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Background
The well-known linear matrix equation

has been considered by many authors. Such as the generalized singular value decom-
position method to compute the symmetric solutions, the reflexive and anti-reflexive 
solutions, the generalized reflexive solutions and the least-squares symmetric posi-
tive semidefinite solutions were studied by Chu (1989) (see also Dai 1990), Peng et al. 
(2007), Yuan et  al. (2008) and Liao et  al. (2003), respectively. The quotient singular 
value decomposition method to compute the least squares symmetric, skewsymmetric 
and positive semidefinite solutions were studied by Deng et al. (2003). The generalized 
inverse method to compute the reflexive solutions, the asymmetric positive solutions 
and the Hermitian part nonnegative definite solutions were considered by Cvetkovic-
iliic (2006), Arias et al. (2010) and Dragana et al. (2008), respectively. The matrix-form 
CGNE (Bjorck 2006) iteration method to compute the symmetric solutions, the skew-
symmetric solutions and the least-squares symmetric solution were given by Peng et al. 
(2005), Huang et al. (2008) and Lei et al. (2007) (see also Peng 2005), respectively. The 

(1)AXB = C ,
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matrix-form LSQR iteration method to compute the least-squares symmetric and anti-
symmetric solutions were given by Qiu et al. (2007). The matrix-form BiCOR, CORS and 
GPBiCG iteration methods and the matrix-form CGNE iteration method to solve the 
extension from of the matrix Eq. (1) were studied by Hajarian (2015a, b) and Dehghan 
et al. (2010), respectively.

The problem of finding a nearest matrix in the symmetric solution set of the matrix 
Eq. (1) to a given matrix in the sense of the Frobenius norm, that is, finding X such that

is called the matrix nearness problem. The matrix nearness problem is initially pro-
posed in the processes of test or the recovery of linear systems due to incomplete dates 
or revising dates. A preliminary estimate X̃ of the unknown matrix X can be obtained 
by the experimental observation values and the information of static distribution. The 
matrix nearness problem (2) with unknown matrix X being symmetric, skew-symmetric 
and generalized reflexive were considered by Liao et al. (2007) (see also Peng et al. 2005), 
Huang et al. (2008) and Yuan et al. (2008), respectively. The approaches taken in these 
papers include the generalized singular value decomposition method and the matrix-
form CGNE iteration method. In addition, there are many important results on the dis-
cussions of the matrix nearness problem associated with the other matrix equations, we 
refer the readers to (Chu and Golub 2005; Deng and Hu 2005; Higham 1988; Jin and Wei 
2004; Konstaintinov et al. 2003; Penrose 1956) and references therein.

In this paper, we continue to consider the matrix nearness problem (2). By discuss-
ing the equivalent form of the matrix nearness problem (2), we derive some necessary 
and sufficient conditions for the matrix X∗ is a solution of the matrix nearness problem 
(2). Based on the idea of the alternating variable minimization with multiplier (AVMM) 
method (Bai and Tao 2015), we propose two iterative methods to compute the solu-
tion of the matrix nearness problem (2), and analyze the global convergence results of 
the proposed algorithms. Numerical comparisons with some existing methods are also 
given.

Throughout this paper the following notations are used. Rm×n and SRn×n denote the 
set of m× n real matrices and the set of n× n real symmetric matrices. I denote the 
identity matrix with size implied by context. A+ denote the Moore–Penrose generalized 
inverse of the matrix A. Define the inner product in space Rm×n by �A,B� = tr(ATB) for 
all A,B ∈ Rm×n, then the associated norm is the Frobenius norm, and denoted by ‖A‖.

Iteration methods to solve the matrix nearness problem (2)
In this section we first give the equivalent constrained optimization problems of the 
matrix nearness problem (2), and discuss the properties of the solutions of these con-
strained optimization problems. Then we propose iteration methods to compute the 
solution of the equivalent constrained optimization problems, and hence to compute the 
solution of the matrix nearness problem (2). Finally, we prove some convergence theo-
rems of the proposed algorithms.

Obviously, the matrix nearness problem (2) is equivalent to the following constrained 
optimization problem

(2)min
X

1

2

∥

∥

∥
X − X̃

∥

∥

∥

2
subject to AXB = C , X ∈ SRn×n
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or

Theorem 1 Matrix pair [X∗
...Y ∗

] is a solution of the constrained optimization problem (3) 
if and only if exists matrices M∗

∈ Rm×n and N ∗
∈ Rm×p such that the following equali-

ties (5–8) hold.

Proof Assume that there exist matrices M∗ and N ∗ such that the equalities (5–8) hold. 
Let 

Then, for any matrices U ∈ SRn×n and V ∈ Rm×n, we have 

This implies that the matrix pair [X∗
...Y ∗

] is a global minimizer of the matrix func-
tion F̄(X ,Y ). Since AX∗

− Y ∗
= 0, Y ∗B− C = 0 and F̄(X ,Y ) ≥ F̄(X∗,Y ∗) hold for all 

X ∈ SRn×n and Y ∈ Rm×n, we have 

Hence, F(X ,Y ) ≥ F(X∗,Y ∗) holds for all X ∈ SRn×n,Y ∈ Rm×n with AX − Y = 0 and 
YB− C = 0. That is, the matrix pair [X∗

...Y ∗
] is a solution of the constrained optimization 

problem (3).
Conversely, if the matrix pair [X∗

...Y ∗
] is a global solution of the constrained optimiza-

tion problem (3), then the matrix pair [X∗
...Y ∗

] certainly satisfies Karush–Kuhn–Tucker 
conditions of the constrained optimization problem (3). That is, there exist matrices 
M∗

∈ Rm×n and N ∗
∈ Rm×p such that satisfy conditions (5–8).  □

(3)min
X ,Y

F(X ,Y ) =
1

2

∥

∥

∥
X − X̃

∥

∥

∥

2

subject to AX − Y = 0, YB− C = 0, X ∈ SRn×n

(4)min
X ,Y

F(X ,Y ) =
1

2

∥

∥

∥
X − X̃

∥

∥

∥

2

subject to XB− Y = 0, AY − C = 0, X ∈ SRn×n

(5)(X∗
− X̃ − ATM∗)+ (X∗

− X̃ − ATM∗)T = 0,

(6)M∗
− N ∗BT

= 0,

(7)AX∗
− Y ∗

= 0,

(8)Y ∗B− C = 0.

F̄(X ,Y ) = F(X ,Y )−
〈

M∗,AX − Y
〉

−
〈

N ∗,YB− C
〉

.

F̄(X∗
+ U ,Y

∗
+ V )

=
1

2

∥

∥

∥
X
∗
+ U − X̃

∥

∥

∥

2

−
〈

M
∗
,A(X∗

+U) − (Y ∗
+ V )

〉

−
〈

N
∗
, (Y ∗

+ V )B− C
〉

= F̄(X∗
,Y

∗)+ 1
2
�U�

2
+

〈

U ,X
∗
− X̃

〉

−
〈

M
∗
,AU − V

〉

−
〈

N
∗
,VB

〉

= F̄(X∗
,Y

∗)+ 1

2
�U�

2
+

1

2

〈

U , (X∗
− X̃ − A

T
M

∗)+ (X∗
− X̃ − A

T
M

∗)T
〉

+

〈

V ,M
∗
− N

∗
B
T

〉

= F̄(X∗
,Y

∗)+ 1
2
�U�

2
≥ F(X∗

,Y
∗)

.

F(X ,Y ) ≥ F(X∗,Y ∗)+
〈

M∗,AX − Y
〉

+
〈

N ∗,YB− C
〉

.
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Theorem 2 Matrix pair [X∗
...Y ∗

] is a solution of the constrained optimization problem (4) 
if and only if exists matrices M∗

∈ Rn×p and N ∗
∈ Rm×p such that the following equali-

ties (9–12) hold.

Proof The proof is similar to Theorem 1 and is omitted here. □

Let 

We propose an iteration method to solve the constrained optimization (3), and hence 
to solve the matrix nearness problem (2) as follows.

Algorithm 1
Step 1. Input the matrices A,B,C , X̃ and the tolerance ε > 0. Choose the initial matrices 

Y0,M0,N0 and the parameters α,β > 0. Set k ← 0.
Step 2. Exit if a stopping criterion has been met.
Step 3. Compute 

 

 

 

 Set k ← k + 1 and go to Step 2.
Step 4. Let

  

We similarly propose an iteration method to solve the constrained optimization (4), 
and hence to solve the matrix nearness problem (2) as follows.

(9)(X∗
− X̃ −M∗BT )+ (X∗

− X̃ −M∗BT )T = 0,

(10)M∗
− ATN ∗

= 0,

(11)X∗B− Y ∗
= 0,

(12)AY ∗
− C = 0.

(13)

Lα,β(X ,Y ,M,N ) =
1

2

∥

∥

∥
X − X̃

∥

∥

∥

2

− �M,AX − Y � − �N ,YB− C� +
α

2
�AX − Y �

2

+
β

2
�YB− C�

2

(14)Xk+1 = arg min
X∈SRn×n

Lα,β(X ,Yk ,Mk ,Nk),

(15)Yk+1 = arg min
Y∈Rm×n

Lα,β(Xk+1,Y ,Mk ,Nk),

(16)Mk+1 = Mk − α(AXk+1 − Yk+1),

(17)Nk+1 = Nk − β(Yk+1B− C),

(18)

L̃α,β(X ,Y ,M,N ) =
1

2

∥

∥

∥
X − X̃

∥

∥

∥

2

− �M,XB− Y � − �N ,AY − C� +
α

2
�XB− Y �

2

+
β

2
�AY − C�

2
.
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Algorithm 2
Step 1. Input the matrices A,B,C , X̃ and the tolerance ε > 0. Choose the initial matrices 

Y0,M0,N0 and the parameters α,β > 0. Set k ← 0.
Step 2. Exit if a stopping criterion has been met.
Step 3. Compute

Step 4. Set k ← k + 1 and go to Step 2.

For the Algorithm 1 and 2, the most of time consumption is compute Xk+1 and Yk+1. 
Below, we discuss how to compute Xk+1 and Yk+1. Firstly, Xk+1 in (14) can be expressed as

where S =

[√
αA
I

]

∈ R(m+n)×n, T =

[√
αYk +Mk/

√
α

X̃

]

∈ R(m+n)×n. Analogously, 

Xk+1 in (19) can be expressed as

where S =
[

I ,
√
αB

]

∈ Rn×(n+p), T =

[

X̃ ,
√
αYk +Mk/

√
α

]

∈ Rn×(n+p).

To solve the problems (23) and (24), we give the following Lemma 1.

Lemma 1 (Sun 1988) Given matrices B ∈ Rn×n and , � = diag(σ1, σ2, . . . σn), then the 
problem σi > 0 (i = 1, . . . n)�X� − B�2 = min have a unique least squares symmetric 
solution with the following expression

where �ij =
1

σ 2
i +σ 2

j

, � = (�ij) ∈ Rn×n, and A ◦ B = (aijbij) denotes the Hadamard product.

Noting that the matrix S in (23) is full column rank, the singular value decomposition 
(SVD) of the matrix S can be expressed as

(19)Xk+1 = arg min
X∈SRn×n

L̃α,β(X ,Yk ,Mk ,Nk),

(20)Yk+1 = arg min
Y∈Rm×n

L̃α,β(Xk+1,Y ,Mk ,Nk),

(21)Mk+1 = Mk − α(Xk+1B− Yk+1),

(22)Nk+1 = Nk − β(AYk+1 − C),

Xk+1 = arg min
X∈SRn×n

1

2

∥

∥

∥
X − X̃

∥

∥

∥

2

− �Mk ,AX − Yk� +
α

2
�AX − Yk�

2

= arg min
X∈SRn×n

1

2

∥

∥

∥
X − X̃

∥

∥

∥

2

+
α

2

∥

∥

∥

∥

AX −

(

Yk +
1

α
Mk

)∥

∥

∥

∥

2

= arg min
X∈SRn×n

1

2

∥

∥

∥

∥

[√
αA

I

]

X −

[√
αYk +Mk/

√
α

X̃

]∥

∥

∥

∥

2

(23)= arg min
X∈SRn×n

1

2
�SX − T�

2

(24)Xk+1 = arg min
X∈SRn×n

1

2
�XS − T�

2

X = � ◦ (B� +�BT )

S = U

(

�

0

)

VT
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where � = diag(σ1, . . . , σn), σi > 0, and U = (U1,U2) ∈ R(m+n)×(m+n), V ∈ Rn×n are 
orthogonal matrices, U1 ∈ R(m+n)×n. Hence, Xk+1 in (23) can be expressed as

Let T̃ = UT
1 TV , we have by Lemma 1 that Xk+1 in (23) can be expressed as

Analogously, the matrix S in (24) is full row rank, and the SVD of S can be expressed as

where � = diag(σ1, . . . , σn), σi > 0, and P ∈ Rn×n, Q = (Q1,Q2) ∈ R(n+p)×(n+p) are the 
orthogonal matrices, Q1 ∈ R(n+p)×n, and Xk+1 in (24) can be expressed as

where T̃ = PTTQ1.
Then, we change our attention to compute Yk+1. By simply changing, Yk+1 in (15) can 

be expressed as

and Yk+1 in (20) can be expressed as

Next, we discuss the global convergence of Algorithm 1 and 2. Note that Algorithm 2 
is similar to Algorithm 1, we only discuss the convergence of Algorithm 1.

Theorem 3 Let (X∗,Y ∗,M∗,N ∗) be a saddle point for the Lagrange function

of the constrained optimization problem (3), that is, the matrices X∗,Y ∗,M∗,N ∗ satisfy 
conditions (5–8). Define 

Xk+1 = arg min
X∈SRn×n

1

2

∥

∥

∥

∥

U

(

�

0

)

VTX − T

∥

∥

∥

∥

2

= arg min
X∈SRn×n

1

2

∥

∥

∥

∥

(

�

0

)

VTXV −UTTV

∥

∥

∥

∥

2

= arg min
X∈SRn×n

1

2

∥

∥

∥

∥

(

�

0

)

VTXV −

(

UT
1

UT
2

)

TV

∥

∥

∥

∥

2

= arg min
X∈SRn×n

1

2

∥

∥

∥
�VTXV −UT

1 TV
∥

∥

∥

2

Xk+1 = V (� ◦ (�T̃ + T̃T�))VT

S = P(�, 0)QT

Xk+1 = P(� ◦ (�T̃ + T̃T�))PT

Yk+1 = arg min
Y∈Rm×n

1

2

∥

∥

∥
Y

(√
αI ,

√

βB

)

−

(√
αAXk+1 −Mk/

√
α,

√

βC + Nk/
√

β

)∥

∥

∥

2

=

(√
αAXk+1 −Mk/

√
α,

√

βC + Nk/
√

β

)(√
αI ,

√

βB

)+

Yk+1 = arg min
Y∈Rn×p

1

2

∥

∥

∥

∥

( √
αI

√
βA

)

Y −

(√
αXk+1B−Mk/

√
α

√
βC + Nk/β

)∥

∥

∥

∥

2

=

( √
αI

√
βA

)+(√
αXk+1B−Mk/

√
α

√
βC + Nk+1/

√
β

)

L(X ,Y ,M,N ) =
1

2

∥

∥

∥
X − X̃

∥

∥

∥

2
− �M,AX − Y � − �N ,YB− C�
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then, the following inequality holds

Proof Since (X∗,Y ∗,M∗,N ∗) is a saddle point, we have by the saddle point theorem 
(Bjorck 2006) that

for all X ,Y ,M,N , where L(X ,Y ,M,N ) = 1
2

∥

∥

∥
X − X̃

∥

∥

∥

2
− �M,AX − Y � − �N ,YB− C�, 

which called the Lagrange function of the constrained optimization problem (3). Hence 
we have

Noting that AX∗
− Y ∗

= 0, Y ∗B− C = 0, Sk+1 = AXk+1 − Yk+1 and Tk+1 = Yk+1

B− C, we know that the following inequality holds

Since Xk+1 minimize the matrix function Lα,β(X ,Yk ,Mk ,Nk), we have

where the first equality is the first-order optimality condition of the problem (14), and 
the second equality is followed by Algorithm 1. This implies that

Hence, we have 

Since Yk+1 minimize Lα,β(Xk+1,Y ,Mk ,Nk), we have

where the first equality is the first-order optimality condition of the problem (15), and 
the second equality is followed by Algorithm 1. This implies that

Sk+1 = AXk+1 − Yk+1, Tk+1 = Yk+1B− C , µk = α
∥

∥Yk − Y
∗
∥

∥

2

+
1

α

∥

∥Mk −M
∗
∥

∥

2
+

1

β

∥

∥Nk − N
∗
∥

∥

2
,

(25)µk+1 ≤ µk − β
∥

∥Tk+1

∥

∥

2
− α

∥

∥Sk+1 + Yk+1 − Yk
∥

∥

2
.

L(X∗,Y ∗,M,N ) ≤ L(X∗,Y ∗,M∗,N ∗) ≤ L(X ,Y ,M∗,N ∗),

L(X∗,Y ∗,M∗,N ∗) ≤ L(Xk+1,Yk+1,M
∗,N ∗)

(26)
1

2

∥

∥

∥
X∗

− X̃
∥

∥

∥

2
−

1

2

∥

∥

∥
Xk+1 − X̃

∥

∥

∥

2
≤ −

〈

M∗, Sk+1

〉

−
〈

N ∗,Tk+1

〉

,

(27)

0 =

[

Xk+1 − X̃ − A
T
Mk + αAT (AXk+1 − Yk )

]

+

[

Xk+1 − X̃ − A
T
Mk + αAT (AXk+1 − Yk )

]T

=

[

Xk+1 − X̃ − A
T
Mk+1 − αAT (Yk − Yk+1)

]

+

[

Xk+1 − X̃ − A
T
Mk+1 − αAT (Yk − Yk+1)

]T

,

Xk+1 = arg min
X∈SRn×n

1

2

∥

∥

∥
X − X̃

∥

∥

∥

2
−

〈

Mk+1 − αYk+1 + αYk ,AX
〉

(28)

1

2

∥

∥

∥
Xk+1 − X̃

∥

∥

∥

2
−

〈

Mk+1 − αYk+1 + αYk ,AXk+1

〉

≤
1

2

∥

∥

∥
X∗

− X̃
∥

∥

∥

2
−

〈

Mk+1 − αYk+1 + αYk ,AX
∗
〉

.

(29)
0 = Mk − NkB

T
− α(AXk+1 − Yk+1)+ β(Yk+1B− C)BT

= Mk+1 − Nk+1B
T ,
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Hence, we have

Adding the inequalities (28) and (30), and using AX∗
− Y ∗

= 0, Y ∗B− C = 0, we 
know that the following inequality holds 

Adding the inequalities (26) and (31), we have 

Noting that 

and 

We have by inequality (32) and the definition of µk that

which means that the inequality (25) holds. The proof is completed.  □

Theorem 3 implies that the sequence {µk} is a nonnegative monotone decreasing with 
low bounded. Hence, the limit of the sequence {µk} exists which implies that the limit 
of the sequences {Yk}, {Mk}, {Nk} exist, and Sk+1 + Yk+1 − Yk = AXk+1 − Yk → 0 and 
Tk+1 = Yk+1B− C → 0 as k → ∞. Futhermore, Sk+1 + Yk+1 − Yk = AXk+1 − Yk → 0 
as k → ∞ implies that the limit of the sequence {Xk} exists. Assume that 
Xk → X∗ , Yk → Y ∗, Mk → M∗, Nk → N ∗ as k → ∞, then (9) and (10) are hold 

Yk+1 = arg min
Y∈Rm×n

〈

Mk+1 − Nk+1B,Y
〉

(30)
〈

Mk+1 − Nk+1B
T ,Yk+1

〉

≤

〈

Mk+1 − Nk+1B
T ,Y ∗

〉

(31)

1

2

∥

∥

∥
Xk+1 − X̃

∥

∥

∥

2
−

1

2

∥

∥

∥
X∗

− X̃
∥

∥

∥

2

≤
〈

Mk+1, Sk+1

〉

+
〈

Nk+1,Tk+1

〉

− α
〈

Yk+1 − Yk , Sk+1 + Yk+1 − Y ∗
〉

,

(32)
〈

M
∗
−Mk+1, Sk+1

〉

+
〈

N
∗
− Nk+1,Tk+1

〉

+ α
〈

Yk+1 − Yk , Sk+1 + Yk+1 − Y
∗
〉

≤ 0.

2
〈

M∗
−Mk+1, Sk+1

〉

+ 2
〈

N ∗
− Nk+1,Tk+1

〉

= 2
〈

M∗
−Mk , Sk+1

〉

+ 2α
∥

∥Sk+1

∥

∥

2
+ 2

〈

N ∗
− Nk ,Tk+1

〉

+ 2β
∥

∥Tk+1

∥

∥

2

=
2

α

〈

M∗
−Mk ,Mk −Mk+1

〉

+
1

α

∥

∥Mk −Mk+1

∥

∥

2
+ α

∥

∥Sk+1

∥

∥

2

+
2

β

〈

N ∗
− Nk ,Nk − Nk+1

〉

+
1

β

∥

∥Nk − Nk+1

∥

∥

2
+ β

∥

∥Tk+1

∥

∥

2

=
1

α

(

∥

∥Mk+1 −M∗
∥

∥

2
−

∥

∥Mk −M∗
∥

∥

2
)

+ α
∥

∥Sk+1

∥

∥

2

+
1

β

(

∥

∥Nk+1 − N ∗
∥

∥

2
−

∥

∥Nk − N ∗
∥

∥

2
)

+ β
∥

∥Tk+1

∥

∥

2

α
∥

∥Sk+1

∥

∥

2
+ 2α

〈

Yk+1 − Yk , Sk+1 + Yk+1 − Y
∗
〉

= α
∥

∥Sk+1 + Yk+1 − Yk

∥

∥

2
+ α

∥

∥Yk+1 − Yk

∥

∥

2
+ 2α

〈

Yk+1 − Yk ,Yk − Y
∗
〉

= α
∥

∥Sk+1 + Yk+1 − Yk

∥

∥

2
+ α

(

∥

∥Yk+1 − Y
∗
∥

∥

2
−

∥

∥Yk − Y
∗
∥

∥

2
)

,

µk+1 ≤ µk − β
∥

∥Tk+1

∥

∥

2
− α

∥

∥Sk+1 + Yk+1 − Yk
∥

∥

2
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by taking limit, respectively, the Eqs.  (27) and (29), and (11) and (12) are hold by 
Sk+1 + Yk+1 − Yk = AXk+1 − Yk → 0 and Tk+1 = Yk+1B− C → 0 as k → ∞ . 
Hence, we have by Theorem  1 that the matrix pair [X∗

...Y ∗
] is a solution of the con-

strained optimization problem (3), and hence is a solution of the matrix near-
ness problem (2). In addition, Note that the subjective function of the constrained 
optimization problem (3) is a strictly convex functions and the constrained set 

� =

{[

X
...Y

]

∣

∣AX − Y = 0,YB− C = 0,X ∈ SRn×n

}

 is closed and convex, we know 

that matrix pair [X∗
...Y ∗

] is the unique solution of problem (3). Hence the sequence {Xk} 
generated by Algorithm 1 converges to the unique solution of the matrix nearness prob-
lem (2). These results can be described as the following Theorem 4.

Theorem  4 Assume that {Xk} is a sequence generated by Algorithm  1 with any initial 
matrices Y0,M0,N0 and the parameters, then the sequence α,β > 0 {Xk} converges to a 
solution of the matrix nearness problem (2).

Numerical experiments
In this section, we compare Algorithm 1 and 2 with existing two methods proposed in 
(Peng et al. 2005; Peng 2010), denoted, respectively, by CG and LSQR. Our computational 
experiments were performed on an IBM ThinkPad T410 with 2.5 GHz and 3.0 RAM. All 
tests were performed in MATLAB 7.1 with a 64-bit Windows 7 operating system.

In the implementation of Algorithm 1 and 2, we take parameters α = β = 10. The ini-
tial matrices Y0,M0,N0 in Algorithm 1 and 2, and X0 in Algorithm CG and LSQR are 
chosen as zeros matrices. All of algorithms, the small tolerance ε = 10−8 and the ter-
mination criterion are chosen as �AXkB− C� ≤ ε. In addition, the maximum iterations 
numbers of the three methods is limited within 20000.

For the matrix nearness problem (2), the matrices A,B, X̃ and C are given as follows (in 
MATLAB style): A = randn(m, n), B = randn(n, p), X̃ = randn(n, n), C = AX0B with 

Table 1 Iteration time (seconds) and iteration numbers for four methods

m, n, p Algorithm 1 Algorithm 2 Algorithm CG Algorithm LSQR

IT CPU IT CPU IT CPU IT CPU

20, 20, 20 2807 1.0407 1992 0.9338 941 0.1603 816 0.1181

40, 40, 40 6709 60.3186 5085 52.1359 3445 25.3471 2925 21.6702

60, 60, 60 8109 74.2018 7882 67.0493 7203 45.1428 5987 43.2527

80, 80, 80 8246 88.6394 5503 73.6081 10,974 88.6511 9773 83.7413

100, 80, 80 5795 67.6304 2081 23.6263 6681 59.9316 5636 54.6361

200, 80, 80 9445 130.5067 2503 12.2904 4721 60.9609 4913 55.7173

400, 80, 60 13,756 252.4951 2234 0.2925 1885 22.5552 1518 20.8768

80, 80, 100 2843 46.9736 6082 82.7429 7393 66.6155 6228 59.0029

80, 80, 200 728 8.8492 7324 101.4176 4768 62.8689 4855 54.1167

60, 80, 400 25 0.4173 14,009 258.8992 2245 40.7279 1786 22.5928

100, 80, 100 332 3.9936 352 4.1774 2011 18.5992 1604 16.1305

200, 80, 200 39 0.7021 38 0.6241 531 7.8664 459 6.9108

200, 80, 400 21 0.5096 41 0.9568 299 11.5416 348 7.3581

400, 80, 200 41 1.0451 22 0.4941 415 8.7829 361 7.8676
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X0 = H +HT and H = randn(n, n). Here the matrix C is chosen in this way to guaran-
tee that the matrix nearness problem (2) is solvable.

In Table 1, we report the iteration CPU time (‘CPU’) and the iteration numbers (‘IT’) 
based on their average values of 10 repeated tests with randomly generated matrices A, 
B and C for each problem size in each tests.

Based on the tests reported in Table  1 and many other performed unreported tests 
which show similar patterns, we have the following results: when m, p ≫ n, Algorithm 1 
and 2 are more effective than Algorithms CG and LSQR. But when m ≈ p ≈ n, Algo-
rithm CG and LSQR are relatively more effective than Algorithms 1 and 2. When p < m 
and m ≫ n, Algorithm  2 is the most effective, and Algorithm  1 is the most effective 
when m < p and p ≫ n.

Conclusions
In this paper, we have considered the matrix nearness problem (2), i.e., finding the 
matrix nearness solution X∗ of matrix equation AXB = C to a given matrix X̃. By dis-
cussing equivalent form of the considered problem, we have derived some necessary and 
sufficient conditions for the matrix X∗ is a solution of the considered problem. Based 
on the idea of the alternating variable minimization with multiplier method, we have 
proposed two iterative methods to compute the solution of the considered problem, and 
have analyzed global convergence results of the proposed algorithms. Numerical results 
illustrate proposed methods are more effective than existing two methods proposed in 
Peng et al. (2005) and Peng (2010).
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