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Background
In the highly competitive environment, an important strategic decision for an organiza-
tion is to optimize its product portfolio to stimulate sales and increase revenues (Ho and 
Tang 1998). Therefore, optimal product portfolios are interesting for many people over 
last decades. PPM is a dynamic decision process that analyzes production ability and 
market potential, and hence determines the optimal portfolio of products with consider-
ation of profit maximization (McNally et al. 2009). PPM is used to develop a set of prod-
ucts with their diversity such as attribute, attribute level, also simultaneously considering 
product performance, competitive environment information, engineering requirement, 
manufacturing procedure, and etc. (Cooper et  al. 1999). Thus, PPM problem is not a 
single-objective optimization but a multi-objective combinatorial optimization problem.

In recent years, with the development of product portfolio design, researches in differ-
ent perspectives of product portfolio optimization have been raised. Such as, consider-
ing product portfolio planning with the view of customer–engineering interaction (Jiao 
and Zhang 2005); using a data mining method to manage a portfolio of products in the 
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cross-domain (Pachidi et al. 2014), but with little concerns in competitive environment 
or competitive relationship in the product portfolio optimization research.

According to Stackelberg, each firm in a competitive market can be a leader or a fol-
lower. The leader is a decision-maker and the follower is characterized as a firm that 
behaves according to a Nash reaction function (Colson et al. 2007). Therefore, the lead-
er’s PPM optimization results could be very different from the follower’s because of their 
disparate decision-making positions. Optimization for PPM problem with competitive 
environment considerations is not an optional issue, but a targeted one. In this paper, a 
hierarchical joint optimization model is developed in line with bi-level programming, in 
which focal manufacturer plays as a leader while others act as followers.

The rest of the paper proceeds as follows. Next section reviews related work regarding 
PPM and bi-level programming. PPM with competitive considerations is formulated as 
a leader–follower joint optimization problem in “Problem description” section. “Bi-level 
joint optimization” section elaborates the formulation of a bi-level optimization model 
for PPM. “Model solution” section develops a bi-level nested genetic algorithm for effi-
cient solution of the hierarchical joint optimization model. A case study of notebook 
computer is reported in “Case study” section and paper concludes in “Conclusions” 
section.

Related work
PPM

PPM problem is defined as a dynamic decision-making process in which some optimi-
zation criteria should be finished, such as share-of-choice (Sadeghi and Zandieh 2011). 
Four main goals of PPM are summarized by Cooper et al. (2002): (1) Value maximiza-
tion, (2) Strategic choice, (3) New product and technology choices and (4) Balancing 
resources. First, value maximization is to optimize resource allocation to gain the maxi-
mal value with this product portfolio. Strategic choice aims to ensure a right decision 
on the business strategy. And new product and technology choices link to what kind of 
active products, R&D projects and new technology are updated and revised. Balancing 
resources asks to ensure right number of projects (products) with limited resources and 
allocate resources between projects or products.

A sizeable body of research on PPM has been reported over the last decade, gener-
ally can be divided into four categories with different optimization goals (Otten et  al. 
2015). With value maximization goal, the fiscal optimization should be performed, and 
methods are much various, for example, Expected Commercial Value (ECV) method, 
Productivity Index (PI) and Return on Investment (ROI) method (Cooper et  al. 2001; 
Dickinson et  al. 2001). As for the second goal, Bai and Sarkis (2013) pointed out that 
strategic alignment is the most important success factor for developing business pro-
cesses and performance management. And a method for achieving strategic alignment 
with its product portfolio is called the strategic bucket method which is defined as a 
financial support for a new product development in line with an extraordinary strategy 
(Chao and Kavadias 2007). The third perspective is new product and technology choices. 
According to Barczak et al. (2009), performance of a company is coupled with the rate of 
innovative new product and technology practice. Meanwhile, current literature on PPM 
covers new product and technology choices with lifecycle consideration, and it’s just like 
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a project in new product design process (Tolonen et al. 2015). Balancing resources can 
be clarified by terms and parameters such as time, risk, markets and technologies (Tolo-
nen et  al. 2015). This process can be accomplished by developing a resource capacity 
analysis with the quantification of product’s demand for resources versus the availability 
of them (Otten et al. 2015).

Bi‑level programming

The theoretic ground form of bi-level programming formulation originates from the 
Stackelberg games (von Stackelberg 1952). Bi-level optimization refers to a mathemati-
cal programming which contains a sub-optimization problem as its constraint, first 
studied and proposed by Bracken and McGill (1973). Bi-level programming theory rap-
idly becomes an important branch in mathematical programming field because of its 
abstract of an essential class of hierarchical decision-making problems including Stack-
elberg Game. Although as a generalized form of mathematical programming, bi-level 
programming is very different from ordinary mathematical programming. Bi-level opti-
mization problems are complex and often belong to a higher complexity class than their 
corresponding single-level relaxations (Sakawa et al. 2011). For example, Jeroslow shows 
that even a linear bi-level programming problem is NP-hard (Jeroslow 1985). Du and 
Wang (2009) point out that when upper-level constraints contain the optimization solu-
tion of the lower-level problem the feasible region may become discontinuous. Bi-level 
programming is also much more complicated due to difficulties in solving the problems 
(Christiansen et al. 2001). Traditional solution approaches include vertex enumeration 
algorithms and methods based on Kuhn–Tucker (KKT) conditions or penalty functions.

Recent trends of bi-level programming mainly revolve around computing and solving 
this critical problem. One focus of researches is on the theoretical solutions. For exam-
ple, Ye and Zhu (2010) investigate for bi-level programming solutions based on the value 
functions. While another one focuses on the approximation solutions, for instance, 
Sakawa et al. (2011) work on fuzzy interaction-based satisfaction solutions for bi-level 
programming. The leader–follower Stackelberg and bi-level optimization have been 
applied in a number of fields, including networks (van Hoesel 2008), advertising (Aust 
and Buscher 2012), retailer supply chains (Xiao et al. 2014; Esmaeili et al. 2009), and sup-
ply chain contracts (Chen et al. 2012).

Problem description
Consistent with a Stackelberg game, product portfolio management can be formulated 
as a hierarchical optimization problem consisting of one upper-level and one or more 
lower-level decision-making agents. The former plays a leader’s role, denoted as F, 
whilst the latter acts as a follower, denoted as f. The leader’s decision-making results will 
serve as the constraints of followers’ optimization problem, whereas the followers feed 
their optimal solutions back to the leader for adjustment of the leader’s decision. For 
the leader–follower joint optimization problem, the leader and followers can be the real 
designers or design teams, or any virtual decision makers.

Figure 1 illustrates the bi-level decision model for product portfolio optimization. The 
leader F determines its selections firstly, and the follower f adjusts its product portfolio 
subjecting to the feasible regions given by the leader.
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Assuming that there is one leader and only one follower in the market place to simplify 
this bi-level optimization problem. The total number of products in leader’s product 
family is J and the follower’s is M, which are separately defined as a set {Rj} (j = 1, 2, …, J) 
and {rm} (m = 1, 2, …, M). With variant attributes and attribute levels, utility and cost of 
each product is very different. The optimal solutions will be sent to the follower as vec-
tors X and H after the leader’s decision-making according to marketing and engineering 
considerations, then the follower optimizes its PPM problem and sends solutions to the 
leader as a feedback. I construct a criterion of market share constraint as the coordi-
nated mechanism for this bi-level optimization problem to develop a more satisfactory 
product portfolio scheme for both leader and follower.

Bi‑level joint optimization
As described in Chapter 3, optimization for PPM problem aims to provide an optimal 
set of products with mixture of attributes into the target marketplace for both leader 
and follower (Jiao and Zhang 2005). In the following, I address how to formulate the 
bi-level programming model containing objective functions and constraints for this 
optimization.

Upper‑level PPM optimization

The upper-level deals with F-PPM problem by selecting appropriate combination from 
a number of J products. The decision variable of upper-level is xj (j = 1, 2, …, J) and {hjkl 
(k = 1, 2, …, J; l = 1, 2, …, L), both are binary variables. Such that xj = 1 indicates that 
product Rj is selected, and xj = 0 not. And hjkl = 1 means that the lth attribute level of 
the kth attribute is contained in the jth product and hjkl = 0 not. According to Jiao and 
Zhang (2005), economics surplus should be leveraged from both marketing and engi-
neering. This paper proposes to use an objective of shared surplus to optimize the PPM 
problem, as shown in Eq. (1).

(1)max
xj ,hjkl

F =

I
∑

i=1

J
∑

j=1

UF
ij

CF
j

PF
ij Qixj
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… …Product
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Fig. 1  Bi-level decision-making between leader and follower
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Assume UF
ij  is the utility of the ith segment for the jth product, which is a linear func-

tion of the part-worth utilities of the attribute levels of product Rj, as shown in Eq. (2).

where uFikl is the customer perceived utility of the ith segment for the lth level of the kth 
attribute; wF

jk is the weight of the kth attribute; πF
ij  is a constant related to the composite 

utility of product variant Rj by the ith market; and εFij  is an error term for each segment–
product pair.

I adopt the SIMOPT model for cost calculation, which is proposed by Kwong et  al. 
(2011). The cost function CF

j  can be formulated as follows:

where CF
j  is the cost of the jth product; cFkl is the variable unit cost for the lth attribute 

level of the kth attribute.
And according to the MNL model, the choice probability PF

ij  can be defined as Eq. (4), 
where μ is a scaling parameter. And Qi is the size of the ith market segment.

One of the most important mechanism for this bi-level programming is the market 
share constraint, which is the interaction between leader and follower, as shown in 
Eq. (5).

The upper-level constraints are mainly related to choice compatibility. For example, 
one attribute only can be chosen one corresponding level in one product. Other spe-
cial constraints may be introduced as well. For example, a differentiation condition con-
straint limits each product in the product line should be different from others.

Lower‑level PPM optimization

The lower-level is optimization for the follower’s PPM problem. The decision variables of 
the lower-level are also two binary choice variables ym (m = 1, 2, …, M) and zmns (n = 1, 
2, …, N; s = 1, 2, …, Sn). Such that ym = 1 means that product rm is selected, and ym = 0 
not. While zmns = 1 means that the sth attribute level of the nth attribute is contained in 
the mth product and zmns = 0 not. Similarly to the leader, the follower’s objective is the 
construction of shared surplus, as shown in Eq. (6).

(2)UF
ij =

K
∑

k=1

Lk
∑

l=1

wF
jku

F
iklhjkl + πF

ij + εFij , ∀i, j

(3)CF
j =

K
∑

k=1

Lk
∑

l=1

cFklhjkl , ∀j

(4)PF
ij =

exp
(

µUF
ij

)
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t=1 exp(µUit)

(5)

J
∑
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PF
ij Qixj ≤ Qi −

M
∑

m=1

P
f
imQiym, ∀i = 1, 2, . . . , I
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where Uf
im is the utility of the ith segment for the mth product; Cf

m is the cost of the 
mth product; Pf

im is the choice probability; and Qi is the size of the ith market segment. 
The constitution of these terms are as same as shown in “Upper-level PPM optimization” 
section.

The lower-level constraints are mainly about choice compatibility. For example, one 
attribute only can be chosen one corresponding level in one product. Other special con-
straints may be introduced as well. For example, a differentiation condition constraint 
limits each product in the product line should be different from others. The most impor-
tant choice constraint is from the upper-level, it forms the mechanism of bi-level pro-
gramming, defined as Eq. (5).

Hierarchical joint optimization model

Compiling Eqs. (1)–(6), I can obtain the general form of hierarchical joint optimization 
for leader–follower PPM problem, as the following:

(6)
max
ym,zmns
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∑
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∑
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The upper-level controls the lower-level through X and H, indicating a priority 
for determining PPM. The lower-level entails a nonlinear parametric programming 

(7h)
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problem, in which (X, H) are parametric variables, suggesting that parametric optimiza-
tion must be compatible with its own PPM problem. The lower-level returns an opti-
mum function Pf

im(zmns) as the feedback to the upper-level. Optimal solution (X*, H*, Y*, 
Z*) describes the design schemes for leader and follower, where X* and H* indicate the 
leader’s solutions and Y*, Z* are follower’s.

Model solution
Solution of bi-level programming tends to be much more complex than single-level opti-
mization problems (Christiansen et al. 2001; Bard 1998). Bi-level programming solutions 
are generally categorized as direct and indirect methods: solving the bi-level program-
ming directly or converting the bi-level programming to a single-level programming. 
Direct methods comply with the bi-level decision mechanism, starting with the upper-
level and find one solution first. Then the lower-level uses the corresponding upper-level 
variables as parameters to solve the lower-level problem.

Model (7) is a nonlinear programming with 0–1 variables, which is proved to be a NP-
hard problem. And essentially this hierarchical product portfolio management problems 
entail combinational optimization that can be solved by genetic algorithms (Oliveto 
et  al. 2007). Comparing with traditional calculus-based or approximation-based opti-
mization techniques, GA is excellent in solving combinatorial optimization problems 
(Kreng and Lee 2004). Due to the distinctive characteristics of the upper- and lower-level 
optimization problems, I propose two separate GAs for the respective upper and lower 
levels, while the upper- and lower-level GAs are nested through a constraint handling 
mechanism embedded through GA encoding and GA operators. Specially, in the bi-level 
nested GA operations, I address two fitness functions which are consistent with their 
objective functions of upper- and lower-level, respectively. This kind of fitness function 
can identify the quality of different potential solutions.

GA encoding

The very basis of GA implementation is about representation of the problem to be solved 
with a finite-length string called a chromosome. Consistent with the bi-level decision-
making of leader–follower PPM problem, two kinds of chromosomes are composed in 
this bi-level nested GA: the upper-level chromosomes (ULCs) and the lower-level chro-
mosome (LLCs), While ULCs and LLCs represent solution X, H and Y, Z, respectively. 
As for the ULCs, the length of chromosome X is the total number of products J, and 
each gene in this chromosome represents a product; and the length of chromosome H is 
J*K*Lk, and each gene in this chromosome means an attribute level. Similarly, the length 
of chromosome Y is M and each gene means the choice of product; and the length of 
chromosome Z is M*N*Sn, and each gene represents an attribute level in lower-level. 
Figure 2 shows the bi-level nested GA encoding.

GA crossover and mutation

To obtain feasible solutions, chromosomes crossover and mutation should be occurred 
on the basis of satisfying certain design constraints. Crossover in GA operations means 
that optional two parent chromosomes are randomly chosen to exchange the segments 
of their genes with a probability. Figure 3a illustrates the crossover mechanism for the 
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ULC X. Once a pair of ULC X chromosomes is chosen, two crossover points are gener-
ated randomly for each of them, and the exchange range is specified in the meantime. As 
shown in Fig. 3b, the children chromosomes are acquired by exchanging the parts of the 
selected chromosomes.

Mutation sockets in each offspring individually after crossover. It randomly selects a 
gene with a smaller probability and alters the selection or de-selection of corresponding 
module instances in a chromosome. Figure 3c shows that how the mutation points are 
generated randomly. Finally the selected chromosome segment is changed by a random 
number of modules, as shown in Fig. 3d.

GA nested solution flow

Solving nonlinear bi-level programming of PPM joint optimization relies on principles 
of evolutionary computation, videlicet the nested genetic evolutions between upper- and 
lower-level optimization. The bi-level GA with the aforementioned encoding schemas 
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and operators is carried out in a nested way, as shown in Fig. 4. A step-by-step proce-
dure for the bi-level nested algorithm is described as follows:

Step 1 A population of size N is generated with the required number of upper-level vari-
ables, randomly. Constraint checking is carried out to ensure that the initial population 
satisfies all design rules specified in the model. Subsequently, the lower-level GA proce-
dure is launched to search the corresponding optimal values of the lower-level variables. 
If constraint checking fails, set the fitness values to be zero then turn to the next step.
Step 2 Judge whether the population reaches the maximum number of generation. If 
the GA runs for the maximal number of generations, record the optimal value and then 
go to the next step. Otherwise, GA operations of selection, crossover and mutation are 
carried out; and then go back to Step 1.
Step 3 Take the upper-level solution X and H into the lower-level GA. Verify feasibility 
of the lower-level population. The fitness is evaluated when the feasibility is satisfied. 
Otherwise, the fitness value is set to zero.
Step 4 Estimate whether lower-level population achieves the maximum number of 
generations. If it reaches the upper bound, the optimal variables and optimal value are 
recorded. Otherwise, procedures of selection, crossover and mutation are invoked and 
step 3 is repeated till the maximal number of generations is achieved.
Step 5 Echo the lower-level solution Y and Z back to the upper-level GA. The upper-
level GA is re-calculated and the fitness values are re-evaluated. Repeat Step 4 until the 
lower-level population reaches the maximum number of generations.
Step 6 Check the termination condition of the lower-level GA. If a feasible number 
is determined for the entire modules, the upper- and lower-level optimal values are 
recorded and then the iterative procedure ends. Otherwise, proceed to Step 1 and 
repeat the process.

Feasible?

Setting fitness value=0

Termination condition?

Selection
Crossover, Mutation

Fitness value evaluation

False

True

False

True

Next

Generating upper-level 
design vector X and H

Start

End

False
Recording the optimal 

Y and Z

Generating lower-level 
design vector Y and Z

Selection
Crossover, Mutation

Termination
condition?

Feasible?

True

Setting fitness value=0

False

True

Fitness value evaluation

Recording the  optimal 
solution and value

Comparing the results
and Recording

Put X and H into 
lower-level

Upper-lever GA

Lower-lever GA

Fig. 4  The solution flow of the bi-level nested GA
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Case study
A case study of PPM optimization problem for the notebook computer products is 
reported to demonstrate the potential of the hierarchical joint optimization model. The 
product structure of notebook computer mainly consists of display, hard disk, graphics 
card, processer, battery and memory, etc.

Upper‑level

Based on the service handbook and domain expertise, all the attributes and feasible 
attribute levels and their corresponding costs of notebook computer for leader are listed 
in Table 1.

To specify utility function UF
ij  in upper-level, wF

jk ,u
F
ikl and πF

ij  should be confirmed first. 
wF
jk can be determined up to market survey; uFikl can be obtained by conjoint analysis; and 

πF
ij  is formed from uFikl. Conjoint analysis is a market survey method for product design. 

According to conjoint analysis method, the first step to calculate uFikl is to given a set of 
product which contains the total number of J possible combinations. Then 20 orthog-
onal setup of product profiles can be generated using the Taguchi Orthogonal Array 
Selector in SPSS software, as shown in Table 2. While inviting 60 consumers to do a frac-
tional factorial experiment with the 20 products. The result of conjoint analysis is shown 
in Table 3. For illustrative simplicity without losing the context, I consider one leading 
market for this leader–follower PPM problem (I = 1), also assume that Qi = 10,000, and 
J+ = 4.

Table 1  List of attributes and their levels of upper-level

No. Attribute Code Attribute levels Cost

A1 Display A11 13.3″ HD 248

A12 14.0″ HD 330

A13 15.6″ HD 450

A2 Hard disk A21 250 GB 5400 rpm hard drive 255

… … …

A25 128 GB solid state drive 580

A3 Graphics card A31  Intel HD graphics 659

… … …

A35 NVIDIA GTX860 M 4 GB 2290

A4 Main board A41 B85 890

… … …

A43 X99 2580

A5 Processer A51 Intel core i5, 2 cores 1460

… … …

A55 Intel core i7, 6 cores 2855

A6 Battery A61 6-Cell lithium-ion 440

A62 9-Cell lithium-ion 635

A7 Memory A71 4G DDR3 248

A72 8G DDR3 380

A8 Case A81 Metal 170

A82 ABS 96
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Meanwhile, other compatibility problems, such as, the consistent matching of pro-
cesser and memory, display and battery should be formulated as constraint equations, as 
the following:

Lower‑level

The lower-level PPM optimization problem is as same as the upper-level, but the param-
eters of products are different for their diverse production capacity and market posi-
tioning. The attributes, attribute levels and the corresponding costs of products of the 
follower are shown in Table 4.

(8)hj55 �= hj72

(9)hj13 = hj62

Table 2  Orthogonal setup of product profiles for conjoint analysis of upper-level

# Display Hard disk Graphics card Main board Processer Battery Memory Case

1 13.3″ HD 500 GB Intel HD graphics B85 Intel core i5, 2 
cores

2–3 h 4G DDR3 ABS

2 14.0″ HD 500 GB NVIDIA GTX540 M 
2 GB

B85 Intel core i5, 2 
cores

2–3 h 4G DDR3 ABS

… … … … … … … … …

20 15.6″ HD 128 G Solid NVIDIA GTX860 M 
4 GB

X99 Intel core i7, 6 
cores

Above 5 h 8G DDR3 Metal

Table 3  Part-worth utilities of upper-level

Attribute Code Attribute levels u
F

ikl

Display A11 13.3″ HD 1.69

A12 14.0″ HD 1.87

A13 15.6″ HD 2.25

Hard disk A21 250 GB 5400 rpm hard drive 1.45

… … …

A25 128 GB solid state drive 1.76

Graphics card A31  Intel HD graphics 2.34

… … …

A35 NVIDIA GTX860 M 4 GB 3.19

Main board A41 B85 1.92

… … …

A43 X99 3.40

Processer A51 Intel core i5, 2 cores 2.58

… … …

A55 Intel core i7, 6 cores 4.23

Battery A61 6-Cell lithium-ion −0.82

A62 9-Cell lithium-ion 1.58

Memory A71 4G DDR3 2.23

A72 8G DDR3 2.47

Case A81 Metal −0.57

A82 ABS 1.61
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And with the same conjoint analysis method in “Upper-level” section, I can obtain a 
set of 20 orthogonal setup of product profiles and the part-worth utilities, are separately 
shown as Tables 5 and 6.

And I also assume that the number of products M+ =  4. The very impor-
tant constraint in the lower-level is from the upper-level. The constraint 
∑M

m=1 P
f
imQiym ≤ Qi −

∑J
j=1 P

F
ij Qixj , ∀i = 1, 2, . . . , I means that the market size for the 

follower is not the whole size of market segment but the rest part from the leader’s mar-
ket share.

Similarly, according to the practical situation of product technical design, other tech-
nical constraints, such as, attribute level B13 is not compatible with B61, can be given by 
Eqs. (10)–(12).

(10)zm13 �= zm61

Table 4  List of attributes and their levels of lower-level

No. Attribute Code Attribute levels Cost

B1 Display B11 13.3″ HD 276

B12 14.0″ HD 360

B13 15.6″ HD 510

B2 Hard disk B21 250 GB 5400 rpm hard drive 294

… … …

B24 2T 7200 rpm hard drive 488

B3 Graphics card B31  Intel HD graphics 718

… … …

B34 NVIDIA GTX860 M 4 GB 2440

B4 Main board B41 B85 920

… … …

B43 X99 2710

B5 Processer B51 Intel core i5, 2 cores 1730

… … …

B54 Intel core i7, 6 cores 3005

B6 Battery B61 6-Cell lithium-ion 475

B62 9-Cell lithium-ion 680

B7 Memory B71 4G DDR3 266

B72 8G DDR3 410

B8 Case B81 Metal 191

B82 ABS 104

Table 5  Orthogonal setup of product profiles for conjoint analysis of lower-level

# Display Hard disk Graphics card Main board Processer Battery Memory Case

1 13.3″ HD 250 GB  Intel HD graphics B85 Intel core i5, 2 
cores

2–3 h 4G DDR3 ABS

2 14.0″ HD 500 GB NVIDIA GTX540 M 
2 GB

B85 Intel core i5, 4 
cores

2–3 h 4G DDR3 ABS

… … … … … … … … …

20 15.6″ HD 2T NVIDIA GTX860 M 
4 GB

X99 Intel core i7, 4 
cores

Above 5 h 8G DDR3 Metal
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Solution and results

I adopt a bi-level nested GA to solve this optimization model which is a nonlinear program-
ming with 0–1 variables. For each feasible chromosome of upper-level population, the cor-
responding lower-level optimal value is sent back to the upper-level, then the upper-level 
fitness value is calculated, as shown in Fig. 4. According to Jiao (2007, 2013), for the more 
complex combination of attribute model, the fitness population size is 100 for GA.

For a medium-scale combinatorial configuration problem like this notebook computer 
product portfolio, I empirically set the population size at 100 for both the upper- and 
lower-level, crossover probability is 0.6, mutation probability is 0.005, and the generation 
is 200. Figure 5 shows the GA processes with the upper-level, after around 160 iterations 
the calculation verges to convergence. Similar outputs of the lower-level GA for PPM 
can be obtained as well.

Figure  6 shows how the upper- and lower-level GAs are nested during their conver-
gence processes, indicating the leader’s and follower’s PPM problems are competing dur-
ing the optimal design of notebook computers. Finally after around 160 generations, both 
the upper- and lower-level fitness values reach their optima, suggesting that the leader’s 
and follower’s PPM problems arrive at equilibrium solutions of the Stackelberg game. The 
optimal product portfolios for leader and follower are shown in Tables 7 and 8.

(11)zm24 �= zm41

(12)zm33 �= zm42

Table 6  Part-worth utilities of lower-level

Attribute Code Attribute levels u
F

ikl

Display B11 13.3″ HD 1.54

B12 14.0″ HD 1.79

B13 15.6″ HD 2.33

Hard disk B21 250 GB 5400 rpm hard drive 1.62

… … …

B24 2T 7200 rpm hard drive 1.81

Graphics card B31  Intel HD graphics 2.22

… … …

B34 NVIDIA GTX860 M 4 GB 2.99

Main board B41 B85 1.47

… … …

B43 X99 2.69

Processer B51 Intel core i5, 2 cores 2.33

… … …

B54 Intel core i7, 6 cores 3.83

Battery B61 6-Cell lithium-ion −0.82

B62 9-Cell lithium-ion 1.58

Memory B71 4G DDR3 2.85

B72 8G DDR3 2.97

Case B81 Metal −0.89

B82 ABS 1.22
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Performance analysis

The optimal design

Examining the results of leader–follower PPM joint optimization in Tables  7 and 8 
indicate that the optimal design of notebook computer product portfolios are logical 
and integrate as market-oriented products. The joint optimization results in Table  9 

Fig. 5  Bi-level nested GA optimization process

Fig. 6  Nested convergence of the upper- and lower-level

Table 7  The leader’s optimal product portfolio

Attribute Product variant

Product 1 Product 2 Product 3 Product 4

Display 13.3″ HD 14.0″ HD 15.6″ HD 15.6″ HD

Hard disk 1T 5400 rpm hard 
drive

1T 5400 rpm hard 
drive

2T 7200 rpm hard 
drive

128 GB solid state drive

Graphics card  Intel HD graphics  Intel HD graphics NVIDIA GTX540 M 
2 GB

NVIDIA GTX860 M 4 GB

Main board B85 Z97 X99 X99

Processer Intel core i5, 2 cores Intel core i5, 2 cores Intel core i7, 4 cores Intel core i7, 6 cores

Battery 6-Cell lithium-ion 9-Cell lithium-ion 9-Cell lithium-ion 9-Cell lithium-ion

Memory 4G DDR3 4G DDR3 8G DDR3 8G DDR3

Case ABS Metal Metal Metal
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indicate a reasonable leverage of leader and follower. I can also figure out that the 
nonlinear bi-level programming method can benefit both leader and follower well 
due to its decision-making mechanism by considering the market compititive factors 
and engineering parameters in PPM. Meanwhile this method can also gain a superior 
globle design scheme and it is better than non-joint one because this bi-level joint 
optimization correctly discribes the gaming relationship betweeen leader and follower 
in a market place.

The algorithms

To demonstrate the advantages of the nested GA, computational experiments are set up 
to compare its performance with other relevant algorithms. Related research has shown 
that genetic algorithm, simulated annealing algorithm and ATC methods perform well 
in product line design and product portfolio management problems (Balakrishnan et al. 
2004; Belloni et al. 2008; Michalek et al. 2011). For the ATC method can only handles 
continuous variables, I just compare the former two methods for the scenario of J = 4, 
M = 4. And all the computations were conducted in Matlab on a Core i5 personal note-
book computer.

Table 10 provides the results of comparison. I can figure out that no matter in terms of 
CPU time or Optimization objective, GA is much more efficient than SA method. These 
results suggest that, GA is more suitable for solving the PPM bi-level programming in 
this case.

Table 8  The follower’s optimal product portfolio

Attribute Product variant

Product 1 Product 2 Product 3 Product 4

Display 13.3″ HD 13.3″ HD 14.0″ HD 14.0″ HD

Hard disk 500 GB 5400 rpm hard 
drive

1T 5400 rpm hard 
drive

2T 7200 rpm hard 
drive

2T 7200 rpm hard drive

Graphics card  Intel HD graphics  Intel HD graphics NVIDIA GTX540 M 
2 GB

NVIDIA GTX860 M 4 GB

Main board B85 B85 Z97 X99

Processer Intel core i5, 2 cores Intel core i7, 4 cores Intel Core i7, 4 cores Intel core i7, 6 cores

Battery 6-Cell lithium-ion 6-Cell lithium-ion 9-Cell lithium-ion 9-Cell lithium-ion

Memory 4G DDR3 4G DDR3 8G DDR3 8G DDR3

Case ABS ABS Metal Metal

Table 9  Optimal values of the upper- and lower-level

Comparison Evaluation criteria

Utility Cost (RMB) Objective function

Upper-level 68.84 20,781 17.73

Lower-level 60.59 21,524 12.89
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Conclusions
PPM is different from the traditional single product or product line design problem, 
because it must handle a group of products with simultaneously optimizing the attrib-
utes of each product variant. The proposed nonlinear bi-level programming model 
which is applied to maximize the shared surplus of both leader and follower emphasizes 
the competitive relationships and tradeoffs between the leader and follower in leveraging 
their PPM problems. This method provides a new perspective to optimize PPM prob-
lem with different decision makers from both theory and practice. The bi-level nested 
genetic algorithm coincides with the bi-level decision structure of joint optimization. 
Encoding of attribute and product selection through a binary decision variable of each 
gene contributes to efficient solution of a class of non-linear combinatorial optimization 
programs. Results and analysis of the notebook computer case study demonstrate that 
the nonlinear bi-level optimization model is more reasonable and excellent in support-
ing leader–follower optimization for PPM problem and the proposed bi-level nested GA 
method is efficient for solving this challenging programming. Moreover, the introduced 
bi-level optimization framework and method can also be applied to other areas, such 
as, engineering design problem with multiple conflictive objects, supply chain coordi-
nation and optimization problem, and other optimization problems with game-theory 
relations.

Future research could focus on extending the bi-level programming model to multiple 
perspectives in PPM problem. With the considerations of the actual background in a 
competitive market, it could be a one-leader multi-follower bi-level programming for 
PPM problem. Solving such multi-follower model could be a very challenging issue that 
calls for both theoretical observation and efficient solution algorithms.
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Table 10  Algorithms comparisons for bi-level programming

Evaluation criteria Comparison

GA SA

CPU time (h) 1.8 77.4

Optimization objective Upper-level Lower-level Upper-level Lower-level

17.73 12.89 16.99 12.01
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