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Introduction and main results
Let f n be the n-th iterate of a transcendental entire function f. The maximal open set F(f) 
where the family {f n}∞n=0 is normal in the sense of Montel is called the Fatou set, and its 
complement J (f ) := C\F(f ) is called the Julia set. The dynamics given by the iteration 
of transcendental entire maps has been widely studied (cf. Eremenko and Lyubich 1992).

Baker (1970) first obtained an entire function f with the property J (f ) = C. He proved 
the following Theorem.

Theorem 1  For a certain real positive value k , the function f (z) = kzez has the whole 
plane for its set J(f).

After that, many authors (cf. Fagella 1995; Jang 1992; Kuroda and Jang 1997; Morosawa 
1998) studied the dynamics of the functions fµ(z) := z exp(z + µ). Jang (1992) proved 
that the set

is an infinite set. Further, Morosawa (1998) proved that the one-dimensional Lebesgue 
measure of B0 is positive.

The function fµ has only two singular values: an asymptotic value 0 and a critical value 
fµ(−1), hence the Fatou set F(fµ) has no wandering components. The asymptotic value 
is fixed, hence there is only one free singular orbit. It follows that there is at most one 

B0 := {µ ∈ R|J (fµ) = C}
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cycle of periodic Fatou components, either attracting, parabolic or Siegel. Since for real 
parameters the orbit of the free critical value is entirely real, there is no possibility of 
Siegel discs. Hence only attracting or parabolic cycles are possible and attracting or par-
abolic periodic points (if they exist) are real.

In this paper, our main goal is to study the structure of Bn, where

for every positive integer n.
For every real parameter µ, fµ has two real fixed points 0 and −µ. The multiplier of 0 is 

eµ, and the multiplier of −µ is 1− µ. Hence µ ∈ B1 if and only if µ satisfies the following 
condition:

This immediately implies that B1 = (−∞, 0) ∪ (0, 2).
Since a completely invariant domain contains all singular values, it is easy to see that 

if µ ∈ (0, 2), then the Fatou set F(fµ) is not a completely invariant attracting basin. How-
ever, for µ ∈ (−∞, 0), we have the following result.

Theorem  2  For every parameter µ < 0, the Fatou set F(fµ) is a completely invariant 
attracting basin.

Regarding the set Bn for n > 1, we prove the following Theorems.

Theorem 3  There exists µ∗ �= +∞ such that B2 = (2,µ∗).

Theorem 4  For every positive integer n > 2, Bn �= ∅.

Theorem 5  For every prime number p > 3, the set Bp has at least two components.

Remark 6  We believe that B3 is also an interval and Theorem  5 holds also for every 
integer n > 3. An interesting problem is how many components contained in Bp.

The Proof of Theorem 2
In order to prove Theorem  2, we need the following Lemmas. Set 
hr(x) := r2 exp(−2x)− x2 and �r := {z ∈ C| |z| < r}.

Lemma 7  Let r ∈ (0, e−1), then hr has 3 distinct zeros x1 < −1, x2 ∈ (−1, 0) and 
x3 > 0 . Moreover, the solving set of inequality hr(x) ≥ 0 is the union of I1 = (−∞, x1] and 
I2 = [x2, x3].

Proof  Noting f0(x) = xex and hr(x) = e−2x(r2 − x2e2x), we have

Bn := {µ ∈ R|fµ has a cycle of attracting periodic points of n-order},

−1 < eµ < 1 or − 1 < 1− µ < 1.

(1)hr(x) = 0 ⇔ |f0(x)| = |r|,
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and

From f ′0(x) = (x + 1)ex, we see that f0(x) is decreasing in (−∞,−1] and increasing in 
[−1,+∞), and f0(−1) = −e−1 is the minimum value of f0(x). Note that

if r ∈ (0, e−1), then we infer that f0(x) = r has the only one root x3 > 0, and f0(x) = −r 
has two roots x1 < −1 and x2 ∈ (−1, 0). Moreover, the solving set of inequality 
|f0(x)| < |r| is the union of (−∞, x1) and (x2, x3). Hence from (1) and (2), we obtain the 
assertion. � �

Lemma 8  Let r ∈ (0, e−1), then f −1
0 (�r) has two connected components D1 and D2, and 

the set D1 ∪ D2 ∪ (−∞, 0) is connected.

Proof  For every z = x + iy ∈ f −1
0 (�r), we have

which implies

It follows that

From Lemma 7, we know that the graph of |y| =
√
hr(x) consists of two curves

and

Therefore, f −1
0 (�r) has two connected components D1 and D2, where ∂D1 = L1 and 

∂D2 = L2. Obviously the set D1 ∪ D2 ∪ (−∞, 0) is connected. Hence we obtain the asser-
tion. � �

Lemma 9  Let I = (a, b) be an open interval, and f : I → I be a continuous mapping.

(1)	 If f (x) > x for every x ∈ I, then we have 

(2)	 If f (x) < x for every x ∈ I, then we have 

(2)hr(x) > 0 ⇔ |f0(x)| < |r|.

f0(0) = 0, lim
x→−∞

f0(x) = 0 and lim
x→+∞

f0(x) = +∞,

|f0(z)| = |z exp(z)| < r,

√

x2 + y2 exp(x) < r.

|y| <
√

hr(x).

L1 : |y| =
√

hr(x), x ∈ I1

L2 : |y| =
√

hr(x), x ∈ I2.

lim
n→+∞

f n(x) = b.

lim
n→+∞

f n(x) = a.
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Proof  (1) Suppose f (x) > x for every x ∈ I. Then it follows that the sequence {f n(x)}∞n=1 
is increasing. Hence the sequence {f n(x)}∞n=1 either tends to +∞ or tends to x0 < +∞. 
If the first case happens, then we have b = +∞. If the second case happens, then we 
infer x0 = b. Otherwise, x0 < b, and then x0 is a fixed point of f, which contradicts that 
f (x) > x for every x ∈ I. Thus, we obtain that the sequence {f n(x)}∞n=1 tends to b.

(2) Similar as the proof of (1), we can obtain (2) easily. � �

Proof of Theorem 2

Proof  Let µ < 0. Then singular value 0 of fµ is an attracting fixed point. Denote the 
immediate attracting basin of 0 by D. For every x < 0, we have

from Lemma  9, it follows that limn→+∞ f nµ (x) = 0. Hence x ∈ F(fµ), and then 
(−∞, 0) ⊂ D.

Take r enough small such that r1 := reµ < −µ and r < e−1. Then r1 + µ < 0. For every 
z ∈ �r1, we have

This implies �r1 ⊂ D. Hence f −1
µ (�r1) ⊂ F(fµ).

It is easy to see that |fµ(z)| < r1 ⇔ |f0(z)| < r, which implies f −1
µ (�r1) = f −1

0 (�r). 
From Lemma 8, we know that f −1

µ (�r1) has two connected components D1 and D2, the 
set D1 ∪ D2 ∪ (−∞, 0) is connected. Since (−∞, 0) ⊂ D, we infer f −1

µ (�r1) ⊂ D. Hence 
D is completely invariant. Since the Fatou set F(fµ) has at most one cycle of periodic 
components, and has no wandering components, we have F(fµ) = D. Thus, Theorem 2 
is proved completely. � �

 Dynamics of fµ(x) for µ ≤ 2 and the Proof of Theorem 3
For a real parameter µ, the attracting periodic points of fµ (if they exist) are real. From 
now on, we suppose that the function fµ only defined in R.

It is known that fµ has only two fixed points 0 and −µ, the multiplier of 0 is eµ, and the 
multiplier of −µ is 1− µ. We see that the periodic point 0 of fµ is attracting (resp. para-
bolic) for µ < 0 (resp. µ = 0), the fixed point −µ of fµ is attracting for µ ∈ (0, 2), and the 
fixed point −µ = −2 of f 2µ is parabolic for µ = 2. So the behavior of the iteration of fµ 
for µ ≤ 2 should be simple. Indeed, we have the following result.

Theorem 10  (1)  If µ ≤ 0, then every point in (−∞,−µ) is absorbed by the fixed point 0 
and every point in (−µ,+∞) escapes to +∞ under iteration of fµ.

(2)	 If µ ∈ (0, 2], then every point in (−∞, 0) is absorbed by the fixed point −µ and every 
point in (0,+∞) escapes to +∞ under iteration of fµ.

Before proving Theorem 10, we first introduce some preliminary facts.

0 > fµ(x) = x exp(x + µ) > x,

|fµ(z)| = |z exp(z + µ)| ≤ r1 exp(r1 + µ) < r1.
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For the function fµ, we have f ′µ(x) = (x + 1) exp(x + µ), it follows that fµ is decreas-
ing in (−∞,−1] and increasing in [−1,+∞), and s := fµ(−1) is the minimum value of 
fµ . Moreover, we see that the following Claims hold.

Claim 1  If µ ≤ 0, then

(1)  fµ(x) > x, for every x ∈ (−µ,+∞);
(2)  0 < fµ(x) < x, for every x ∈ (0,−µ), µ �= 0;
(3)  0 > fµ(x) > x, for every x ∈ (−∞, 0).

Claim 2  If µ > 0, then

(1)  fµ(x) > x, for every x ∈ (0,+∞);
(2)	  fµ(x) < x, for every x ∈ (−µ, 0);
(3)  fµ(x) > x, for every x ∈ (−∞,−µ).

Since fµ(x) is increasing in [−1,+∞) and fµ(−µ) = −µ, by Claim 2, we obtain the 
following Claim.

Claim 3  If µ ∈ (0, 1], then

(1)	  x > fµ(x) > −µ, for every x ∈ (−µ, 0);
(2)  x < fµ(x) < −µ, for every x ∈ (−1,−µ), µ �= 1.

Let gµ(x) := x + fµ(x)+ 2µ. Then

For the function gµ(x), we have

and

From (5), we see that the curve y = gµ(x) is convex in (−∞,−2] and concave in 
[−2,+∞) . Furthermore, we have the following two Lemmas.

Lemma 11  If µ ≤ 2, then the function gµ(x) is increasing in (−∞,+∞).

Proof  From (4), we have

Since the curve y = gµ(x) is convex in (−∞,−2] and concave in [−2,+∞), we infer that 
the function gµ(x) is increasing in (−∞,+∞). � �

Lemma 12  If µ > 2, then the function gµ has only three distinct zeros −µ, p and q , 
where

(3)f 2µ(x) = fµ(x) exp(fµ(x)+ µ) = x exp(x + µ) exp(fµ(x)+ µ) = x exp(gµ(x)).

(4)g ′µ(x) = 1+ (x + 1) exp(x + µ)

(5)g ′′µ(x) = (x + 2) exp(x + µ).

g ′µ(−2) = 1− exp(µ− 2) ≥ 0.
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moreover

Proof  From (4), we have

Note that gµ(0) = 2µ > 0 and gµ(−µ) = 0. Since the curve y = gµ(x) is convex in 
(−∞,−2] and concave in [−2,+∞), we infer that the function gµ has only three distinct 
zeros −µ, p and q , where p < −µ and −2 < q < 0, moreover, g ′µ(p) > 0 and g ′µ(q) > 0.

Proof of Theorem 10

Proof  First, we prove the part (1) of Theorem 10.

From Claim 1, by Lemma 9, we infer that for µ ≤ 0,

and

i.e., every point in (−µ,+∞) escapes to +∞ and every point in (−∞,−µ) is absorbed by 
the fixed point 0 under iteration of fµ. Thus, the part (1) of Theorem 10 is proved.

Next, we prove the part (2) of Theorem 10.
From Claim 2, by Lemma 9, we infer that every point in (0,+∞) escapes to +∞ under 

iteration of fµ for µ > 0.
For every x ∈ (−∞, 0), we have fµ(x) ∈ [s, 0). Hence, once we have proven that every 

point in [s, 0) is absorbed by the fixed point −µ under iteration of fµ, then it follows that 
every point in (−∞, 0) is also absorbed by the fixed point −µ under iteration of fµ.

Note that s > −1 for µ ∈ (0, 1) and s = −1 for µ = 1. Using Lemma 9, from Claim 3, 
we infer that for µ ∈ (0, 1], every point in [s, 0) is absorbed by the fixed point −µ under 
iteration of fµ, and then every point in (−∞, 0) is also absorbed by the fixed point −µ 
under iteration of fµ.

The remainder to be proved is the following claim:

For µ ∈ (1, 2], every point in [s, 0) is absorbed by the fixed point −µ under iteration of fµ.
Suppose µ ∈ (1, 2]. By Lemma 11, gµ(x) is increasing in (−∞,+∞), we have

Hence by (3), we have

(6)p < −µ and − 2 < q < 0,

(7)g ′µ(p) > 0 and g ′µ(q) > 0.

g ′µ(−µ) = 1+ (−µ+ 1) exp(−µ+ µ) = 2− µ < 0.

lim
n→+∞

f nµ (x) = +∞, for every x ∈ (−µ,+∞),

lim
n→+∞

f nµ (x) = 0, for every x ∈ (−∞,−µ),

gµ(x) > gµ(−µ) = 0, for every x ∈ (−µ, 0).

(8)f 2µ(x) = x exp(gµ(x)) < x, for every x ∈ (−µ, 0).
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Since fµ(x) is decreasing in (−∞,−1], noting fµ(−µ) = −µ and fµ(s) = f 2µ(−1) < −1 , 
we have

and

From (8), (9) and (10), we obtain

Hence by Lemma 9, we get

and then

Thus we obtain

Further, from (10), we have

i.e., every point in [s,−1) is absorbed by the fixed point −µ under iteration of fµ. For 
every x ∈ [−1, 0), we have

Assume f nµ (x) ≥ −1 hold for all positive integer n. Then it follows that the sequence 
{f nµ (x)}∞n=1 is decreasing, hence it tends to a fixed point x0 ∈ [−1, 0) of fµ. This contra-
dicts that fµ(x) = x exp(x + µ) < x for every x ∈ [−1, 0). So there exists a positive inte-
ger k such that f kµ (x) ∈ [s,−1), and it follows from (11) that

which implies that x is absorbed by the fixed point −µ under iteration of fµ.
Thus, we completed the proof of Theorem 10. � �

As a corollary of Theorem 10, we have the following result.

Theorem 13  If µ ≤ 2, then fµ has no periodic points of n -order for any n ≥ 2.

(9)s < fµ(x) < −µ, for every x ∈ (−µ,−1)

(10)−µ < fµ(x) < −1, for every x ∈ [s,−µ).

−µ < f 2µ(x) < x, for every x ∈ (−µ,−1).

lim
n→+∞

f 2nµ (x) = −µ, for every x ∈ (−µ,−1),

lim
n→+∞

f 2n+1
µ (x) = fµ(−µ) = −µ, for every x ∈ (−µ,−1).

lim
n→+∞

f nµ (x) = −µ, for every x ∈ [−µ,−1).

(11)lim
n→+∞

f nµ (x) = −µ, for every x ∈ [s,−1).

fµ(x) = x exp(x + µ) < x.

lim
n→+∞

f n(f kµ (x)) = −µ,
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From (3) and Lemma 12, we immediately get the following result.

Lemma 14  For every µ > 2, fµ has only one cycle of periodic points of 2-order.

Let {p, q} be the cycle of periodic points of 2-order of fµ for µ > 2, which satisfies (6) 
and (7). Note that gµ(p) = 0 and q = fµ(p) = p exp(p+ µ), which imply

then from (4), we have

From (6), (7) and (13), we infer

Let � denote the multiplier of the cycle {p, q}. We have

It follows from (12) that

Hence by (14), we get � < 1. Furthermore, we have the following result.

Lemma 15  The multiplier � as a function of µ defined in (2,+∞) is decreasing, and its 
range is (−∞, 1).

Proof  From (12), we have

Moreover, since q = fµ(p) = p exp(p+ µ), i.e., log(q/p) = p+ µ, we have

From (16) and (17), by direct calculation, we obtain

and

From (15), we have

(12)p+ q + 2µ = 0,

(13)g ′µ(p) = 1+ (p+ 1) exp(p+ µ) = 1+ q(p+ 1)

p
= p+ q + pq

p
.

(14)p+ q + pq < 0.

� = f ′µ(p) · f ′µ(q) = (p+ 1) exp(p+ µ) · (q + 1) exp(q + µ).

(15)� = (p+ 1)(q + 1) = p+ q + pq + 1.

(16)
dp

dµ
+ dq

dµ
+ 2 = 0.

(17)
1

q
· dq
dµ

− 1

p
· dp
dµ

= dp

dµ
+ 1.

(18)
dp

dµ
= − p(q + 2)

p+ q + pq

(19)
dq

dµ
= − q(p+ 2)

p+ q + pq
.

d�

dµ
= dp

dµ
+ dq

dµ
+ q

dp

dµ
+ p

dq

dµ
.
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Then by (16), (18) and (19), we get

By (12) and µ > 2, we have p+ q + 4 = −2µ+ 4 < 2. Hence by (6), (14) and (20), we 
infer d�dµ < 0, thus � as a function of µ is decreasing.

Following (6), (14) and (18), we get dp
dµ

< 0, hence p as a function of µ is decreasing, and 
then limµ→2+ p exists, say p0. Then from gµ(p) = 0, we have g2(p0) = 0. Since the func-
tion g2(x) is increasing in (−∞,+∞), we get p0 = −2. Hence from (12) and (15), we have

and

By (6) and (12), we have

It is easy to obtain by calculating that

which implies limµ→+∞ q = 0. Hence from (12) and (15), we have

Since � is decreasing, by (21) and (22), we obtain that the range of � is (−∞, 1). � �

Proof of Theorem 3

Proof  Set µ∗ := �
−1(−1). Then by Lemma  15, we have µ∗ �= +∞ and 

�
−1(−1, 1) = (2,µ∗). By Theorem 13 and Lemma 14, we deduce that µ ∈ B2 if and only if 

µ > 2 and �(µ) ∈ (−1, 1). Hence we obtain B2 = (2,µ∗).
Therefore, Theorem 3 is proved completely. � �

Remark 16  Computation of µ∗.

From (12) and (15), we have

Noting q ∈ (−2, 0) and µ > 2, we obtain

and then

(20)
d�

dµ
= −2− pq(p+ q + 4)

p+ q + pq
.

lim
µ→2+

q = lim
µ→2+

(−p− 2µ) = −2

(21)lim
µ→2+

� = lim
µ→2+

(p+ 1)(q + 1) = 1.

|q| = |p exp(p+ µ)| = |q + 2µ|
exp(q + µ)

<
2+ 2µ

exp(µ− 2)
.

lim
µ→+∞

2+ 2µ

exp(µ− 2)
= 0,

(22)lim
µ→+∞

� = lim
µ→+∞

(−q − 2µ+ 1)(q + 1) = −∞.

� = (1− 2µ− q)(1+ q) ⇔ (q + µ)2 = (µ− 1)2 − �.

q =
√

(µ− 1)2 − �− µ,
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Hence the equation p = q exp(q + µ) with �(µ∗) = −1 implies that µ∗ is the root of the 
function

The plot of �(µ) is as in Fig. 1. One can compute the root of �(µ) up to machine preci-
sion with numerical methods like bisection, secant method and so on.

Result: µ∗ = 2.526467725 · · ·
(with p = −4.351324903 · · · and q = −0.701610548 · · ·).

Remark 17  The Taylor series expansion of �(µ).

From (12), (15) and (20), we have

which implies that

Suppose that the formal Taylor series expansion with expansion point 2 is

p = −
√

(µ− 1)2 − �− µ.

�(µ) = w + µ

w − µ
+ exp(w) with w :=

√

(µ− 1)2 + 1.

d�

dµ
= −2− pq(p+ q + 4)

p+ q + pq

= −2− (2µ+ �− 1)(4 − 2µ)

�− 1

= 2(�− 1)((µ− 2)− 1)+ 4(µ− 2)2 + 8(µ− 2)

�− 1
,

(23)(�− 1)
d�

dµ
= 2(�− 1)((µ− 2)− 1)+ 4(µ− 2)2 + 8(µ− 2).

�(µ) =
∞
∑

k=0

ak(µ− 2)k ,

Fig. 1  �(µ), 2 ≤ µ ≤ 4
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then

Note that a0 = �(2+) = 1, and let t := (µ− 2), from (23) we have

which implies that

The comparison of the left and the right side with respect to tl yields

The Plot of the Taylor series expansion of �(µ) up to 10th order with expansion point 2 
is as in Fig. 2. Indeed, the Taylor polynomials can also be used to approximate µ∗.

The Proof of Theorem 4
In this section we prove Theorem  4 by finding a parameter µn such that fµn has 
super-attracting periodic points of n-order. This parameter µn satisfies the equation 
f nµ (−1) = −1, i.e., µ belongs to the set

where sn(µ) := f nµ (−1) for every positive integer n.

Lemma 18  (Jang (1992)) Let n ≥ 2, then sn(µ) → 0 as µ → +∞.

Lemma 19  For every positive integer n , En is a finite set, and E1 = {1} ⊂ En.

Proof  Since s1(µ) = fµ(−1) = − exp(µ− 1), we get E1 = {1}, and from sn(1) = −1, we 
get {1} ⊂ En.

Now, suppose n ≥ 2. Since s1(µ) = fµ(−1) is the minimum value of fµ, we have

d�(µ)

dµ
=

∞
∑

k=1

kak(µ− 2)k−1.

( ∞
∑

k=1

akt
k

)( ∞
∑

k=1

kakt
k−1

)

= 2

∞
∑

k=1

akt
k+1 − 2

∞
∑

k=1

akt
k + 4t2 + 8t,

∞
�

l=1





l
�

j=1

jajal+1−j



tl = t(8− 2a1)+ t2(2a1 − 2a2 + 4)+
∞
�

l=3

2(al−1 − al)t
l .

l = 1 : a21 = 8− 2a1 ⇒ a1 = −1± 3 ⇒ d�(µ)

dµ)
|µ=2 = a1 = −4 < 0;

l = 2 : a1a2 + 2a2a1 = 2a1 − 2a2 + 4 ⇒ a2 = 0.4;

l ≥ 3 : al =
1

4l + 2





l−1
�

j=2

jajal+1−j − 2al−1



.

En := {µ ∈ R|sn(µ) = −1},

sn(µ) ≥ fµ(−1) = − exp(µ− 1) > −1, for every µ < 1.
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Hence µ ≥ 1 for every µ ∈ En. From Lemma 18, there is Mn such that sn(µ) > −1 for 
every µ > Mn. Hence µ ≤ Mn for every µ ∈ En. Thus En is a bounded set, and then is a 
finite set. � �

Lemma  19 allows us to define µn := max{µ ∈ En}. Clearly, µ1 = 1 and µn ≥ 1 for 
every n ≥ 2.

Lemma 20  Let n ≥ 2. If µ > µn, then sn(µ) > −1 and sn+1(µ) < sn(µ).

Proof  It is easy to see that sn(µ) < 0 for every µ. Set

Clearly, In is an interval, and In ⊂ (−∞, 0). Note that −1 �∈ In from the definition of µn . 
Hence by Lemma  18 and sn(µn) = −1, we infer In = (−1, 0). Hence if µ > µn, then 
−1 < sn(µ) < 0. Noting µn ≥ 1, we have

Thus we obtain the assertion. � �

The following two Lemmas have been proved by Kuroda and Jang (1997). Here we give 
different proofs of them.

Lemma 21  The sequence {µn}∞n=1 is increasing.

Proof  Since µn ≥ 1 and sn(µn) = −1 for every n ≥ 1, we have

Since

In := {sn(µ)|µ ∈ (µn,+∞)}.

sn+1(µ) = sn(µ) exp(sn(µ)+ µ) < sn(µ) exp(µn − 1) ≤ sn(µ).

sn+1(µn) = sn(µn) exp(sn(µn)+ µn) = − exp(µn − 1) ≤ −1.

dsn+1

dµ
= ((1+ sn)

dsn

dµ
+ sn) exp(sn + µ),

Fig. 2  Taylor series expansion of �(µ)
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we get

Hence there exists µ′
n > µn such that sn+1(µ

′
n) < sn+1(µn) ≤ −1. Following Lemma 20, 

we deduce µ′
n < µn+1, and then µn < µn+1. Thus {µn}∞n=1 is increasing. � �

Lemma 22  For every positive integer n , the function fµn has super-attracting periodic 
points of  n-order.

Proof  Clearly, fµ1 has the super-attracting fixed point −1. Since µ2 > 1, we have

This implies that s1(µ2), s2(µ2) are super-attracting periodic points of 2-order of fµ2.
Let n ≥ 3 and k = 2, 3, . . . , n− 1. Then µn > µk > 1 from Lemma  21. Hence by 

Lemma 20, we have

This implies that s1(µn), s2(µn), · · · , sn(µn) are super-attracting periodic points of 
n-order of fµn. � �

From Lemma 22, we immediately get the following Theorem.

Theorem 23  For every positive integer n , µn ∈ Bn.

Thus, Theorem 4 follows from Theorem 23.

The Proof of Theorem 5
Let B̂n be the set of real parameters µ such that fµ has a periodic point of n-order, whose 
multiplier is less than 1. It follows from the implicit function theorem that the set B̂n is 
an open set for every positive integer n.

Theorem 24  Suppose that p is a prime number, (a, b) is a component of B̂p. Then fa has 
parabolic periodic points of p-order. Furthermore, a ∈ ∂Bp.

Proof  From Theorem  13, we know that if µ ≤ 2, then fµ has no periodic points of 
p-order. Hence we have a ≥ 2. Choose a decreasing sequence {an}∞n=1 ⊂ (a, b) such that 
limn→∞ an = a, and choose a periodic point xn of p-order of fan with multiplier �n < 1 . 
From Claim 2 in “Dynamics of fμ(x) for μ ≤ 2 and the Proof of Theorem 3” section, we 
have xn < 0. Since s1(µ) is the minimum value of fµ and s1(µ) = − exp(µ− 1) as a func-
tion of µ is decreasing, we have

Thus we may suppose that {xn}∞n=1 is a convergent sequence, otherwise we consider a 
subsequence of {xn}∞n=1. Set x0 := limn→∞ xn, then we have

dsn+1

dµ
|µ=µn = − exp(µn − 1) < 0.

s1(µ2) = − exp(µ2 − 1) < −1 = s2(µ2).

s1(µn) = − exp(µn − 1) < −1 = sn(µn) < sn−1(µn) < · · · < s2(µn).

xn ∈ [s1(an), 0] ⊂ [s1(a1), 0].

f
p
a (x0) = lim

n→∞
f
p
an(xn) = lim

n→∞
xn = x0
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and

Hence x0 is a fixed point of f pa , and its multiplier �0 ≤ 1 from �n < 1. Since p is a prime 
number, x0 is either fixed point or periodic point of p-order of fa.

Assume x0 is not a periodic point of p-order of fa, then x0 is a fixed point of fa. Thus 
x0 = 0 or x0 = −a. Noting (f pa )′(0) = epa > 1, we have x0 = −a. Define the function

We have

Hence there exists a disc D which is a neighborhood of (x0, a) such that F ′
x(x,µ) < 0 for 

every (x,µ) ∈ D. Choose a positive integer m such that (xm, am) ∈ D and (−am, am) ∈ D. 
Note that xm �= −am, and F(xm, am) = 0, F(−am, am) = 0. Then by Rolle theorem, there 
exists a point (y0, am) ∈ D such that F ′

x(y0, am) = 0. It contradicts that F ′
x(y0, am) < 0. 

Hence x0 is a periodic point of p-order of fa.
Because of a /∈ B̂p, we infer that �0 = 1. Hence x0 is a parabolic periodic point of 

p-order of fa. Since �0 = limn→∞ �n, we infer that an ∈ Bp for large enough n. This 
implies a ∈ ∂Bp. Hence, Theorem 24 is completed. � �

The proof of Theorem 5 needs Theorem 24 and the following Lemmas.

Lemma 25  (Li and York 1975, Li-York theorem) Let I be a closed interval, and 
f : I → I be a continuous mapping. If f has periodic points of 3-order, then f has periodic 
points of n -order for every positive integer n.

Lemma 26  (Deng and Cai (1993)) Let f : R → R be a continuously differentiable func-
tion. Suppose that f has two fixed points x1, x2, say x1 < x2. If their multipliers are greater 
than 1, then f has another fixed point x3 ∈ (x1, x2).

Proof of Theorem 5

Proof  By assumption, the prime number p ≥ 5.
Set I0 := [s1(µ3), 0] and g := fµ3 |I0. Since s1(µ3) is the minimum value of fµ3, we see 

that g is a self-mapping of I0. From Lemma 22, g has super-attracting periodic points of 
3-order. According to Lemma 25, g has periodic points of p-order. Since the Fatou set 
F(fµ) has at most one cycle of periodic components, we get that all of the periodic points 
of p-order of g are repelling. Let np denote the number of the cycles of periodic points of 
p-order of g , and n′p (resp. n′′p) denote the number of the cycles of which the multipliers 
are greater (resp. less) than 1. Clearly, 1 ≤ np < +∞. Since the periodic points of p-order 
of g are repelling, we have n′p + n′′p = np. Since p is a prime number, every fixed point of 
gp is either fixed point or periodic point of p-order of g. Noting that g has only two fixed 
points 0 and −µ, we get that gpµ has pnp + 2 fixed points. Assume n′′p = 0, then gpµ has at 
least pnp fixed points, whose multipliers are greater than 1. However, by Lemma 26, we 

�0 := lim
n→∞

�n = lim
n→∞

(f
p
an)

′(xn) = (f
p
a )

′(x0).

F(x,µ) := f pµ (x)− x, (x,µ) ∈ R
2.

F ′
x(x0, a) = (f

p
a )

′(x0)− 1 = (1− a)p − 1 < 0.
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deduce that gpµ has at least 2pnp − 1 fixed points, and then pnp + 2 ≥ 2pnp − 1, which 
contradicts that pnp ≥ p ≥ 5. Hence we obtain n′′p �= 0, which implies µ3 ∈ B̂p.

Let (a,  b) be the component of B̂p, which contains µ3. Then by Theorem  24, there 
exists a0 such that a0 < µ3 and a0 ∈ Bp. From Lemma 21, µ3 < µp. Since µ3 /∈ Bp, we 
infer that there exist two different components of Bp, one of them contains a0, the other 
contains µp.

Thus, Theorem 5 is proved completely. � �

Conclusions
It is known that the dynamics given by the iteration of transcendental entire maps 
has been widely studied. In this paper, we consider the dynamics of the functions 
fµ(z) = zez+µ with the real parameter, and prove that the Fatou set F(fµ) is a com-
pletely invariant attracting basin for every parameter µ < 0. We say that a real param-
eter µ belongs to the set Bn for a positive integer n if fµ has an attracting cycle of 
n-order. Regarding the set Bn for n > 1, we show that (1) there exists µ∗ �= +∞ such that 
B2 = (2,µ∗); (2) for every positive integer n > 2, the set Bn is non-empty; (3) for every 
prime number p > 3, the set Bp has at least two components.
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