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Introduction and preliminaries
The monotone inclusion problem is to

where H is a real Hilbert space with inner product �·, ·� and Ai are set-valued maximal 
monotone operators (Hui and Lizhi 2013). Such problem is very important in many 
areas, such as convex optimization and monotone variational inequalities, for instance. 
There is an extensive literature to approach the inclusion problem, all of which can essen-
tially be divided into two classes according to the number of operators involved: single 
operator class (m = 1) and multiple operator class (m ≥ 2). The latter class can always be 
reduced to the case of m = 2 via Spingarn’s method (Spingarn 1983). Based on a series of 
studies in the next decades, splitting methods for monotone operators were inspired and 
studied extensively. Splitting methods for linear equations were introduced by Peaceman 
and Rachford (1995) and Douglas and Rachford (1956). Extensions to nonlinear equa-
tions in Hilbert spaces were carried out by Kellogg (1969) and Lions and Mercier (1979). 

find an x ∈ H such that 0 ∈
m
∑

i=1

Aix,
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The central problem is to iteratively find a zero of the sum of two monotone operators A 
and B in a Hilbert space H. Splitting methods have recently received much attention due 
to the fact that many nonlinear problems arising in applied areas such as signal process-
ing, image recovery and machine learning are mathematically modeled as a nonlinear 
operator equation (Shehu et al. 2016a, b; Shehu 2015). And the operator is decomposed 
into the sum of two nonlinear operators.

In this paper, we consider the problem of finding a solution for the following problem: 
find an x in the fixed point set of a family of countable quasi-nonexpansive mappings Sn 
such that

where A and B are two monotone operators. The similar problem has been addressed 
by many authors in view of the applications in signal processing and image recovery; 
see, for example, Qin et al. (2010), Zhang (2012), Takahashi et al. (2010), Kamimura and 
Takahashi (2010) and the references therein.

Throughout this paper, we always assume that H is a real Hilbert space with the inner 
product �·, ·� and norm � · �, respectively. Let C be a nonempty closed convex subset of 
H , PC be the metric projection from H onto C,   and S : C → C be a mapping. We use 
F(S) to denote the fixed point set of Sn below, i.e., F(S) := {x ∈ C : x = Sx}. Recall that S 
is said to be nonexpansive if

If C is a bounded closed and convex subset of H, then F(S) is nonempty closed and con-
vex; see Browder (1976). S is said to be quasi-nonexpansive if F(S) �= ∅ and

It is easy to see that nonexpansive mappings are Lipschitz continuous, however, the 
quasi-nonexpansive mapping is discontinuous on its domain generally. Indeed, the 
quasi-nonexpansive mapping is only continuous in its fixed point set.

Let A : C → H be a mapping. Recall that A is said to be monotone if

A is said to be α-strongly monotone if there exists a constant α > 0 such that

A is said to be α-inverse strongly monotone if there exists a constant α > 0 such that

Notice that, a α-inverse strongly monotone operator must be 1
α
-Lipschitz continuous.

Recall that the classical variational inequality is to find an x ∈ C such that

In this paper, we use VI(C, A) to denote the solution set of (1). It is known that x∗ ∈ C 
is a solution to (1) if x∗ is a fixed point of the mapping PC(I − �A), where � > 0 is a 

x ∈ (A+ B)−1(0),

�Sx − Sy� ≤ �x − y�, ∀ x, y ∈ C .

�Sx − p� ≤ �x − p�, ∀ x ∈ C , p ∈ F(S).

�Ax − Ay, x − y� ≥ 0, ∀ x, y ∈ C .

�Ax − Ay, x − y� ≥ α�x − y�2, ∀ x, y ∈ C .

�Ax − Ay, x − y� ≥ α�Ax − Ay�2, ∀ x, y ∈ C .

(1)�Ax, y− x� ≥ 0, ∀ y ∈ C .
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constant, I is the identity mapping, and PC is the metric projection from H onto C. Next 
we recall some well-known definitions.

Definition 1  (Takahashi et  al. 2010) A multi-valued operator T : H → H with 
the domain D(T ) = {x ∈ H : Tx �= 0} and the range R(T ) = {Tx : x ∈ D(T )} is said 
to be monotone if for x1, x2 ∈ D(T ), y1, y2 ∈ R(T ), the following inequality holds 
�x1 − x2, y1 − y2� ≥ 0.

Definition 2  (Takahashi et  al. 2010) A monotone operator T is said to be maximal 
if its graph G(T ) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other 
monotone operator.

Definition 3  (Takahashi et  al. 2010) Let I denote the identity operator on H and 
T : H → H be a maximal monotone operator. For each � > 0, a nonexpansive single-
valued mapping J� = (I − �A)−1 is called the resolvent of T.

And it is known that T−1(0) = F(J�) for all � > 0 and J� is firmly nonexpansive.
Three classical iteration processes are often used to approximate a fixed point of a 

nonexpansive mapping. The first one was introduced in 1953 by Mann (1953) and is well 
known as Manns iteration process defined as follows:

where the sequence {αn} is chosen in [0,1]. Fourteen years later, Halpern (1967) pro-
posed the new innovation iteration process which resembled Manns iteration (2). It is 
defined by

where the element u ∈ C is fixed. Seven years later, Ishikawa (1974) enlarged and 
improved Mann’s iteration (2) to the new iteration method, which is often cited as Ishi-
kawa’s iteration process and defined recursively by

where {αn} and {βn} are sequences in the interval [0,1].
Moreover, many authors have studied the common solution problem, that is, find 

a point in a solution set and a fixed (zero) point set of some nonlinear problems; see, 
for example, Kamimura and Takahashi (2000), Takahashi and Toyoda (2003), Ye and 
Huang (2011), Cho and Kang (2011), Zegeye and Shahzad (2012), Qin et al. (2010), Lu 
and Wang (2012), Husain and Gupta (2012), Noor and Huang (2007), Qin et al. (2009), 
Kim and Tuyen (2011), Wei and Shi (2012), Qin et al. (2010), Qin et al. (2008), He et al. 
(2011), Wu and Liu (2012), Qin and Su (2007), Abdel-Salam and Al-Khaled (2012), Qin 
et al. (2010), Zegeye et al. (2012) and the references therein. In Kamimura and Takahashi 

(2)

{

x0 chosen arbitrarily,
xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

(3)

{

x0 chosen arbitrarily,
xn+1 = αnu+ (1− αn)Txn, n ≥ 0,

(4)







x0 chosen arbitrarily,
yn = βnxn + (1− βn)Txn,
xn+1 = αnxn + (1− αn)Tyn, n ≥ 0,
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(2000), in the framework of real Hilbert spaces, Kamimura and Takahashi investigated 
the problem of finding zero points of a maximal monotone operator by considering the 
following iterative algorithm:

where {αn} is a sequence in (0,1), {�n} is a positive sequence, T : H → H is a maximal 
monotone, and J�n = (I + �nT )−1. They showed that the sequence {xn} generated in (5) 
converges weakly to some z ∈ T−1(0) provided that the control sequence satisfies some 
restrictions. Further, using this result, they also investigated the case that T = ∂f , where 
f : H → H is a proper lower semicontinuous convex function.

Takahashi and Toyoda (2003) investigated the problem of finding a common solution 
of the variational inequality problem (1) and a fixed point problem involving nonexpan-
sive mappings by considering the following iterative algorithm:

where {αn} is a sequence in (0,1), {�n} is a positive sequence, S : C → C is a nonexpan-
sive mapping, and A : C → H is an inverse-strongly monotone mapping. They showed 
that the sequence {xn} generated in (6) converges weakly to some z ∈ VI(C ,A) ∩ F(S) 
provided that the control sequence satisfies some restrictions.

Hecai (2013) studied the common solution for two monotone operators and a quasi-
nonexpansive mapping in the framework of Hilbert spaces. The aim of this paper is 
to investigate hybrid algorithm for a common zero point of the sum of two monotone 
operators which is also a fixed point of a family of countable quasi-nonexpansive map-
pings. We point out two incorrect justifications in the proof of Theorem  2.1 in paper 
Hecai (2013). Further, we modify and generalize the results of Hecai’s paper, in which 
only a quasi-nonexpansive mapping was considered. In addition, two family of countable 
quasi-nonexpansive mappings with uniform closeness examples are provided to demon-
strate our results. Finally, we apply the results to variational inequalities.

To obtain our main results in this paper, we need the following lemmas and definitions.
Let C be a nonempty, closed, and convex subset of H. Let {Sn}∞n=1 : C → C be a 

sequence of mappings of C into C such that ∩∞
n=1F(Sn) is nonempty. Then {Sn}∞n=1 is said 

to be uniformly closed, if p ∈ ∩∞
n=1F(Sn), whenever {xn} ⊂ C converges strongly to p and 

�xn − Snxn� → 0 as n → ∞.

Lemma 4  (Aoyama et  al. 2007) Let C be a nonempty, closed, and convex subset of 
H , A : C → H be a mapping, and B : H → 2H be a maximal monotone operator. Then 
F(Jr(I − �A)) = (A+ B)−1(0).

Let C be a nonempty, closed, and convex subset of H,   the projection operator 
PC : E → C is a map that assigns to an arbitrary point x ∈ H the minimum point of the 
norm �x − y�, that is, PCx = x, where x is a unique solution to the minimization problem

It is well-known that

(5)x0 ∈ H , xn+1 = αnxn + (1− αn)J�nxn, n = 0, 1, 2, · · ·

(6)x0 ∈ C , xn+1 = αnxn + (1− αn)SPC(xn − �nAxn), ∀n ≥ 0,

�x − x� = min
y∈C

�y− x�.
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Abdel-Salam and Al-Khaled (2012) proved the following result.

Theorem  5  Let C be a nonempty closed convex subset of a real Hilbert space 
H , A : C → H be an α -inverse-strongly monotone mapping, S : C → C be a quasi-
nonexpansive mapping such that I − S is demiclosed at zero and B be a maximal 
monotone operator on H such that the domain of B is included in C. Assume that 
F = F(S) ∩ (A+ B)−1(0) �= ∅. Let {�n} be a positive real number sequence and {αn} be a 
real number sequence in [0,1]. Let {xn} be a sequence of C generated by

where Jrn = (I + rnB)
−1. Suppose that the sequences �n and αn satisfy the following 

restrictions:
(a) 0 ≤ αn ≤ a < 1;
(b) 0 < b ≤ �n ≤ c < 2α

Then the sequence {xn} converges strongly to q = PFx0.

However, the proof of above Theorem 5 is not correct. First mistake: in page 6, line 
16–17, there is a mistake inequality:

Second mistake: in page 7, -line 5–7, there is a mistake ratiocination:
Since B is monotone, we get for any (u, v) ∈ B that

Replacing n by ni and letting i → ∞, we obtain from (7) that

Our comments:  Notice that, the inner product �·, ·� is not weakly continuous. For exam-
ple: in Hilbert space l2, let

It is well-known that {xn} converges weakly to x0, but

�x − PCx,PCx − y� ≥ 0, ∀ y ∈ C .































x1 ∈ C ,

C1 = C ,

yn = αnxn + (1− αn)SJrn(xn − �nAxn),
Cn+1 = {z ∈ Cn : �yn − z� ≤ �xn − z�},
xn+1 = PCn+1

x1, n ≥ 1,

�zn − p�2 = �J�n(xn − �nAxn)− J�n(p− �nAp)�2

≤ �(xn − �nAxn)− (p− �nAp), zn − p�.

(7)

〈

zn − u,
xn − zn

�n
− Axn − v

〉

≥ 0.

�ω − u,−Aω − v� ≥ 0.

x0 = (1, 0, 0, 0, 0, . . .),

x1 = (1, 1, 0, 0, 0, . . .),

x2 = (1, 0, 1, 0, 0, . . .),

x3 = (1, 0, 0, 1, 0, . . .),

· · · · · · .
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so the inner product 〈xn, xn〉 does not converges to 〈x0, x0〉. Therefore,

does not converges to

In order to modify the iterative algorithm of Theorem 5 and to get more generalized 
results, we present a new iterative algorithm in this paper. Moreover, the results are 
applied to variational inequalities.

Main results
Now we are in the position to give our main results.

Theorem  6  Let C be a nonempty closed convex subset of a real Hilbert space 
H , A : C → H be an α -inverse-strongly monotone mapping, and B be a maximal mono-
tone operator on H such that the domain of B is included in C. Let {Sn} : C → C be a fam-
ily of countable quasi-nonexpansive mappings which are uniformly closed. Assume that 
F = F(S) ∩ (A+ B)−1(0) �= ∅. Let {rn} be a positive real number sequence and {αn} be a 
real number sequence in [0,1). Let {xn} be a sequence of C generated by

where Jrn = (I + rnB)
−1, lim infn→∞ rn > 0, rn ≤ 2α and lim supn→∞ αn < 1. Then the 

sequence {xn} converges strongly to q = PFx0.

Proof  We divide the proof into six steps.
Step 1. We show that Cn is closed and convex. Notice that C1 = C is closed and convex. 

Suppose that Ci is closed and convex for some i ≥ 1. Next we show that Ci+1 is closed 
and convex for the same i. Since

It is obvious that

�xn, xn� = 2, �x0, x0� = 1,

〈

zn − u,
xn − zn

�n
− Axn − v

〉

�ω − u,−Aω − v�.



































x1 ∈ C1 = C , chosen arbitrarily,

zn = Jrn(xn − rnAxn),

yn = αnzn + (1− αn)Snzn,

Cn+1 =
�

z ∈ Cn : �zn − z� ≤ �yn − z� ≤ �xn − z�
�

,

xn+1 = PCn+1
x1, n ≥ 1,

Ci+1 = Ci ∩
{

z ∈ E : �yi − z� ≤ �zi − z�} ∩ {z ∈ E : �zi − z� ≤ �xi − z�
}

= Ci ∩
{

z ∈ E : �z, yi − zi� ≤
1

2

(

�yi�2 − �zi�2
)

}

∩
{

z ∈ E : �z, zi − xi� ≤
1

2

(

�zi�2 − �xi�2
)

}

.
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are all closed and convex, so Ci+1 is closed and convex. This shows that Cn is closed and 
convex for all n ≥ 1.

Step 2. We show that F ⊂ Cn for all n ≥ 1. By the assumption, we see that F ⊂ C1. 
Assume that F ⊂ Ci for some i ≥ 1. For any p ∈ F ⊂ Ci, we find from the Lemma that

Since Jri is nonexpansive, we have

which implies that

On the other hand, we have

From (8) and (9), we know that p ∈ Ci+1. This show F ⊂ Cn for all n ≥ 1.
Step 3. We show that {xn} is a Cauchy sequence, so it is convergent in C.
Since xn = PCnx0 and Cn+1 ⊂ Cn, then we obtain

Therefore �xn − x0� is nondecreasing. On the other hand, we have

for all p ∈ F ⊂ Cn and for all n ≥ 1. Therefore, �xn − x0� is also bounded. This together 
with (10) implies that the limit of �xn − x0� exists. Put

It is known that for any positive integer m,

{

z ∈ E : �z, yi − zi� ≤
1

2

(

�yi�2 − �zi�2
)

}

,

{

z ∈ E : �z, zi − xi� ≤
1

2

(

�zi�2 − �xi�2
)

}

p = Sip = Jri(p− riAp).

�zi − p�2 = �Jri(xi − riAxi)− Jri(p− riAp)�2

≤ �(xi − riAxi)− (p− riAp)�2

= �(xi − p)− ri(Axi − Ap)�2

= �xi − p�2 − 2ri�xi − p,Axi − Ap� + r2i �Axi − Ap�2

≤ �xi − p�2 − ri(2α − ri)�Axi − Ap�2,

(8)�zi − p� ≤ �xi − p�.

(9)

�yi − p� = �αizi + (1− αi)Sizi − p�
= �αi(zi − p)+ (1− αi)(Sizi − p)�
≤ αi�zi − p� + (1− αi)�Sizi − p�
≤ αi�zi − p� + (1− αi)�zi − p�
= �zi − p�.

(10)�xn − x0� ≤ �xn+1 − x0�, for all n ≥ 1.

�xn − x0� = �PCnx0 − x0� ≤ �p− x0�,

(11)lim
n→∞

�xn − x0� = d.

�xn+m − xn�2 = �xn+m − PCnx0�2

≤ �xn+m − x0�2 − �PCnx0 − x0�2

= Df (xn+m, x0)− Df (xn, x0),
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for all n ≥ 1. This together with (11) implies that

uniformly for all m, holds. Therefore, we get that

uniformly for all m, holds. Then {xn} is a Cauchy sequence, hence there exists a point 
p ∈ C such that xn → p.

Step 4. We prove that the limit of {xn} belongs to F.
Let limn→∞ xn = q. Sine xn+1 ∈ Cn+1, so we have

as n → ∞. Hence

From

we have that

The condition lim supn→∞ αn < 1 and (13) imply that

Because {Sn} is an uniformly closed family of countable quasi-nonexpansive mappings, 
therefore this together with the (14) implies that q ∈ ∩n=1

∞ F(Sn).
Step 5. We show that q ∈ (A+ B)−1(0).
Notice that zn = Jrn(xn − rnAxn). This means that

Actually, that is,

For B is monotone, so we get for any (u, v) ∈ B that

Letting n → ∞, we obtain from (15) that

lim
n→∞

Df (xn+m, xn) = 0,

lim
n→∞

�xn+m − xn� = 0,

(12)�yn − xn+1� ≤ �zn − xn+1� ≤ �xn − xn+1� → 0,

(13)lim
n→∞

yn = q, lim
n→∞

zn = q.

yn = αnzn + (1− αn)Snzn,

�yn − zn� = (1− αn)�Snzn − zn�.

(14)lim
n→∞

�Snzn − zn� = 0.

xn − rnAxn ∈ zn + rnBzn,

xn − zn

rn
− Axn ∈ Bzn,

(15)

〈

zn − u,
xn − zn

rn
− Axn − v

〉

≥ 0.

�q − u,−Aq − v� ≥ 0.
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Since B is a maximal monotone operator, so we have −Aq ∈ Bq, that is, 0 ∈ (A+ B)(q). 
Hence, q ∈ (A+ B)−1(0). This completes the proof that q ∈ F .

Step 6. We show that q = PFx0.
Observe that PFx0 ∈ Cn+1 and xn+1 = PCn+1x0, thus we have

On the other hand, we have

Since F is closed and convex, so the projection PFx0 is unique. Therefore we get that 
q = PFx0. This completes the proof. � �

Application
In this section, we apply our results to variational inequalities.

Let f : H → (−∞,+∞] be a proper lower semicontinuous convex function. For all 
x ∈ H , define the subdifferential

Then ∂f  is a maximal monotone operator of H into itself (Noor and Huang 2007). Let C 
be a nonempty closed convex subset of H and iC be the indicator function of C,  that is,

Furthermore, for any ν ∈ C , we define the normal cone NC(ν) of C at ν as follows:

Then iC : H → (−∞,+∞] is a proper lower semicontinuous convex function on H and 
∂iC is a maximal monotone operator. Let Jx = (I + �∂iC)

−1x for any � > 0 and x ∈ H . 
From ∂iCx = NCx and x ∈ C , we get

where PC is the projection operator from H into C. In the same way, we can get that 
x ∈ (A+ ∂iC)

−1(0) ⇔ x ∈ VI(A,C). Putting B = ∂iC in Theorem  6, we can see that 
J�n = PC . Naturally, we can obtain the following consequence.

Theorem  7  Let C be a nonempty closed convex subset of a real Hilbert space 
H , A : C → H be an α -inverse-strongly monotone mapping, and Sn : C → C be a fam-
ily of countable quasi-nonexpansive mappings which are uniformly closed. Assume that 
F = F(S) ∩ VI(C ,A) �= ∅. Let {rn} be a positive real number sequence and {αn} be a real 
number sequence in [0,1). Let {xn} be a sequence of C generated by

�xn+1 − x0� ≤ �PFx0 − x0�.

�x0 − PFx0� ≤ �x0 − q� = lim
n→∞

�x0 − xn+1� ≤ �x0 − PFx0�.

∂f (x) = {z ∈ H : f (x)+ �y− x, z� ≤ f (y), ∀y ∈ H}.

iCx =
{

0, x ∈ C ,
∞, x /∈ C .

NCν = {z ∈ H : �z, y− ν� ≤ 0, ∀y ∈ H}.

ν = J�x ⇔ x ∈ ν + �NCν,

⇔ �x − ν, y− ν�, ∀y ∈ C ,

⇔ ν = PCx,
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where Jrn = (I + rnB)
−1, lim infn→∞ rn > 0, rn ≤ 2α and lim supn→∞ αn < 1. Then the 

sequence {xn} converges strongly to q = PFx0.

Based on Theorem 7, we have the following corollary on variational inequalities.

Corollary 8  Let C be a nonempty closed convex subset of a real Hilbert space 
H , A : C → H be an α-inverse-strongly monotone mapping. Assume that 
F = VI(C ,A) �= ∅. Let {rn} be a positive real number sequence. Let {xn} be a sequence of 
C generated by

where Jrn = (I + rnB)
−1, and lim infn→∞ rn > 0, rn ≤ 2α. Then the sequence {xn} con-

verges strongly to q = PVI(C ,A)x0.

Examples
Let H be a Hilbert space and C be a nonempty closed convex and balanced subset of H. 
Let {xn} be a sequence in C such that �xn� = r > 0, {xn} converges weakly to x0 �= 0 and 
�xn − xm� ≥ r > 0 for all n �= m. Define a family of countable mappings {Tn} : C → C as 
follows

Conclusion 9  {Tn} has a unique common fixed point 0, i.e., F = ∩∞
n=1F(Tn) = {0}, for 

all n ≥ 0.

Proof  The conclusion is obvious. � �

Conclusion 10  {Tn} is a uniformly closed family of countable quasi-nonexpansive 
mappings.

Proof  First, we have

Therefore



















x1 ∈ C1 = C , chosen arbitrarily,
zn = PC(xn − rnAxn),
yn = αnzn + (1− αn)Snzn,
Cn+1 = {z ∈ Cn : �zn − z� ≤ �yn − z� ≤ �xn − z�},
xn+1 = PCn+1x1, n ≥ 1,











x1 ∈ C1 = C , chosen arbitrarily,
zn = PC(xn − rnAxn),
Cn+1 = {z ∈ Cn : �zn − z� ≤ �xn − z�},
xn+1 = PCn+1x1, n ≥ 1,

Tn(x) =
{

n
n+1xn if x = xn(∃ n ≥ 1),

−x if x �= xn(∀ n ≥ 1).

�Tnx − 0� =
{

n
n+1�xn − 0�, if x = xn,

�x − 0� if x �= xn.

�Tnx − 0� ≤ �x − 0�2,
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for all x ∈ C . On the other hand, for any strong convergent sequence {zn} ⊂ E such that 
zn → z0 and �zn − Tnzn� → 0 as n → ∞, it is easy to see that there exists sufficiently 
large nature number N such that zn �= xm, for any n,m > N . Then Tzn = −zn for n > N . 
It follows from �zn − Tnzn� → 0 that 2zn → 0. Hence zn → z0 = 0, that is z0 ∈ F . � �

Example 11  Let E = l2, where

Let {xn} ⊂ E be a sequence defined by

where

for all n ≥ 1. It is well-known that �xn� =
√
2, ∀n ≥ 1 and {xn} converges weakly to x0. 

Define a countable family of mappings Tn : E → E as follows

for all n ≥ 0. By using Conclusion 9 and 10, {Tn} is a uniformly closed family of count-
able quasi-nonexpansive mappings.

Example 12  Let E = Lp[0, 1] (1 < p <+∞) and

Define a sequence of functions in Lp[0, 1] as the following expression

for all n ≥ 1. Firstly, we can see for any x ∈ [0, 1] that

l2 =
{

ξ = (ξ1, ξ2, ξ3, . . . , ξn, . . .) :
∞
∑

n=1

|xn|2 < ∞
}

,

�ξ� =
( ∞
∑

n=1

|ξn|2
)

1
2

, ∀ ξ ∈ l2,

�ξ , η� =
∞
∑

n=1

ξnηn, ∀ ξ = (ξ1, ξ2, ξ3, . . . , ξn, . . .), η = (η1, η2, η3, . . . , ηn . . .) ∈ l2.

x0 = (1, 0, 0, 0, . . .),

x1 = (1, 1, 0, 0, . . .),

x2 = (1, 0, 1, 0, 0, . . .),

x3 = (1, 0, 0, 1, 0, 0, . . .),

......................................

xn = (ξn,1, ξn,2, ξn,3, . . . , ξn,k , . . .)

......................................,

ξn,k =
{

1 if k = 1, n+ 1,
0 if k �= 1, k �= n+ 1,

Tn(x) =
{

n
n+1xn if x = xn,

−x if x �= xn,

xn = 1−
1

2n
, n = 1, 2, 3, · · · .

fn(x) =











2
xn+1−xn

if xn ≤ x <
xn+1+xn

2 ,
−2

xn+1−xn
if

xn+1+xn
2 ≤ x < xn+1

0 otherwise
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where f0(x) ≡ 0. It is well-known that the above relation (16) is equivalent to {fn(x)} con-
verges weakly to f0(x) in uniformly smooth Banach space Lp[0, 1](1 < p <+∞). On the 
other hand, for any n �= m, we have

Let

It is obvious that un converges weakly to u0(x) ≡ 1 and

Define a mapping T : E → E as follows

Since (17) holds, by using Conclusion 9 and 10, we know that {Tn} is a uniformly closed 
family of countable quasi-nonexpansive mappings.
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(16)

∫ x

0

fn(t)dt → 0 =
∫ x

0

f0(t)dt,

�fn − fm� =
(

∫ 1

0

|fn(x)− fm(x)|pdx
)

1
p

=
(
∫ xn+1

xn

|fn(x)− fm(x)|pdx +
∫ xm+1

xm

|fn(x)− fm(x)|pdx
)

1
p

=
(
∫ xn+1

xn

|fn(x)|pdx +
∫ xm+1

xm

|fm(x)|pdx
)

1
p

=
((

2

xn+1 − xn

)p

(xn+1 − xn)+
(

2

xm+1 − xm

)p

(xm+1 − xm)

)

1
p

=
(

2p

(xn+1 − xn)
p−1

+
2p

(xm+1 − xm)
p−1

)
1
p

≥
(

2p + 2p
)
1
p > 0.

un(x) = fn(x)+ 1, ∀ n ≥ 1.

(17)�un − um� = �fn − fm� ≥ (2p + 2p)
1
p > 0, ∀ n ≥ 1.

Tn(x) =
{

n
n+1un if x = un(∃ n ≥ 1),

−x if x �= un(∀ n ≥ 1).
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