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Background
Stochastic dynamical systems have a wide range of applications inside as well as outside 
the field of mathematics. The quantitative studies of different fields such as physics, engi-
neering, ecological sciences, system sciences and medicine have been driven by stochas-
tic dynamical systems. Stochastic differential equations (SDEs) are often used to model 
financial quantities such as asset prices, interest rates and their derivatives. These equa-
tions have become standard models for population dynamics and biological systems. Sto-
chastic functional differential equations (SFDEs) in the G-framework were initiated by Ren 
et  al. (2013). Then studied by Faizullah (2014), he developed the existence-and-unique-
ness theorem with Cauchy–Maruyama approximation scheme (Faizullah 2014). Later, he 
proved the comparison result, with the help of which he established the existence theory 
for SFDEs in the G-framework with discontinuous drift coefficients (Faizullah et al. 2016). 
G-expectation, which is a nonlinear expectation, defined by Peng (2006), has been moti-
vated by stochastic volatility problems and risk measures in finance (Gao 2009; Peng 2008, 
2010). This led him to derive G-Brownian motion that is a novel stochastic process. Being 
different from the classical Brownian motion as it is not based on a given particular prob-
ability space, G-Brownian motion qualifies itself for a new and extremely rich structure 
which nontrivially generalizes the classical one. Some of the pertinent stochastic calculus 
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which were established by him included G-Itô’s integral, G-Itô’s formula and G-quadratic 
variation process 〈B〉. A new and interesting phenomenon that is related to the G-Brown-
ian motion is the fact that its quadratic variation process, which is also a continuous pro-
cess, has got stationary and independent increments. Therefore, it continues to qualify for 
being termed as a Brownian motion. Thus, the idea of G-framework-related stochastic dif-
ferential equations was initiated (Peng 2006, 2008). Due to the applicability of the theory, 
many authors published their work on this emerging phenomenon in a short span of time 
(Bai and Lin 2014; Denis et al. 2010; Xua and Zhang 2009). As important as the existence 
theory, moment estimate is one of the most useful and basic schemes of analyzing dynamic 
behavior of SFDEs. It is also worth noting that the pth moment of the solution for such 
SDEs driven by G-Brownian motion with non-linear growth condition has not been fully 
explored, which remains an interesting research topic. This article will fill the mentioned 
gap. We present the analysis for the solution to the following SFDE in the G-framework

with initial data Yt0 = ζ satisfying

It is understood that Y(t) is the value of stochastic process at time t and 
Yt = {Y (t + θ): − ρ ≤ θ ≤ 0, ρ > 0}, indicates BC([−ρ, 0];R)-valued stochastic pro-
cess, which is a collection of continuous and bounded real valued functions ϕ defined 
on [−ρ, 0] having norm �ϕ� = sup−ρ≤θ≤0 | ϕ(θ) |. The coefficients κ , � and µ are Borel 
measurable real valued functions on [0,T ] × BC([−ρ, 0] (Faizullah et al. 2016). The rest 
of the paper is organized as follows: “Preliminaries” section is devoted to some basic defi-
nitions and results. “pth Moment estimates for SFDEs in the G-framework” section pre-
sents the pth moment estimates for SFDEs in the G-framework, under non-linear growth 
condition. “Continuity of pth moment for SFDE in the G-framework” section shows that 
the pth moment of solution to SFDE is continuous. The path-wise asymptotic estimates 
are given in “Path-wise asymptotic estimate” section.

Preliminaries
In this section some fundamental notions and results are given, which are used in the forth-
coming sections of this paper. For more detailed literature of G-expectation, see the papers 
Denis et al. (2010), Faizullah (2012), Li and Peng (2011), Song (2013) and book Peng (2010).

Definition 1  Let H be a linear space of real valued functions defined on a nonempty 
basic space �. Then a sub-linear expectation E is a real valued functional on H with the 
following features:

(a)		 For all Y ,Z ∈ H, if Y ≤ Z then E[Y ] ≤ E[Z].
(b)		 For any real constant γ , E[γ ] = γ.
(c)		 For any θ > 0, E[θZ] = θE[Z].
(d)		 For every Y ,Z ∈ H, E[Y + Z] ≤ E[Y ] + E[Z].

(1)dY (t) = κ(t,Yt)dt + �(t,Yt)d�B,B�(t)+ µ(t,Yt)dB(t), t ∈ [0,∞),

(2)
Yt0 = ζ = {ζ(θ): − τ < θ ≤ 0} is F0-measurable, BC([−τ , 0];Rn)-valued

random variable such that ζ ∈ M2
G

(

[−τ , 0];Rn
)

.



Page 3 of 11Faizullah ﻿SpringerPlus  (2016) 5:872 

Let Cb.Lip(R
l×d) denotes the set of bounded Lipschitz functions on Rl×d and

Let δi ∈ L
p
G(�ti), i = 0, 1, . . . ,N − 1 then M0

G(0,T ) denotes the collection of processes 
of the following type:

where the above process is defined on a partition πT = {t0, t1, . . . , tN } of [0, T]. Asso-
ciated with norm �η� = {

∫ T
0 E[|ηu|

p]du}1/p, M
p
G(0,T ), p ≥ 1, is the completion of 

M0
G(0,T ).

Definition 2  Let (Bt)t≥0 be a d-dimensional stochastic process defined on 
(�,Cl,lip(H),E), such that B0 = 0. The increment Bt+m − Bt is G-normally distrib-
uted for any t,m ≥ 0, n ∈ N  and 0 ≤ t1 ≤ t2 ≤, · · · ,≤ tn ≤ t, it is independent from 
Bt1 ,Bt2 , . . .Btn . Then (Bt)t≥0 is known as G-Brownian motion.

For every ηt ∈ M2,0
G (0,T ), the G-Itô’s integral I(η) and G-quadratic variation processes 

{�B�t}t≥0 are respectively given by

We now state three important inequalities known as Hölder’s inequality, Bihari’s ine-
quality and Gronwall’s inequality respectively (Mao 1997).

Lemma 3  If 1q + 1
r = 1 for any q, r > 1, g ∈ L2 and h ∈ L2 then gh ∈ L1 and

Lemma 4  Let C ≥ 0, h(t) ≥ 0 and w(t) be a real valued continuous function on [c, d]. If 
for all c ≤ t ≤ d, w(t) ≤ C +

∫ d
c h(s)w(s)ds, then

for all c ≤ t ≤ d.
The following two lemmas are borrowed from the book Mao (1997).

Lemma 5  Let a, b ≥ 0 and ǫ ∈ (0, 1). Then

L
p
G(�T ) =

{

φ(Bt1 ,Bt2 , . . . ,Btl/l ≥ 1, t1, t2, . . . , tl ∈ [0,T ],φ ∈ Cb.Lip(R
l×d))

}

.

ηt(w) =

N−1
∑

i=0

δi(w)I[ti ,ti+1](t),

I(η) =

∫ T

0

ηudBu =

N−1
∑

i=0

δi(Bti+1 − Bti),

�B�t = B2
t − 2

∫ t

0

BudBu.

∫ d

c
gh ≤

(

∫ d

c
|g |q

)
1
q
(

∫ d

c
|h|r

)
1
r

.

w(t) ≤ Ce
∫ t
c h(s)ds,

(a+ b)2 ≤
a2

ǫ
+

b2

1− ǫ
.
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Lemma 6  Assume p ≥ 2 and ǫ̂, a, b > 0. Then the following two inequalities hold.

(i)		  ap−1b ≤
(p−1)ǫ̂ap

p + bp

pǫ̂p−1 .

(ii)		 ap−2b2 ≤
(p−2)ǫ̂ap

p + 2bp

pǫ̂
p−2
2

.

Theorem 7  Let Y ∈ Lp. Then for each ǫ > 0,

In the above Theorem  7, Ĉ is known as capacity defined by Ĉ(H) = supP∈P P(H), 
where P is a collection of all probability measures on (�,B(�) and H ∈ B(�), which is 
Borel σ-algebra of �. Also, we remind Ĉ(H) = 0 means that set H is polar and a property 
holds quasi-surely (q.s. in short) means that it holds outside a polar set. The rest of the 
paper is organized as follows. In “Preliminaries” section, the pth moment estimates are 
studied. In “pth Moment estimates for SFDEs in the G-framework” section, continuity of 
pth moment is shown. In “Continuity of pth moment for SFDE in the G-framework” sec-
tion, path-wise asymptotic estimates for SFDEs driven by G-Brownian motion are given.

pth Moment estimates for SFDEs in the G‑framework
Let Eq.  (1) admit a unique solution Y(t). Assume that a non-linear growth condition 
holds, which is given as follows. For every ψ ∈ BC([−τ , 0];Rd) and t ∈ [0,T ],

where ϒ(·):R+ → R+ is a non-decreasing and concave function such that 
ϒ(0) = 0, ϒ(x) > 0 for x > 0 and

As ϒ is concave and ϒ(0) = 0, there exists two positive constants α and β such that

for all x ≥ 0.

Theorem 8  Assume that the non-linear growth condition (3) holds. Let E�ζ�p < ∞ and 
p ≥ 2. Then

where α3 = T [2α1(1+ c1)+α2(c1(p− 1)+ pc2
3
)], β3 = [2β1(1+ c1)+β2(p− 1+ pc2

3
)],

α1 =
1

ǫ̂p−1 (2)
p
2
−1[(α + β))

p
2 + (β)

p
2 E�ζ�p] and β1 = (p− 1)ǫ̂ +

(2β)
p
2

2ǫ̂p−1 , α2 =
1

ǫ̂
p−2

2

(2)
p
2

[

(α + β)
p
2 + (β)

p
2 E�ζ�p], β2 = [(p− 1)ǫ̂ +

(2β)
p
2

ǫ̂
p−2

2

]

, c2 and c3 are positive constants.

Ĉ(|Y |p > ǫ) ≤
E[|Y |p]

ǫ
.

(3)|κ(t,ψ)|2 + |�(t,ψ)|2 + |µ(t,ψ)|2 ≤ ϒ

(

1+ |ψ |2
)

,

(4)

∫

0+

dx

ϒ(x)
= ∞.

(5)ϒ(x) ≤ α + βx,

E

[

sup
−τ≤v≤T

|Y (v)|p

]

≤ E�ζ�p + α3e
β3T ,
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Proof  Applying G-Itôs formula to |Y (t)|p, for p ≥ 2, we proceed as follows

where

By non-linear growth condition (3) and Lemma 6, for any ǫ̂ > 0, we get

Using the inequality (a+ b)p ≤ 2p−1(ap + bp) and the fact sup−τ≤v≤T |Y (v)|p ≤ �ζ�p+

sup0≤v≤T |Y (v)|p, we proceed as follows

(6)

E

[

sup
0≤v≤t

|Y (t)|p

]

≤ E|ζ(0)|p + pE

[

sup
0≤v≤t

∫ t

0

|Y (v)|p−1|κ(v,Yv)|dv

]

+ E

[

sup
0≤v≤t

∫ t

0

p|Y (v)|p−1|µ(v,Yv)|dB(v)

]

+ E

[

sup
0≤v≤t

∫ t

0

[p|Y (v)|p−1|�(v,Yv)|

+
p(p− 1)

2
|Y (v)|p−2|µ(v,Yv)|

2]d�B,B�(v)

]

= E|ζ(0)|p + I1 + I2 + I3,

I1 = pE

[

sup
0≤v≤t

∫ t

0

|Y (v)|p−1|κ(v,Yv)|dv

]

,

I2 = pE

[

sup
0≤v≤t

∫ t

0

|Y (v)|p−1|µ(v,Yv)|dB(v)

]

,

I3 = pE

[

sup
0≤v≤t

∫ t

0

[

|Y (v)|p−1|�(v,Yv)| +
(p− 1)

2
|Y (v)|p−2|µ(v,Yv)|

2

]

d�B,B�(v)

]

.

|Y (t)|p−1|κ(t,Yt)| ≤
(p− 1)ǫ̂|Y (t)|p

p
+

|κ(t,Yt)|
p

pǫ̂p−1

≤
(p− 1)ǫ̂�Y (t)�p

p
+

[

ϒ(1+ �Yt�
2)
]

p
2

pǫ̂p−1

≤
(p− 1)ǫ̂�Y (t)�p

p
+

[

α + β(1+ �Yt�
2)
]

p
2

pǫ̂p−1
.

|Y (t)|p−1|κ(t,Yt)| ≤
(p− 1)ǫ̂�Y (t)�p

p
+

[α + β + β�Yt�
2]

p
2

pǫ̂p−1

≤
(p− 1)ǫ̂�Y (t)�p

p
+

(2)
p
2
−1[(α + β)

p
2 + (β)

p
2 �Yt�

p]

pǫ̂p−1

≤
(p− 1)ǫ̂�Y (t)�p

p
+

(2)
p
2
−1[(α + β)

p
2 + (β)

p
2 �ζ�p + (β)

p
2 �Y (t)�p]

pǫ̂p−1

≤
(p− 1)ǫ̂�Y (t)�p

p
+

(2)
p
2 [(α + β)

p
2 + (β)

p
2 �ζ�p] + (2β)

p
2 �Y (t)�p

2pǫ̂p−1

=
(2)

p
2 [(α + β)

p
2 + (β)

p
2 �ζ�p]

2pǫ̂p−1
+

[

(p− 1)ǫ̂

p
+

(2β)
p
2

2pǫ̂p−1

]

�Y (t)�p,
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which yields

where α1 = (2)
p
2 [(α+β))

p
2 +(β)

p
2 E�ζ�p]

2ǫ̂p−1  and β1 = (p− 1)ǫ̂ + (2β)
p
2

2ǫ̂p−1 . In a similar fashion as 
above we get

Next by using Lemma 6, non-linear growth condition (3), inequality (a+ b)p ≤ 2p−1(ap + bp) 
and the fact sup−τ≤v≤T |Y (v)|p ≤ �ζ�p + sup0≤v≤T |Y (v)|p, we have

which gives

where α2 = (2)
p
2 [(α+β))

p
2 +(β)

p
2 E�ζ�p]

ǫ̂
p−2
2

 and β2 =
[

(p− 1)ǫ̂ + (2β)
p
2

ǫ̂
p−2
2

]

. Then I1 can be written 
as follows

(7)pE|Y (t)|p−1|κ(t,Yt)| ≤ α1 + β1E�Y (t)�p,

(8)
p|Y (t)|p−1|�(t,Yt)| ≤ α1 + β1�Y (t)�p,

p|Y (t)|p−1|µ(t,Yt)| ≤ α1 + β1�Y (t)�p.

|Y (t)|p−2|µ(t,Yt)|
2 ≤

(p− 2)ǫ̂|Y (t)|p

p
+

2|µ(t,Yt)|
p

pǫ̂
p−2

2

≤
(p− 2)ǫ̂�Y (t)�p

p
+

2[ϒ(1+ �Yt�
2)]

p
2

pǫ̂
p−2

2

≤
(p− 2)ǫ̂�Y (t)�p

p
+

2[α + β(1+ �Yt�
2)]

p
2

pǫ̂
p−2

2

≤
(p− 2)ǫ̂�Y (t)�p

p
+

2[α + β + β�Yt�
2]

p
2

pǫ̂
p−2

2

≤
(p− 1)ǫ̂�Y (t)�p

p
+

(2)
p
2 [(α + β)

p
2 + (β)

p
2 �Yt�

p]

pǫ̂
p−2

2

≤
(p− 2)ǫ̂�Y (t)�p

p
+

(2)
p
2 [(α + β)

p
2 + (β)

p
2 �ζ�p + (β)

p
2 �Y (t)�p]

pǫ̂
p−2

2

≤
(p− 2)ǫ̂�Y (t)�p

p
+

(2)
p
2 [(α + β)

p
2 + (β)

p
2 �ζ�p] + (2β)

p
2 �Y (t)�p

pǫ̂
p−2

2

=
(2)

p
2 [(α + β)

p
2 + (β)

p
2 �ζ�p]

pǫ̂
p−2

2

+

[

(p− 1)ǫ̂

p
+

(2β)
p
2

pǫ̂
p−2

2

]

�Y (t)�p,

(9)pE|Y (t)|p−2|µ(t,Yt)|
2 ≤ α2 + β2E�Y (t)�p,

I1 = E

[

sup
0≤v≤t

∫ t

0

p|Y (v)|p−1|κ(v,Yv)|dv

]

≤

∫ t

0

[α1 + β1E�Y (t)�p]dv

≤ α1T + β1

∫ t

0

E(�Y (v)�p)dv.
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By inequalities (8) and the Burkholder–Davis–Gundy (BDG) inequalities (Gao 2009), I2 
can be written as follows

Next we use the BDG inequalities (Gao 2009), inequality (8), mean value theorem and 
the inequality |a||b| ≤ a2

2 + b2

2  as follows

Using the values of I1, I2 and I3 in (2) we get

I2 = E

[

sup
0≤v≤t

∣

∣

∣

∣

∫ t

0

[

p|Y (v)|p−1|�(v,Yv)| +
p(p− 1)

2
|Y (v)|p−2|µ(v,Yv)|

2

]

d�B,B�(v)

]

∣

∣

∣

∣

∣

≤ c1

∫ t

0

[

pE|Y (v)|p−1|�(v,Yv)| +
p(p− 1)

2
E|Y (v)|p−2|µ(v,Yv)|

2

]

dv

≤ c1

∫ t

0

[

α1 + β1E�Y (t)�p +
(p− 1)

2
(α2 + β2E�Y (t)�p)

]

dv

≤ c1

(

α1 +
1

2
(p− 1)α2

)

T + c1

(

β1 +
1

2
(p− 1)β2

)
∫ t

0

E�Y (t)�pdv

I3 = pE

[

sup
0≤v≤t

∣

∣

∣

∣

∫ t

0

|Y (v)|p−1|µ(v,Yv)|dB(v)

∣

∣

∣

∣

]

≤ pc3E

[
∫ t

0

|Y (v)|2p−2|µ(v,Yv)|
2dv

]

1
2

≤ pc3E

[

sup
0≤v≤t

[|Y (v)|p]
1
2

∫ t

0

|Y (v)|p−2|µ(v,Yv)|
2dv

]
1
2

≤
1

2
E

[

sup
0≤v≤t

|Y (v)|p

]

+
p2c23
2

E

[
∫ t

0

|Y (v)|p−2|µ(v,Yv)|
2dv

]

≤
1

2
E

[

sup
0≤v≤t

|Y (v)|p

]

+
pc23
2

∫ t

0

[α2 + β2E�Y (t)�p]dv

≤
1

2
pc23α2T +

1

2
E

[

sup
0≤v≤t

|Y (v)|p

]

+
1

2
pc23β2

∫ t

0

E�Y (t)�pdv

E

[

sup
0≤v≤t

|Y (v)|p

]

≤ α1T + β1

∫ t

0

E
(

�Y (v)�p
)

dv

+ c1

(

α1 +
1

2
(p− 1)α2

)

T + c1

(

β1 +
1

2
(p− 1)β2

)
∫ t

0

E�Y (t)�pdv

+
1

2
pc23α2T +

1

2
E

[

sup
0≤v≤t

|Y (v)|p

]

+
1

2
pc23β2

∫ t

0

E�Y (t)�pdv

=
1

2
E

[

sup
0≤v≤t

|Y (v)|p + T

[

α1(1+ c1)+
1

2
α2(c1(p− 1)+ pc23)

]

+

[

β1(1+ c1)+
1

2
β2(p− 1+ pc23)

]
∫ t

0

E(�Y (v)�p)dv,
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simplification yields,

By the Gronwall’s inequality

where α3 = T [2α1(1+ c1)+ α2(c1(p− 1)+ pc23)] and β3 = [2β1(1+ c1)+ β2(p− 1

+pc2
3
)]. By taking t = T , we have

Noting the fact that sup−τ≤v≤T |Y (v)|p ≤ �ζ�p + sup0≤v≤T |Y (v)|p, we proceed as 
follows

The proof is complete.�  �

Continuity of pth moment for SFDE in the G‑framework
In the next theorem, under non-linear growth condition, it is shown that the pth 
moment of the solution to SFDE in the G-framework (1) is continuous.

Theorem  9  Assume the non-linear growth condition (3) holds. Let E�ζ�p < ∞ and 
p ≥ 2. Then

where γ (t) = 3
3p
2 −2(1+ c2 + c3)[α

p
2 + β

p
2 + β

p
2 E�ζ�p + β

p
2 α3e

β3T ], c2, c3, α, β , α3 and 
β3 are positive constants.

Proof  By using the inequality (a+ b+ c)p ≤ 3p−1(ap + bp + cp), Eq. (1) follows

Applying G-expectation on both sides, using the BDG inequalities (Gao 2009), Holder’s 
inequality and non-linear growth condition, we proceed as follows

E

[

sup
0≤v≤t

|Y (v)|p

]

≤ T
[

2α1(1+ c1)+ α2(c1(p− 1)+ pc23)
]

+
[

2β1(1+ c1)+ β2(p− 1+ pc23)
]

∫ t

0

E(�Z(v)�p)dv.

(10)E

[

sup
0≤v≤t

|Y (v)|p

]

≤ α3e
β3t ,

(11)E

[

sup
0≤v≤T

|Y (v)|p

]

≤ α3e
β3T .

E

[

sup
−τ≤v≤T

|Y (v)|p

]

≤ E�ζ�p + E

[

sup
0≤v≤T

|Y (v)|p

]

≤ E�ζ�p + α3e
β3T .

E[|Y (t)− Y (s)|p] ≤ γ (t)(t − s)p,

|Y (t)− Y (s)|p = 3p−1

∣

∣

∣

∣

∫ t

s
κ(q,Yq)dq

∣

∣

∣

∣

p

+ 3p−1

∣

∣

∣

∣

∫ t

s
�(q,Yq)d�B,B�(q)

∣

∣

∣

∣

p

+ 3p−1

∣

∣

∣

∣

∫ t

s
µ(q,Yq)dB(q)

∣

∣

∣

∣

p

.
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By using the inequality (11), it follows

where γ (t) = 3
3p
2 −2(1+ c2 + c3)[[α

p
2 + β

p
2 + β

p
2 E�ζ�p + β

p
2 α3e

β3T ]. The proof is com-
plete. � �

In the above theorem c2, c3, α, β , α3 and β3 are positive constants. The values of α3 
and β3 are given in Theorem 8.

Path‑wise asymptotic estimate
Next, by using Theorem 8 we study the path-wise asymptotic estimate for the solution 
of SFDE in the G-framework (1). It is understood that limt→∞ sup 1

t log |Y (t)| is the Lya-
punov exponent (Kim 2014). It is shown that the pth moment of Lyapunov exponent 
should not be greater than 1p [2β1(1+ c1)+ β2(p− 1+ pc23)], where c1, c3, β1, β2 are 
positive constants and p ≥ 2.

E|Y (t)− Y (s)|p

≤ 3p−1(t − s)p−1E

∫ t

s
|κ(q,Yq)|

pdq + 3p−1c2(t − s)p−1

∫ t

s
|�(q,Yq)|

pdq

+ 3p−1c3(t − s)p−1

∫ t

s
|µ(q,Yq)|

pdq

≤ 3p−1(t − s)p−1E

∫ t

s

[

ϒ(1+ �Yq�
2)

]

p
2
dq + 3p−1c2(t − s)p−1

∫ t

s

[

ϒ(1+ �Yq�
2)

]

p
2
dq

+ 3p−1c3(t − s)p−1

∫ t

s
[ϒ(1+ �Yq�

2)]
p
2 dq

= 3p−1(t − s)p−1[1+ c2 + c3]E

∫ t

s
[ϒ(1+ �Yq�

2)]
p
2 dq

≤ 3p−1(t − s)p−1[1+ c2 + c3]E

∫ t

s
[α + β(1+ �Yq�

2)]
p
2 dq

≤ 3p−1(t − s)p−1[1+ c2 + c3]E

∫ t

s
[α + β + β�Yq�

2]
p
2 dq

≤ 3p−1(t − s)p−1[1+ c2 + c3]3
p
2−1

∫ t

s
[(α)

p
2 + (β)

p
2 + (β)

p
2 E�Yq�

p]dq

≤ 3p−1(t − s)p−1[1+ c2 + c3]3
p
2−1

∫ t

s

[

α
p
2 + β

p
2 + β

p
2 E�ζ�p + β

p
2 sup
0≤s≤r≤q

E�Y (r)�p

]

dr

≤ 3
3p
2 −2(t − s)p[1+ c2 + c3]

[

α
p
2 + β

p
2 + β

p
2 E�ζ�p

]

+ 3
3p
2 −2(t − s)p−1[1+ c2 + c3]β

p
2

∫ t

s
sup

0≤s≤r≤q

E�Y (r)�pdr

E|Y (t)− Y (s)|p ≤ 3
3p
2 −2(t − s)p[1+ c2 + c3]

[

α
p
2 + β

p
2 + β

p
2 E�ζ�p

]

+ 3
3p
2 −2(t − s)p−1[1+ c2 + c3]β

p
2

∫ t

s
α3e

β3Tdr

≤ 3
3p
2 −2(t − s)p[1+ c2 + c3]

[

α
p
2 + β

p
2 + β

p
2 E�ζ�p

]

+ 3
3p
2 −2(t − s)p[1+ c2 + c3]β

p
2 α3e

β3T

= γ (t)(t − s)p,
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Theorem 10  Assume that the non-linear growth condition (3) holds. Then

Proof  For each k = 1, 2, . . . , using the non-linear growth condition in a similar fashion 
as in Theorem 8, Eq. (10) we obtain,

where α3 = T [2α1(1+ c1)+ α2(c1(p− 1)+ pc23)] and β3 = [2β1(1+ c1)+ β2(p− 1

+pc2
3
)]. Recall that E is a sub-linear expectation. Unlike a classical expectation, it is not 

based on a particular probability space. So, instead of probability, we use a different con-
cept known as capacity. Thanks to Theorem 7 for any arbitrary ǫ > 0, we have

The Borel–Cantelli lemma follows for almost all w ∈ �, there exists a random integer 
k0 = k0(w) such that

consequently, we get

But ǫ is arbitrary, so

The proof is complete. � �

Remark 11  In the above theorem if p = 2, then

Hence β1(1+ c1)+
1
2β2(1+ 2c23) is the upper bound for second moment of Lyapunov 

exponent.

lim
t→∞

sup
1

t
log |Y (t)| ≤

1

p

[

2β1(1+ c1)+ β2(p− 1+ pc23)
]

q.s.

E

(

sup
k−1≤t≤k

|Y (t)|p

)

≤ α3e
β3k ,

Ĉ

(

w: sup
k−1≤t≤k

|Y (t)|p > e(β3+ǫ)k

)

≤
E
[

supk−1≤t≤k |Y (t)|p
]

e(β3+ǫ)k

≤
αeβ3k

e(β3+ǫ)k

= αe−ǫk .

sup
k−1≤t≤k

|Y (t)|p ≤ e(β3+ǫ)k whenever k ≥ k0,

lim
t→∞

sup
1

t
log |Y (t)| ≤

β3 + ǫ

p

=
1

p

[

2β1(1+ c1)+ β2(p− 1+ pc23)
]

+
ǫ

p
, q.s.

lim
t→∞

sup
1

t
log |Y (t)| ≤

1

p

[

2β1(1+ c1)+ β2(p− 1+ pc23)
]

, q.s.

lim
t→∞

sup
1

t
log |Y (t)| ≤ β1(1+ c1)+

1

2
β2

(

1+ 2c23

)

,
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Conclusion
Generally, we cannot find explicit solutions to nonlinear SDEs. Thus one needs to pre-
sent the analysis for solutions to these equations. Existence and moment estimates are the 
most important characteristics for solutions to SDEs. Here, we have used some important 
inequalities such as Bihari’s inequality, Hölder’s inequality, Gronwall’s inequality and Bur-
kholder–Davis–Gundy (BDG) inequalities to investigate the pth moment estimates for 
SFDEs driven by G-Brownian motion. Then the asymptotic estimates for these equations 
have been developed. Furthermore, continuity of pth moment for the solutions to SFDEs in 
the G-framework has been proved. The G-Brownian motion theory is the generalization of 
the classical Brownian motion theory. The methodology used to estimate pth moment for 
SDE is interesting and applicable in various practical applications. For example, pth moment 
estimates are useful in biological population models (Shang 2013a) and distributed system 
control (Shang 2012, 2013b, 2015). The methods of the pth moment estimation, developed 
in our paper, can be used to extend the related theory in above mentioned papers.
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