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Background
In recent years, many research have studied soliton and its evolvements in nonlinear 
equations via kinds of method (Zarmi 2014; Chen and Ma 2013; Ashorman 2014; Zhang 
and Chen 2016; Meng and Gao 2014; Mohamed 2016; Liu and Liu 2016; Jiang and Ma 
2012; Guo and Hao 2013; Dou et al. 2007). Vertex dynamics in multi-soliton solutions 
and some new exact solution of breaking equation are studied in Zarmi (2014) and Chen 
and Ma (2013), the methods of Multi-soliton Solutions are given in Ashorman (2014), 
Zhang and Chen (2016), Meng and Gao (2014), Mohamed (2016), Liu and Liu (2016), 
Jiang and Ma (2012), Guo and Hao (2013), Dou et al. (2007), Zuo and Gao (2014), Huang 
(2013), Liu and Luo (2013), Côtea and Muñoza (2014), Xu and Chen (2014), Hua and 
Chen (2014) and Zhang and Cai (2014), complex solutions for the [BLP System are pro-
posed in Ma and Xu (2014)], and these so-called new solutions is identical to the uni-
versal formula in Doungmo Goufo (2016), Atangana and Doungmo Goufo (2015), Gao 
(2015a, b, c, d), Xie and Tian (2015), Sun and Tian (2015) and Zhen et al. (2015).

The aim of this paper is to investigate the analytical solutions of the (2+1)-dimensional 
breaking equation by the mapping and Darboux transformation method. And the dynam-
ical behaviours of (2+1)-dimensional breaking equation will be discussed in detail.

The structure of this paper is as follows: In second section, the (2+1) dimensional 
breaking equation is studied and its exact solutions are derived. And properties of this 
breaking equation will be investigated. In third section, influence of the parameters 
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which are related to the analytical solution will also be discussed. Finally, the conclusion 
is drawn in fourth section.

(2+1)‑dimensional breaking equation and exact solution
Consider (2+1)-dimensional breaking equation as follows (Dou et al. 2007):

In which, the functions of u(x, y, t) and v(x, y, t) are corresponding physical fields and set

In which b is the arbitrary function, substituting Eq.  (2) into Eq.  (1), the analytical 
solution of Eq. (1) could be gotten as follows:

In which, u(x, y, t) is seed solution of equation, u0 = a(x), v0 = 0, the parameters 
a0, a1, a2, a3 are constants.

Substituting Eqs. (3) and (4) into Eq. (1), the analytical solution of (2+1) dimensional 
breaking equation could be gotten as follows (Dou et al. 2007)

M × N multi‑soliton
Define the Weierstrassp function as following

In which 0 < a < 1, ab ≥ 1, and when the parameters a = 0.5, b = 3, n = 10, its response 
is shown in Fig. 1 and we set

when p = φ(kx, k2, k3), q = ϕ(y+ ct, k2, k3), The Eq. (7) can be given as

in which

(1)ut + buxxy + 4bvx + 4buxv = 0

(2)uy = vx

(3)

{

u = 3
2
(ln f )xx + u0

v = 3
2
(ln f )xy + v0

(4)f = a0 + a1p(x)+ a2q(y, t)+ a3p(x)q(y, t)

(5)u = −
3

2

[

(a1 + a3q)
2p2x

(a0 + a1p+ a2q + a3pq)2
−

(a1 + a3q)pxx

(a0 + a1p+ a2q + a3pq)
+

bfxxx + cfx

6bfx

]

(6)v =
3

2

[

(a3a0 − a1a2)pxqy

(a0 + a1p+ a2q + a3pq)2

]

(7)Xn+1 = Xn + an cos(2πbkx)

(8)Yn+1 = Yn + an cos(2πbny)

(9)φ(x) = Xn+1;

(10)ϕ(y) = Yn+1;

(11)v =
3

2

[

(a3a0 − a1a2)φxϕy

(a0 + a1ϕ + a2φ + a3φϕ)2

]

(12)φx =
√

4φ3 − k2φ − k3
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When the parameters k , c, k2, k3, n are selected as different constants, the 
N ×M multi-soliton could be achieved according to Eq.  (11), when the  
parameters a0 = 4; a1 = 1; a2 = 1; a3 = 1; k = 0.6; k2 = 1; k3 = 1; c = 1; n = 5 , and  
x ∈ [−3, 3], y ∈ [−3, 3], the 5× 6 multi-soliton are shown in Fig.  2, and 
x ∈ [−5, 5], y ∈ [−5, 5], the 10× 10 multi-soliton structure are shown in Fig. 3.

From Figs. 2 and 3, it can be seen that multi-soliton could be obtained by selecting the 
Weierstrassp function.

(13)
ϕy =

√

4ϕ3 − k2ϕ − k3
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Fig. 1  The response of Weierstrassp function

Fig. 2  The 5 × 6 multi soliton structure
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Conclusion
To summarize, we have constructed M × N  multi-solutions of a (2+1)-dimensional 
breaking equation using Darboux transformation and mapping method. The analytical 
solutions which changes the shape of the solutions are explored and the derived analyti-
cal expressions of (2+1)-dimensional breaking equation can be used in communication 
system, and it is highly anticipated that this investigation on (2+1)-dimensional break-
ing equation may have wider application in various physical models.
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