cloud

After obtaining the 3D dense point cloud, 3D watertight surface needs to be constructed, 
over the point cloud. For construction of surface over a 3D dense point cloud, the point 
cloud needs to have 3D coordinates (X, Y, Z) and surface normals (nx, ny, nz) at each 
point. The surface normals for each point in a point cloud may be calculated from its (X, 
Y, Z) coordinates using principal component analysis (PCA). PCA is used to find out the 

Fig. 6  Dense point cloud of the rock mass

Fig. 7  Dense point cloud of the stair case
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eigenvector of a point in the point cloud over its local neighborhood. Additionally, the 
dense point cloud generated from image sequence has color information (RGB) attached 
to each of the points. A number of existing surface reconstruction algorithms have been 
tested over the point cloud obtained from digital images. The performance analysis of 
these reconstructions algorithms are done w.r.t time, resource usage, quality of recon-
struction, etc. Brief overviews of these algorithms are given in the following section.

Poisson surface reconstruction

Poisson surface reconstruction aims at creating a 3D mesh from a dense point cloud, by 
minimizing the difference between the surface normal directions of the reconstructed sur-
face and the 3D points in the point cloud. The algorithm is described in details in (Kazh-
dan et al. 2006). A flowchart of the Poisson reconstruction algorithm is given in Fig. 8.

The basic steps involved in the Poisson surface reconstruction algorithm are:

(a)	 A 3D indicator function x is defined in 3D space, so that its value is 1 inside the 
surface (the surface to be created) and 0 at points outside the surface. This indicator 
function needs to be approximated for reconstruction of a watertight surface. 

(b)	 Gradient of the indicator function is a vector field, as x is a piecewise continuous 
function. ∇x is non-zero only at the points near surface as those areas have changes 

x(p) =

{

1 if p ⊂ M
0 if p �⊂ M

Fig. 8  Flowchart of Poisson surface reconstruction
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in value of x. (Value of x is 1 inside the surface and 0 outside. So changes in x only 
occur near the surface).

(c)	 At the points where ∇x has non-zero value, the value of ∇x is found out to be equal 
to the surface normal vectors of those points. Thus the oriented normal vectors of 
the point samples can be taken to be the samples of ∇x (grad of indicator function).

(d)	 So, the problem is reduced to finding out the indicator function x, whose gradient 
∇x is best-fit to the vector field V defined by the input point cloud. The equation 
can be expressed mathematically as: 

(e)	 To convert the above equation to a standard Poisson problem, divergence operator 
is applied to both sides of the equation. As divergence of gradient is Laplacian, the 
problem is transformed into finding out the function x, whose Laplacian equals the 
gradient of vector field V· (∇·V) is a function representing the surface normals at 
each point of the point cloud.

To solve the Poisson equation, the indicator function needs to be represented in 3D 
space. As per the definition of the indicator function, the value of the x needs to be accu-
rately described near the surface, as we are interested in finding out the 3D surface near 
the point cloud. As can be interpreted, the value of the function away from the surface 
is zero, and need not be calculated far away from the point cloud. An adaptive spatial 
octree is used to represent the indicator function x. Each of the leaf nodes of the octree 
stores the values of x at different points across the reconstructed surface.

The surface is extracted from the indicator function by using the marching cubes algo-
rithm. An octree of predefined depth is used to store the dense point cloud. A march-
ing cube is used to march through the 3D point cloud. The point cloud is divided into 
several voxel grids in the octree, as the marching cube passes through the points. The 
cube follows the indicator function, whose value is 1 near the surface and 0 away from 
the surface. After the marching cube traverse through the entire octree, triangulated 3D 
mesh are created by interpolating the points between the cube vertices. The 3D mesh 
created by the marching cubes algorithm is stored in the octree, over the point cloud.

Parameters affecting Poisson surface reconstruction

Poisson surface reconstruction depends upon a number of parameters. The recon-
struction quality, computation time, etc. are affected by these control parameters. The 
influence of the parameters [as discussed in (http://www.cs.jhu.edu/misha/Code/Pois-
sonRecon/Version7.0/ and (http://vr.tu-freiberg.de/scivi/?page_id=365)] on the recon-
struction quality is discussed in the results section of this paper.

Octree depth Octree depth is the depth of the octree which is used during the recon-
struction process. An octree of depth D produces a three dimensional mesh of resolu-
tion 2D ×  2D ×  2D. As the octree depth increases, mesh resolution increases. So, the 
memory consumption is also increased drastically. The default value of octree depth 
used in Poisson reconstruction is eight.

∇x = V

�x ≡ ∇ · ∇x =∇ · V

http://www.cs.jhu.edu/misha/Code/PoissonRecon/Version7.0/
http://www.cs.jhu.edu/misha/Code/PoissonRecon/Version7.0/
http://vr.tu-freiberg.de/scivi/%3fpage_id%3d365
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Solver divide Solver divide specifies the depth up to which a conjugate gradient solver 
is used to solve the poisson equation. Beyond this depth, Gauss–Seidel relaxation is 
used. If the solver divide is increased, computation time decreases as at greater value, 
Gauss–Seidel relaxation is used instead of gradient solver to solve the equation.

Samples per node Samples per node indicates the minimum number of points that is 
assigned at each octree leaf node by the marching cube algorithm. In case of noisy data, 
higher number of points are assigned in an octree, so that the surface is interpolated 
using all those points. This results in nullifying the effect of noise in the generated 3D 
surface. However, when noise free and accurate point cloud data is available, a value of 
1–5 may be assigned to this variable.

Surface offsetting This parameter indicates a threshold correction value for the recon-
structed surface. Value of 1 indicates no correction, <1 is used for internal offsetting and 
value of >1 is used for external offsetting.

Ball‑pivoting algorithm for surface reconstruction

Ball pivoting algorithm (BPA) is another efficient surface reconstruction method. In 
BPA, a ball of predefined radius is rolled across the point cloud. As the ball traverses 
through the cloud, triangular interconnected 3D meshes are formed, joining the 3D 
points. The ball rolling is continued until all the points in the point cloud are attached to 
a triangle (Bernardini et al. 1999). The basic principle of BPA is discussed in two steps.

(a)	 The first step of the algorithm, as described in Fig. 9, is to find a seed triangle inside 
the point cloud. This process starts with picking up a point from the point cloud. 
Two nearest neighbors of the point are selected and a triangle is formed using the 
three points. Then, the circumsphere of the triangle is checked if it has any points 
inside it. If the sphere does not have any point inside it, the triangle is selected as 
the seed triangle. Else, another point is picked from the point cloud.

Fig. 9  Flowchart of Ball-pivoting algorithm (Step a)
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(b)	 Next, the seed triangle needs to be expanded by rolling the circumsphere, which 
is a ball of radius ρ. This ball is pivoted around the active edge of the seed triangle 
until it touches another point in the point cloud. The new-found point is joined to 
the endpoints of the pivoting edge of the triangle, to form another triangle. This 
process continues until all the points in the point cloud are traversed through and 
joined by triangles. This way, a 3D mesh is created over all the points in the point 
cloud. The procedure is described in Fig. 10.

When the ball is traversed through the points, some holes are generated in the trian-
gulated mesh, either due to the lack of points, or lack of oriented normals in the point 
cloud. These holes in the generated mesh are filled up by creating triangles joining the 
boundary edges of the holes. As BPA algorithm strongly follows the 3D points in the 
point cloud, presence of noise has a significant impact on the reconstructed surface. 
Noise handling can be done by using adaptive ball radius during the ball pivot recon-
struction. BPA algorithm is data-driven, and it usually takes a longer time to generate 3D 
surface than Poisson reconstruction algorithm.

Parameters affecting Ball‑pivoting algorithm

Several parameters affect the quality of the 3D surface created using BPA algorithm. 
These parameters are:

Ball radius The most important parameter of BPA is ball radius (ρ). The algorithm is 
very sensitive to changes in ball radius. Using a very small radius makes the model sus-
ceptible to input noise. Using large ball radius results in loss of details in the model and 
holes are generated in the surface. The 3D surface generated using a ball of radius ρ can’t 
handle a surface curvature larger than 1/ρ. This is because, the pivoting ball can’t reach 

Fig. 10  Flowchart of Ball-pivoting algorithm (Step b)
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the region where the curvature is higher than 1/ρ. In case of noisy data, slightly larger 
ball radius is encouraged, as it tends to cancel out the noise effect in the point cloud.

Angle threshold Angle threshold is the value of the maximum allowable angle between 
the active edge and the new edge created by the rolling ball. If the angle exceeds the 
threshold value, the ball rolling is stopped for that region. Increase in angle threshold 
value results in an increase in computation time.

Clustering radius Clustering radius is the smallest allowable distance between a newly 
added point to the mesh and the edge points of the active edge. If the distance between 
two points is smaller than clustering radius, the two points are merged together. This is 
done to avoid excessive memory consumption due to generation of too many small tri-
angular meshes while processing dense point cloud.

Results
Several point clouds were generated from digital image sequences of different geo-scenes 
and objects, for performance analysis of the 3D reconstruction algorithms. Poisson and 
Ball-pivoting surface reconstruction algorithms were implemented on the point clouds, 
to obtain realistic 3D surface of the captured scene or object. Different parameters affect-
ing the surface reconstruction process during Poisson and Ball-pivoting surface recon-
struction were analyzed in details, by changing the control parameters affecting the 
reconstruction quality. Figures 11 and 12 show the 3D reconstructed textured surfaces of 
a rock mass and a stair case, generated using the methodology discussed in this paper. All 
the results demonstrate here were obtained from a laptop having an Intel core i5-3230M 
dual core processor having 8 GB DDR3 RAM. Different curves in each of the graphs dem-
onstrated in the results section, indicate changes in computation time w.r.t the control 
parameter being studied, while using different sets of values for the other parameters.1

Poisson reconstruction algorithm was used to generate 3D surfaces over a number 
of dense 3D point clouds. The parameters affecting the Poisson reconstruction process 
(as discussed in “Parameters affecting Poisson surface reconstruction” section) were 
changed with respect to each other and the reconstruction time, as well as the number 
of 3D faces created were noted down. The reconstruction quality and computation-time 
for the generated surfaces were used to study the effect of the said parameters, on the 
surface generation process.

Octree depth was found to be one of the most important parameters in Poisson sur-
face reconstruction. This value represents the depth of the octree being used to store the 
3D surface mesh of the reconstructed object. As the octree depth increases, the resolu-
tion of the 3D mesh increases exponentially. Figures 13, 14, 15, 16 shows 3D surfaces 
created over a dense point cloud, using octree depths of 6, 8, 10 and 12 respectively. 
As can be seen from these figures, with the increase of the octree depth, quality of the 
reconstructed surface increases. However, as the resolution of the mesh increases, com-
putation time also increase with the increase in octree depth value. The effect of octree 
depth on computation time for the surface generation process is shown in Figs. 17 and 
18. The exponential increase in computation time w.r.t octree depth is expected, as 
octree of depth d produces a three dimensional mesh containing 2d × 2d × 2d triangular 

1  The datasheet of the generated graphs is submitted as a supplementary excel sheet (Additional file 1).
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faces. As can be seen from the equation, the mesh resolution (hence computation time) 
is exponentially related to octree depth d.

Samples per node (SN) is the number of points assigned by the matching cubes algo-
rithm to each octree leaf, during Poisson surface generation process. Increasing the 

Fig. 11  3D reconstructed textured surface of the rock-mass

Fig. 12  3D reconstructed textured surface of the stair case

Fig. 13  Poisson reconstruction of the rock-mass—octree 6
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value of SN improves the overall quality of the reconstructed surface. Figures 19 and 20 
show the surface of a reconstructed rock-mass using Samples per node values of 1 and 6 
respectively. As can be seen from Fig. 19, the reconstructed surface is top-spliced, when 
using the SN value of 1. However, using SN value of 6 solves the problem, and the regen-
erated surface retains the geometry of the object (Fig. 20). This can also be explained by 
the fact that, for higher values of SN, the marching cubes algorithm has more sample 
points in each octree leaf to reconstruct the surface from. However, 3D surfaces that 
are generated using higher values of SN, have some surface-smoothing effects (Fig. 20). 
Also, finer details of the surfaces are lost for very high values of SN. For point clouds 

Fig. 14  Poisson reconstruction of the rock-mass—octree 8

Fig. 15  Poisson reconstruction of the rock-mass—octree 10
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having low density and noise, higher values of SN is recommended for accurate surface 
reconstruction.

Furthermore, when the value of SN is increased, the computation time for the sur-
face generation decreases. This is due to the fact that, with increase in value of SN, the 

Fig. 16  Poisson reconstruction of the rock-mass—octree 12
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Fig. 17  Octree depth vs computation time, 140,000 points
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Fig. 18  Octree depth vs computation time, 80,000 points
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number of 3D points assigned to each octree leaves is increased. Increased number of 
3D points in an octree leaf reduces the time complexity of the operation, as there are 
more sample points in a leaf to interpolate the 3D surface from. Figures 21 and 22 shows 
the change in computation time with respect to SN values, for two dense point clouds 
containing 140,000 and 80,000 numbers of 3D points respectively. In these figures, the 
computation time is plotted against the SN values, by increasing the SN values while 
keeping other parameters constant. Here also, the decrease in computation time follows 
an exponential curve. 

Solver divide is another parameter which plays an important role in Poisson surface 
reconstruction. This parameter specifies the depth up to which a conjugate gradient 

Fig. 19  Reconstructed surface (top-sliced) of the rock-mass, SN-1

Fig. 20  Reconstructed surface of the rock-mass, SN-6
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solver is used to solve the poisson equation. Beyond this depth, Gauss–Seidel relaxation 
is used. Increase in solver divide value leads to decrease in computation time. This trend 
can be observed in Figs. 23 and 24. These graphs were generated by increasing the Solver 
divide, while keeping the rest of the parameters constant. These figures demonstrate the 
variations in computation time w.r.t solver divide values, while reconstructing dense 
point clouds having 140,000 and 80,000 numbers of 3D points.

Ball-pivoting surface reconstruction is another successful and robust surface recon-
struction algorithm from point cloud of reasonable density. In this paper, Ball-pivoting 
algorithm (BPA) is also used to reconstruct surface over a number of dense point clouds. 
Here also, the parameters affecting BPA (as discussed in “Parameters affecting Ball-piv-
oting algorithm” section) for surface generation is studied in details and the effects of 
these parameters on the reconstruction quality and computation time are discussed.

A staircase that has been reconstructed using BPA is shown in Fig.  25. Figure  26 is 
obtained by increasing the ball radius of the BPA process by 30 %. As the ball radius (BR) 
is gradually increased, the quality of the reconstructed surface decreases. For increased 
ball radius, holes begin to appear in the surface. This behavior is demonstrated in Fig. 26, 
where increased ball radius in BPA results in more holes in the surfaces of the stair case. 
This is due to the fact that, a ball of larger radius tends to ignore the 3D points nearer 
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Fig. 21  Samples per node vs time, 140,000 points
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Fig. 22  Samples per node vs time, 80,000 points
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to its pivot triangle and jump to a point further away from its nearest neighborhood. 
The ignored points remain unmeshed and create holes in the model. However, for noisy 
point cloud, a larger ball radius is generally preferred, as the noise adjacent to the piv-
oting triangle gets ignored by a larger radius balls, thus a smooth noise-free surface is 
obtained.

Computation time is significantly affected by the ball radius. Increase in ball radius 
up to a threshold value results in significant increase in computation time. After the 
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Fig. 23  Solver divide vs computation time, 140,000 points
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Fig. 24  Solver divide vs computation time, 80,000 points

Fig. 25  BPA obtained surface of a staircase, small ball-radius
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threshold value of ball radius, however, the computation time decreases. This is due 
to the fact that, increasing the ball radius after a limiting value results in generation of 
holes in the 3D model, as has been shown in Fig. 26. Hole generation starts when the ball 
starts skipping several points in the nearest neighborhood of the pivoting edge. Due to 
this, the ball traverses less number of points and computation time decrease. However, 
choosing the ball radius higher than the threshold value is not recommended. When the 
ball radius value exceeds the threshold value, degradation of the reconstruction quality 
takes place, due to presence of holes in the surface. The relation of computation time 
with ball radius is graphically explained in Figs. 27 and 28. These graphs were obtained 
by increasing the ball radius gradually, while BPA operation was carried out on two 
dense point clouds having 140,000 and 80,000 3D points.

Clustering radius (CR) is another important parameter, which affects the quality of the 
surface reconstruction in BPA. CR is usually expressed in terms of percent of ball radius 
(BR). This distance denotes the minimum allowable distance between two points in the 
3D mesh. If two points in the meshed point cloud are closer than CR, they are merged 
together to form a common vertex. The merging is done to avoid excessive memory 
consumption in generating and storing the 3D mesh from a dense point cloud. Increase 
in CR results in decrease of computation time. This is because, larger CR value results 
in merging of more points in the point cloud, thus decreasing the number of available 

Fig. 26  BPA obtained surface of a staircase, increased ball-radius
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Fig. 27  Ball radius vs computation time, 140,000 points
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points for the ball to traverse through. This trend can be visualized in Fig.  34, where 
computation time is plotted against increasing CR values.

However, due to the excessive merging of adjacent 3D points in the point clouds, larger 
CR results may result in incomplete surface generation with holes. Also, sometimes, use 
of higher CR value results in 3D surfaces where important features of the object is lost. 
This behavior can be seen from Figs. 29 and 30. Use of larger CR during BPA process 
results in loss of the flower tub from Fig. 30, whereas the tub is present in Fig. 29, when 
a smaller CR value is used. The flower tub being discussed, is highlighted in Figs. 29 and 
30. Also, the edges of the staircase in Fig.  30 is broken and the overall quality of the 
reconstruction is bad as large CR value was used during the reconstruction.

Angle threshold is the value of the maximum allowable angle between the active 
edge and the new edge created by the rolling ball. If the angle exceeds the user defined 
threshold value, new edge creation is stopped and the corresponding vertex is omitted 
by the ball. This is done to stop creation of triangular mesh with high obtuse angles. 
Increase in angle threshold value results in increase of computation time, as more edges 
are added to the 3D mesh by the rolling ball. This trend is visible from Fig. 31. However, 
use of smaller values of the angle threshold leads to omission of mesh creation in a lot of 
points. This results in loss of details in the reconstructed surface. Figures 32 and 33 rep-
resent two reconstructed surfaces, having angle threshold values of 90° and 30° respec-
tively. In Fig. 33, a lot of edges were stopped from being created by BPA, as the angle 
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Fig. 28  Ball radius vs computation time, 80,000 points

Fig. 29  BPA generated surface using CR value = 5 % of BR
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made by the new edge with the pivoting edge exceeded 30°. Predictably, the surface in 
Fig. 33 has suffered from loss of details.

Conclusion
This paper presents a 3D reconstruction framework, which is used to reconstruct photo-
realistic 3D watertight surfaces of regular and irregular shaped objects, using digital 
images of the objects. Here, digital images of geo-objects were used to obtain sparse, 

Fig. 30  BPA generated surface using CR value = 30 % of BR
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Fig. 31  Angle threshold vs computation time

Fig. 32  BPA using angle threshold of 90°
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followed by dense 3D point clouds of the objects. These 3D point clouds (having oriented 
normal, and RGB color information for each points) were used for generation of 3D water-
tight surface of the objects. Poisson surface reconstruction and Ball-pivoting algorithm for 
surface reconstruction were used to generate accurate and photo-realistic 3D surface over 
the dense point clouds. Performance analysis of these two reconstruction algorithms were 
done by studying the effects of changing the control parameters, on the quality of recon-
structed 3D surface. Some of the key aspects of this study are discussed below.

A simplistic 3D reconstruction approach

A methodology has been discussed, using which 3D reconstruction of a geo-object 
or scene can be done using digital image sequence of the object. Dense point clouds, 
obtained from correspondence point matching across the digital image sequence of an 
object, is used to generate photo-realistic 3D surface of the object. The dense 3D point 
clouds are processed using two existing surface reconstruction algorithms: Poisson Sur-
face reconstruction algorithm and Ball-pivoting algorithm for surface reconstruction. 
Later, photo-realistic texture integration was done over the generated 3D surfaces to 
generate complete 3D model of the objects being studied.

The 3D reconstruction methodology described and used here is based on several pre-
viously established algorithms in fields of correspondence matching, structure-from-
motion, surface reconstruction etc. Rather than going into detailed mathematics involved 
in development of these algorithms, the authors concentrated on applying these existing 
algorithms to develop a cost-effective, robust and simplistic solution to the 3D reconstruc-
tion problem. The approach mentioned in this paper can be readily used in industries due 
to its robustness, speed and ability to reconstruct complex geo-objects with highly irreg-
ular geometry. With its low manpower requirement and almost zero operating cost, the 
photogrammetry based 3D reconstruction approach discussed here can effectively replace 
the expensive laser-scanners as primary 3D mapping methods in industries.

Poisson surface reconstruction and its control parameters

Poisson surface reconstruction is one of the algorithms which was used to generate 3D 
surface from dense point clouds obtained using digital images of the objects. The effect 
of the control parameters of Poisson surface reconstruction on quality of 3D surface is 
summarized below.

Fig. 33  BPA using angle threshold of 30°
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(a)	 Octree depth Octree depth used during the Poisson surface reconstruction plays 
a key role in surface generation from dense point cloud. Increase in octree depth 
results in high resolution 3D mesh, thus improving the overall quality of the surface 
(Figs. 13, 14, 15, 16). This fact can be directly inferred from studying the Poisson 
reconstruction algorithm, as the number of faces in a surface of octree depth d is 
2d × 2d × 2d. On the downside, surface generation time and CPU resource usage 
drastically increase with the increase in Poisson reconstruction octree depth.

(b)	 Samples per node Samples per node is another important parameter affecting 
the quality of the 3D surface generated using Poisson reconstruction algorithm. 
Increasing the samples per node value adds more 3D points in each octree leaf. As 
a result, the computation time decreases with increase in this parameter (Figs. 21, 
22). With the increase in the samples per node value, marching cubes algorithm 
can use more points in each octree grid point while reconstructing the surface 
(Figs. 19, 20). So, noisy and low density point cloud can be reconstructed accurately 
using larger values of samples per node.

Ball‑pivoting algorithm for surface reconstruction and its control parameters

Ball-pivoting algorithm (BPA) for surface reconstruction was also used to generate 
3D surface of the objects being reconstructed, in this article. The effects of the control 
parameters of BPA on quality of generated 3D surface is summarized below.

(a)	 Ball radius The quality of the reconstructed surface depends heavily on the ball 
radius. Increasing the ball radius causes loss of details and creation of holes in the 
reconstructed surface (Figs. 25, 26). Computation time also increase with increase 
in ball radius value, up to a certain threshold radius. After the thresholding ball 
radius, increase in the radius causes the computation time to decrease exponen-
tially, although the reconstruction quality goes down drastically as we go beyond 
the thresholding ball radius (Figs. 27, 28). A slightly larger ball radius is generally 
preferred in case of noisy and low density point clouds.

(b)	 Clustering radius Clustering radius is another parameter, which plays a key role 
in determining the quality of surface generation in BPA. When the value of this 
parameter is increased, the computation time for surface generation decreases 
(Fig. 34). However, increase in clustering radius causes loss of important details in 
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the 3D model being reconstructed, as merging of adjacent 3D point of the point 
cloud take place when larger values of clustering radius are used (Fig. 30).

(c)	 Angle threshold Angle threshold value used in BPA for surface generation is also 
important. The quality of the reconstructed surface improves with increase in angle 
threshold value. But, increase in angle threshold value leads to increase in com-
putation time (Fig. 31). An angle threshold value of 90° is generally preferred in a 
dense and noise free point cloud. Using smaller values of angle threshold leads to 
creation of holes in the 3D surface (Fig. 33).
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