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Background
Recently, the fractional calculus serving the fractional-order models develops fast 
in both theoretical and application. The analysis about fractional-order models has 
attracted increasing attention cause of its promising applications in various areas of sci-
ence and engineering (see Chen and Chen 2015; Chen et al. 2014; Liu et al. 2015; Liang 
et  al. 2015; Li et  al. 2015; Rakkiyappan et al. 2014, 2015b; Stamova 2014; Velmurugan 
and Rakkiyappan 2016; Velmurugan et al. 2016; Wang et al. 2014; Wu and Zeng 2016; 
Wu et al. 2016). Comparing with integer-order systems, fractional-order systems show 
the superiority of describing and modeling the real world or the practical problems such 
as anomalous diffusion, signal processing, fractal theory and continuum mechanics. 
Whereas, it is arduously to promote the development of research about fractional-order 
models for the absence of efficient mathematical tools. As mentioned by Chen and Chen 
(2016), Chen et al. (2014), some new and useful methods for the qualitative analysis of 
fractional-order models are very imperative.

On the other hand, memristor is a circuit element which was proposed by Chua (1971) 
and has been realized the prototype by Hewlett-Packard laboratory in Strukov et  al. 
(2008) and Tour and He (2008). Different from classical resistors, memristor is a nonlin-
ear resistor which owns non-uniqueness values. In addition, the memristor can manage 
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and store a great quantity of information. For its excellent properties about memory, 
we can build a new model if the conventional resistors are replaced by the memristors 
in neural networks, which is called memristive neural networks. Some representative 
works studied on the properties of the memristive systems display its applicability in 
several interdisciplinary areas (see Bao and Zeng 2013; Guo et al. 2015; Wang et al. 2003; 
Wu et al. 2012; Wu and Zeng 2012; Wen and Zeng 2012; Zhao et al. 2015). From the 
description of memristive neural networks, combining memristors with infinite mem-
ory is extremely interesting. An advantage of fractional-order systems in comparison 
to integer-order systems is that fractional-order systems can generate infinite memory. 
Therefore, merging the memristors into a class of fractional-order neural networks is 
pretty anticipated. Although stability analysis of fractional-order memristive or mem-
ristor-based neural networks has been gradually carried out (see Chen et al. 2014, 2015; 
Rakkiyappan et al. 2014, 2015b; Velmurugan and Rakkiyappan 2016; Velmurugan et al. 
2016), it is worth noting that fractional-order memristive neural networks can exhibit 
complicated dynamics or chaotic behaviors if the network’s parameters and time delays 
are appropriately specified.

Noticed that many static or dynamic control laws have been designed to stabilize 
nonlinear control systems, for instance, Chandrasekar and Rakkiyappan (2016), Chen 
et al. (2015), Guo et al. (2013), Huang et al. (2009), Lou et al. (2013), Mathiyalagan et al. 
(2015), Rakkiyappan et al. (2015a), Wu et al. (2016), Yang and Tong (2016). In allusion to 
different system structures and actual control requirements, lots of stabilization crite-
ria are established, for example, periodic intermittent stabilization (Huang et al. 2009), 
robust stabilization (Yang and Tong 2016), finite-time stabilization (Zhang et al. 2016), 
impulsive stabilization (Chandrasekar and Rakkiyappan 2016; Huang 2010; Lou et  al. 
2013). Despite these fruitful achievements, some stabilization approaches can hardly be 
widely applied in practical problems due to high gain. In addition, an undeniable fact is 
that stabilization control schemes of fractional-order systems is little studied. Hence, it is 
necessary to investigate some appropriate controllers for stabilization of fractional-order 
systems.

Inspired by the above discussion, in this article, we will study the global O(t−α) stabi-
lization problem for a class of fractional-order memristive neural networks with time 
delays. We first introduce the concepts about fractional calculation and global stabiliza-
tion of fractional-order systems. Secondly, for exploring some simple useful controllers, 
linear state feedback control law and linear output feedback control law are designed to 
stabilize the fractional-order systems. In addition, stabilization criteria in form of alge-
braic inequalities are derived by utilizing a new fractional Lyapunov method instead of 
classical Gronwall inequality. The conditions can be easily verified.

Fractional calculation and model description
Fractional calculation concepts

First of all, some basics of fractional calculation are given which will be used in the later.

Definition 1 (Chen and Chen 2016) The fractional integral with fractional order α > 0 
of function f(t) is defined as
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where t ≥ t0, Ŵ(·) is the Gamma function, that is

Definition 2 (Chen and Chen 2016) The Riemann–Liouville derivative with fractional 
order α > 0 of function f(t) is defined as

where t ≥ t0, n− 1 < α < n, n is a positive integer. Moreover, when 0 < α < 1, that is

Definition 3 (Chen and Chen 2016) The Caputo derivative with fractional order α > 0 
of function f ∈ Cn+1([t0,+∞),R) is defined as

where t ≥ t0, n− 1 < α < n, n is a positive integer. Moreover, when 0 < α < 1, that is

Lemma 1 (Chen and Chen 2016) If f ∈ C1([0,+∞),R), then the following properties 
hold:

(1) Ct0D
α
t f (t) =

RL
t0
Dα
t f (t)−

f (t0)
Ŵ(1−α)

(t − t0)
−α.

(2) If f(t) and ϑ and their all derivatives are continuous in [t0, t], then Leibniz rule for 
fractional differentiation can be expressed as follows:

where 0 < α < 1, n ≥ α,

and

RL
t0
D−α
t f (t) =

1

Ŵ(α)

∫ t

t0

(t − s)α−1f (s)ds,

Ŵ(α) =

∫ ∞

0

sα−1e−sds.

RL
t0
Dα
t f (t) =

1

Ŵ(n− α)

dn

dtn

∫ t

t0

f (s)

(t − s)α−n+1
ds,

RL
t0
Dα
t f (t) =

1

Ŵ(1− α)

d

dt

∫ t

t0

f (s)

(t − s)α
ds.

C
t0
Dα
t f (t) =

1

Ŵ(n− α)

∫ t

t0

f (n)(s)

(t − s)α−n+1
ds,

C
t0
Dα
t f (t) =

1

Ŵ(1− α)

∫ t

t0

f
′
(s)

(t − s)α
ds.

RL
t0
Dα
t (ϑ(t)f (t)) =

n∑

k=0

dkϑ(t)

dtk

(
α

k

)
RL
t0
Dα−k
t f (t)− Rα

n ,

Rα
n(t) =

(−1)n(t − α)n−α+1

n!Ŵ(−α)

∫ 1

0

∫ 1

0

Fα(t, ξ , η)dξdη,

Fα(t, ξ , η) = f (t0 + η(t − t0))ϑ
n+1(t0 + (t − t0)(ξ + η − ξη)),
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Model description

Consider the fractional-order memristive neural networks with time delays (FMDNNs) 
described by the following fractional-order equations: for i = 1, 2, . . . , n,

where 0 < α < 1, n is the number of neurons in the networks, xi(t) is the state variable 
of the ith neuron, gj(·), fj(·) denotes the output of the jth unit at time t and t − τ (t), 
respectively, and gj(0) = fj(0) = 0. τ (t) corresponds to the transmission delay at time 
t and 0 ≤ τ (t) ≤ τ. ui(t) denotes the external input, aij(xj(t)) and bij(xj(t)) represent 
memristive weights, which are defined as:

for i, j = 1, 2, . . . , n, aij(±T j) = âij or ǎij , bij(±T j) = b̂ij or b̌ij , where the switching jumps 
Tj > 0, âij, ǎij, b̂ij, and b̌ij are constants.

Remark 1 Note that aij(xj(t)) and bij(xj(t)) are discontinuous in system (1), then the 
classical definition of solution for differential equations cannot be applied to (1). To deal 
with this issue, we introduce the concept of Filippov solution.

Definition 4 (Rakkiyappan et al. 2014) For system Ct0D
α
t x(t) = g(x), 0 < α < 1, x ∈ R

n, 
with a discontinuous right-hand side, a set-valued map is defined as

where co[E] is the closure of convex hull of set E, B(x, δ) = {y : �y− x� ≤ δ}, and µ(N ) 
is a Lebesgue measure of set N. If x(t), t ∈ [t0,T ], is called the solution in Filippov sense 
of the Cauchy problem for system Ct0D

α
t x(t) = g(x), 0 < α < 1, x ∈ R

n, with initial condi-
tion x(t0) = x0, when it is absolutely continuous, and satisfies the differential inclusion 
as follows:

For FMDNNs (1), define the set-value maps

(
α

k

)
=

Ŵ(α + 1)

k!Ŵ(α − k + 1)
.

(1)

C
t0
Dα
t xi(t) = − xi(t)+

n∑

j=1

aij(xj(t))gj(xj(t))

+

n∑

j=1

bij(xj(t))fj(xj(t − τ (t)))+ ui(t),

(2)aij(xj(t)) =

{
âij ,

∣∣xj(t)
∣∣ > Tj ,

ǎij ,
∣∣xj(t)

∣∣ < Tj ,
bij(xj(t)) =

{
b̂ij ,

∣∣xj(t)
∣∣ > Tj ,

b̌ij ,
∣∣xj(t)

∣∣ < Tj ,

ψ(x) =
⋂

δ>0

⋂

µ(N )=0

co[g(B(x, δ)\N )],

C
t0
Dα
t x(t) ∈ ψ(x), for a.e. t ∈ [t0,T ].
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for i, j = 1, 2, . . . , n, where co{âij , ǎij} denotes the closure of convex hull generated by real 
numbers âij and ǎij, co{b̂ij , b̌ij} denotes the closure of convex hull generated by real num-
bers b̂ij and b̌ij.

Throughout this article we denote amij = max1≤i,j≤n{|âij|, |ǎij|}, bmij = max1≤i,j≤n

{|b̂ij|, |b̌ij|}. For n-dimensional vector v = (v1, v2, . . . , vn)
T, the norm of vector v is 

recorded as �v� =
∑n

i=1 |vi|. Cτ := C([−τ , 0],R) is a Banach space of all continuous 
functions ϕ : [−τ , 0] → R. For ϕ ∈ Cτ, let �ϕ�C = sups∈[−τ ,0] �ϕ(s)�.

Throughout this article, let us suppose: the activation functions gi, fi, i = 1, 2, . . . , n, 
are global Lipschitz, that is, for all u, v ∈ R, there exist positive constants Gi, Fi such that

The objective of this article is to investigate the global O(t−α) stabilization problem for 
system (1). Therefore, the stabilization problem will be converted to find the suit con-
troller ui(t) (i = 1, 2, . . . , n) such that zero solution of the closed-loop system of (1) is 
globally O(t−α) stable.

From the theories of differential inclusions and set-valued maps, the Filippov solution 
of FMDNNs (1) can be defined in the following form.

Definition 5 A function x(t) = (x1(t), x2(t), . . . , xn(t))
T is said to be a Filippov solu-

tion of FMDNNs (1) on [0,  T) with initial conditions x(s) = ϕ(s), s ∈ [−τ , 0], if x(t) is 
absolutely continuous on any compact interval of [0, T), and

for t ≥ t0, i = 1, 2, . . . , n. Or equivalently, for i, j = 1, 2, . . . , n, there exist 
γ a
ij (xj(t)) ∈ K (aij(xj(t))), γ b

ij (xj(t)) ∈ K (bij(xj(t))) such that

K (aij(xj(t))) =





âij ,
��xj(t)

�� > Tj ,

co
�
âij , ǎij

�
,

��xj(t)
�� = Tj ,

ǎij ,
��xj(t)

�� < Tj ,

K (bij(xj(t))) =





b̂ij ,
��xj(t)

�� > Tj ,

co
�
b̂ij , b̌ij

�
,

��xj(t)
�� = Tj ,

b̌ij ,
��xj(t)

�� < Tj ,

∣∣gi(u)− gi(v)
∣∣ ≤ Gi|u− v|,

∣∣fi(u)− fi(v)
∣∣ ≤ Fi|u− v|.

(3)

C
t0
Dα
t xi(t) ∈ −xi(t)+

n∑

j=1

K (aij(xj(t)))gj(xj(t))

+

n∑

j=1

K (bij(xj(t)))fj(xj(t − τ (t)))+ ui(t),

(4)

C
t0
Dα
t xi(t) = −xi(t)+

n∑

j=1

γ a
ij (xj(t))gj(xj(t))

+

n∑

j=1

γ b
ij (xj(t))fj(xj(t − τ (t)))+ ui(t).
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Remark 2 Based on the definitions of Filippov solution and fractional-order differential 
inclusion, we know that FMDNNs (1) is equivalent to the fractional-order differential 
inclusion (3) in the Filippov framework.

Next, definitions of global O(t−α) stability and global O(t−α) stabilization are given.

Definition 6 [Global O(t−α) stability] The zero solution of FMDNNs (1), where 
ui(t) = 0, is said to be globally O(t−α) stable if there exists a positive constant M such 
that �x(t, t0,ϕ)� ≤ M�ϕ�CO(t−α) for any ϕ ∈ Cτ and t ≥ t0.

Definition 7 [Global O(t−α) stabilization] FMDNNs (1) is said to be globally O(t−α) 
stabilized if there exists an appropriate feedback control law such that the closed-loop 
system of (1) is globally O(t−α) stable.

Main results
State feedback control law

Two kinds of linear controller about state feedback are given, i.e., the linear controller 
without or with time delays. Firstly, we propose the following state control rule without 
time delays:

for i = 1, 2, . . . , n.

Theorem 1 FMDNNs (1) with the state feedback control rule (5) can be achieved global 
O(t−α) stabilization for any ϕ ∈ Cτ if there exist a constant r > τ and n positive constants 
βi (i = 1, 2, . . . , n) such that

for all i = 1, 2, . . . , n.

Proof Define two Lyapunov functions as follows:

and let

for t ≥ t0.

(5)ui(t) =

n∑

j=1

pijxj(t),

(6)

n∑

j=1

βjpij ≤ βi

(
1−

1+ α

rαŴ(2− α)

)
−

n∑

j=1

βj

(
amij Gj +

(
r

r − τ

)α

bmij Fj

)
,

(7)

{
W (t) = max

{
|xi(t)|
βi

, i = 1, 2, . . . , n
}
,

V (t) = (t − t0 + r)αW (t),

(8)

{
W (t) = sup−τ≤θ≤t W (θ),

V (t) = sup−τ≤θ≤t V (θ),
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From Leibniz rule for fractional differentiation, we have

for t ≥ t0.
By computing, it follows that

(9)

C
t0
Dα
t V (t) = RL

t0
Dα
t V (t)−

V (t0)

Ŵ(1− α)
(t − t0)

−α

= RL
t0
Dα
t

(
(t − t0 + r)αW (t)

)
−

rαW (t0)

Ŵ(1− α)
(t − t0)

−α

= (t − t0 + r)αRLt0 D
α
t W (t)+

Ŵ(α + 1)

Ŵ(α)
α(t − t0 + r)α−1RL

t0
Dα−1
t W (t)

+
Ŵ(α + 1)

2Ŵ(α − 1)
α(α − 1)(t − t0 + r)α−2RL

t0
Dα−2
t W (t)

− Rα
2 (t)−

rαW (t0)

Ŵ(1− α)
(t − t0)

−α

≤ (t − t0 + r)αCt0D
α
t W (t)+ (t − t0 + r)α

W (t0)

Ŵ(1− α)
(t − t0)

−α

+ α2(t − t0 + r)α−1RL
t0
Dα−1
t W (t)

+
α2(α − 1)2

2
(t − t0 + r)α−2RL

t0
Dα−2
t W (t)−

rαW (t0)

Ŵ(1− α)
(t − t0)

−α

≤ (t − t0 + r)αCt0D
α
t W (t)+

[(
t − t0 + r

t − t0

)α

−

(
r

t − t0

)α] W (t0)

Ŵ(1− α)

+ α2(t − t0 + r)α−1RL
t0
Dα−1
t W (t)

+
α2(α − 1)2

2
(t − t0 + r)α−2RL

t0
Dα−2
t W (t)

≤ (t − t0 + r)αCt0D
α
t W (t)+ (1+ 2α)

V (t)

rαŴ(1− α)

+ α2(t − t0 + r)α−1RL
t0
Dα−1
t W (t)

+
α2(α − 1)2

2
(t − t0 + r)α−2RL

t0
Dα−2
t W (t),

(10)

α2(t − t0 + r)α−1RL
t0
Dα−1
t W (t) = α2(t − t0 + r)−(1−α)RL

t0
D
−(1−α)
t W (t)

≤ α2(t − t0 + r)−(1−α) 1

Ŵ(1− α)
W (t)

∫ t

t0

(t − s)−αds

≤ α2(t − t0 + r)−(1−α) (t − t0)
1−α

(1− α)Ŵ(1− α)
W (t)

≤ α2

(
t − t0

t − t0 + r

)1−α 1

Ŵ(2− α)
W (t)

≤
α2

Ŵ(2− α)
W (θ̃ )

≤
α2

rαŴ(2− α)
V (t),
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and

for t ≥ t0, W (t) = W (θ̃ ), where θ̃ ∈ [−τ , t].
From (9) to (11), we have

It is obvious that there exists a k ∈ {1, 2, . . . , n} such that

for given t ≥ t0.
From (7) and (8), we have

(11)

α2(α − 1)2

2
(t − t0 + r)α−2RL

t0
D
α−2
t W (t)

≤
α2(α − 1)2

2
(t − t0 + r)α−2 1

Ŵ(2− α)

∫
t

t0

(t − s)1−α
W (s)ds

≤
α2(α − 1)2

2
(t − t0 + r)α−2 W (t)

Ŵ(2− α)

∫
t

t0

(t − s)1−α
ds

≤
α2(α − 1)2

2
(t − t0 + r)α−2 (t − t0)

2−α
W (t)

(2− α)Ŵ(2− α)

≤
α2(α − 1)2

2

(
t − t0

t − t0 + r

)2−α
W (t)

(2− α)Ŵ(2− α)
≤

α2(α − 1)2

2

W (t)

(2− α)Ŵ(2− α)

≤
α2(α − 1)2

2rα(2− α)Ŵ(2− α)
V (t) ≤

α2

rαŴ(2− α)
V (t),

(12)

C
t0
Dα
t V (t) ≤ (t − t0 + r)αCt0D

α
t W (t)+

2α2

rαŴ(2− α)
V (t)+

(1+ 2α)V (t)

rαŴ(1− α)

= (t − t0 + r)αCt0D
α
t W (t)+

1+ α

rαŴ(2− α)
V (t).

W (t) =
|xk(t)|

βk
,

(13)

C
t0
Dα
t W (t) =

1

βk

C
t0
Dα
t |xk (t)| ≤

1

βk
sgn(xk (t))

C
t0
Dα
t xk (t)

≤
1

βk
sgn(xk (t))



−xk (t)+

n�

j=1

γ a
kj(xj(t))gj(xj(t))+

n�

j=1

γ b
kj(xj(t))fj(xj(t − τ (t)))+

n�

j=1

pkjxj(t)





≤
1

βk
sgn(xk (t))



−xk (t)+

n�

j=1

amkjGj |xj(t)| +

n�

j=1

bmkj Fj |xj(t − τ (t))| +

n�

j=1

pkjxj(t)





≤ −
|xk (t)|

βk
+

1

βk

n�

j=1

βja
m
kjGj

|xj(t)|

βj
+

1

βk

n�

j=1

βjb
m
kj Fj

|xj(t − τ (t))|

βj
+

1

βk

n�

j=1

βjpkj
|xj(t)|

βj

≤ −W (t)+
1

βk

n�

j=1

βj(a
m
kjGj + pkj)W (t)+

1

βk

n�

j=1

βjb
m
kj FjW (t − τ (t))

≤ −


1− 1

βk

n�

j=1

βj(a
m
kjGj + pkj)


W (t)+

1

βk

n�

j=1

βjb
m
kj FjW (t − τ (t)).
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And hence

where θ ∈ [−τ , t] such that V (t) = (t − t0 + θ + r)αW (t), when V (t) = V (t).
From (12) and (14), we have

when V (t) = V (t).
From (6), it follows that

for all t ≥ t0.
On the basis of Definition 2 and Lemma 1, the following inequality holds

It yields

for t ≥ t0. Hence for i = 1, 2, . . . , n,

(14)

(t − t0 + r)αCt0D
α
t W (t)

≤ −(t − t0 + r)α


1− 1

βk

n�

j=1

βj

�
amkjGj + pkj

�

W (t)

+ (t − t0 + r)α
1

βk

n�

j=1

βjb
m
kjFjW (t − τ (t))

≤ −


1− 1

βk

n�

j=1

βj

�
amkjGj + pkj

�

V (t)+

(t − t0 + r)α

βk
�
t − t0 + r + θ

�α
n�

j=1

βjb
m
kjFjV (t)

≤ −


1−

n�

j=1

βj

βk
(amkjGj + pkj)−

�
r

r + θ

�α n�

j=1

βj

βk
bmkjFj


V (t)

≤ −


1−

n�

j=1

βj

βk

�
amkjGj + pkj

�
−

�
r

r − τ

�α n�

j=1

βj

βk
bmkjFj


V (t),

(15)

C
t0
Dα
t V (t) ≤ −


1−

n�

j=1

βj

βk
(amkjGj + pkj)−

�
r

r − τ

�α n�

j=1

βj

βk
bmkj Fj


V (t)+

1+ α

rαŴ(2− α)
V (t)

≤



−


1−

n�

j=1

βj

βk

�
amkjGj + pkj

�
−

�
r

r − τ

�α n�

j=1

βj

βk
bmkj Fj


+

1+ α

rαŴ(2− α)



V (t),

(16)C
t0
Dα
t V (t) ≤ 0,

1

Ŵ(1− α)

d

dt

∫ t

t0

V (s)

(t − s)α
ds ≤

V (t0)

Ŵ(1− α)
(t − t0)

−α .

(17)V (t) ≤ V (t0),
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where βmin = min{βi, i = 1, 2, . . . , n}, for t ≥ t0, which implies

where � = 1
βmin

∑n
i=1 βi. Therefore, FMDNNs (1) can be achieved global O(t−α) stabili-

zation under the designed control law (5).  �

In the following, we propose the following state control rule with time delays:

for i = 1, 2, . . . , n.

Theorem  2 FMDNNs (1) with the state feedback control rule (19) can be achieved 
global O(t−α) stabilization for any ϕ ∈ Cτ if there exist a constant r > τ and n positive 
constants βi (i = 1, 2, . . . , n) such that

for all i = 1, 2, . . . , n.

Proof Define two Lyapunov functions as follows:

and let

for t ≥ t0.
Through Theorem 1, we have

It is obvious that there exists a k ∈ {1, 2, . . . , n} such that

(18)

|xi(t)| ≤ βiW (t)

= βi
V (t)

(t − t0 + r)α
≤ βi

V (t)

(t − t0 + r)α

≤ βi
V (t0)

(t − t0 + r)α
= βi

rαW (t0)

(t − t0 + r)α

≤
βir

α�ϕ�C

βmin(t − t0 + r)α
,

�x(t)� ≤
�rα�ϕ�C

(t − t0 + r)α
,

(19)ui(t) =

n∑

j=1

pijxj(t)+

n∑

j=1

qijxj(t − τ (t)),

(20)

n∑

j=1

βj

(
pij +

(
r

r − τ

)α

qij

)
≤ βi

(
1−

1+ α

rαŴ(2− α)

)
−

n∑

j=1

βj

(
amij Gj +

(
r

r − τ

)α

bmij Fj

)
,

(21)

{
W (t) = max

{
|xi(t)|
βi

, i = 1, 2, . . . , n
}
,

V (t) = (t − t0 + r)αW (t),

(22)

{
W (t) = sup−τ≤θ≤t W (θ),

V (t) = sup−τ≤θ≤t V (θ),

(23)
C
t0
Dα
t V (t) ≤ (t − t0 + r)αCt0D

α
t W (t)+

1+ α

rαŴ(2− α)
V (t).
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for given t ≥ t0.
From (21) and (22), we have

Hence

where θ ∈ [−τ , t] such that V (t) = (t + θ − t0 + r)αW (t), when V (t) = V (t).
From (23) and (25), we have

when V (t) = V (t).
From (20), it follows that

for all t ≥ t0.
On the basis of Definition 3, we get

W (t) =
|xk(t)|

βk
,

(24)

C
t0
Dα
t W (t) ≤

1

βk
sgn(xk (t))

C
t0
Dα
t xk (t)

≤
1

βk
sgn(xk (t))



−xk (t)+

n�

j=1

γ a
kj(xj(t))gj(xj(t))+

n�

j=1

γ b
kj(xj(t))fj(xj(t − τ(t)))

+

n�

j=1

pkjxj(t)+

n�

j=1

qkjxj(t − τ(t))





≤
1

βk
sgn(xk (t))



−xk (t)+

n�

j=1

amkjGj|xj(t)| +

n�

j=1

bmkj Fj|xj(t − τ(t))|

+

n�

j=1

pkjxj(t)+

n�

j=1

qkjxj(t − τ(t))





≤ −


1− 1

βk

n�

j=1

βj(a
m
kjGj + pkj)


W (t)+

1

βk

n�

j=1

βj

�
bmkj Fj + qkj

�
W (t).

(25)

(t−t0+r)αCt0D
α
t W (t) ≤ −


1−

n�

j=1

βj

βk

�
amkjGj + pkj +

�
r

r − τ

�α�
bmkjFj + qkj

��

V (t),

(26)

C
t0
Dα
t V (t) ≤ −


1−

n�

j=1

βj

βk

�
amkjGj + pkj +

�
r

r − τ

�α�
bmkj Fj + qkj

��

V (t)+

1+ α

rαŴ(2− α)
V (t)

≤



−


1−

n�

j=1

βj

βk

�
amkjGj + pkj +

�
r

r − τ

�α�
bmkj Fj + qkj

��

+

1+ α

rαŴ(2− α)



V (t),

(27)C
t0
Dα
t V (t) ≤ 0,

(28)V (t) ≤ V (t0),
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for t ≥ t0. Hence for i = 1, 2, . . . , n,

where βmin = min{βi, i = 1, 2, . . . , n}, for t ≥ t0, it follows

where � = 1
βmin

∑n
i=1 βi. Therefore, FMDNNs can be achieved global O(t−α) stabiliza-

tion under the designed control law (19).  �

Output feedback control law

Two kinds of linear controller about output feedback are given, i.e., the linear output 
feedback controller without or with time delays. Firstly, we propose the following output 
feedback control rule without time delays:

for i = 1, 2, . . . , n.

Theorem  3 FMDNNs (1) with the output feedback control rule (30) can be achieved 
global O(t−α) stabilization for any ϕ ∈ Cτ if there exist a constant r > τ and n positive 
constants βi (i = 1, 2, . . . , n) such that

for all i = 1, 2, . . . , n.

Proof Define two Lyapunov functions as follows:

and let

for t ≥ t0.
Through Theorem 1, we have

It is obvious that there exists a k ∈ {1, 2, . . . , n} such that

(29)|xi(t)| ≤ βiW (t) ≤
βir

α�ϕ�C

βmin(t − t0 + r)α
,

�x(t)� ≤
�rα�ϕ�C

(t − t0 + r)α
,

(30)ui(t) =

n∑

j=1

ωijgj(xj(t)),

(31)

n∑

j=1

βjGjωij ≤ βi

(
1−

1+ α

rαŴ(2− α)

)
−

n∑

j=1

βj

(
amij Gj +

(
r

r − τ

)α

bmij Fj

)
,

(32)

{
W (t) = max

{
|xi(t)|
βi

, i = 1, 2, . . . , n
}
,

V (t) = (t − t0 + r)αW (t),

(33)

{
W (t) = sup−τ≤θ≤t W (θ),

V (t) = sup−τ≤θ≤t V (θ),

(34)
C
t0
Dα
t V (t) ≤ (t − t0 + r)αCt0D

α
t W (t)+

1+ α

rαŴ(2− α)
V (t).
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for given t ≥ t0.
From (32) and (33), we have

And hence

where θ ∈ [−τ , t] such that V (t) = (t − t0 + θ + r)αW (t), when V (t) = V (t).
From (34) and (36), we have

when V (t) = V (t).
From (31), it follows that

for t ≥ t0.
On the basis of Definition 3, we get

W (t) =
|xk(t)|

βk
,

(35)

C
t0
Dα
t W (t) =

1

βk

C
t0
Dα
t |xk(t)|

≤
1

βk
sgn(xk(t))

C
t0
Dα
t xk(t)

≤
1

βk
sgn(xk(t))



−xk(t)+

n�

j=1

γ a
kj(xj(t))gj(xj(t))+

n�

j=1

γ b
kj(xj(t))fj(xj(t − τ (t)))

+

n�

j=1

ωkjgj(xj(t))





≤ −
|xk(t)|

βk
+

1

βk

n�

j=1

βja
m
kjGj

|xj(t)|

βj
+

1

βk

n�

j=1

βjb
m
kj Fj

|xj(t − τ (t))|

βj

+
1

βk

n�

j=1

βjωkjGj
|xj(t)|

βj

≤ −


1− 1

βk

n�

j=1

βjGj

�
amkj + ωkj

�

W (t)+

1

βk

n�

j=1

βjb
m
kj FjW (t − τ (t)).

(36)

(t − t0 + r)αCt0D
α
t W (t) ≤ −


1−

n�

j=1

βj

βk

�
Gj

�
amkj + ωkj

�
+

�
r

r − τ

�α

bmkjFj

�
V (t),

(37)

C
t0
Dα
t V (t) ≤ −


1−

n�

j=1

βj

βk

�
Gj

�
amkj + ωkj

�
+

�
r

r − τ

�α

bmkjFj

�
V (t)+

1+ α

rαŴ(2− α)
V (t)

≤



−


1−

n�

j=1

βj

βk

�
Gj

�
amkj + ωkj

�
+

�
r

r − τ

�α

bmkjFj

�
+

1+ α

rαŴ(2− α)



V (t),

(38)C
t0
Dα
t V (t) ≤ 0,
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for t ≥ t0. Hence for i = 1, 2, . . . , n,

where βmin = min{βi, i = 1, 2, . . . , n}, for t ≥ t0, which implies

where � = 1
βmin

∑n
i=1 βi. Therefore, FMDNNs (1) can be achieved global O(t−α) stabili-

zation under the designed control law (30).  �

In the following, we propose the following output feedback control rule with time 
delays:

for i = 1, 2, . . . , n.

Theorem  4 FMDNNs (1) with the output feedback control rule (41) can be achieved 
global O(t−α) stabilization for any ϕ ∈ Cτ if there exist a constant r > τ and n positive 
constants βi (i = 1, 2, . . . , n) such that

for all i = 1, 2, . . . , n.

Proof Define two Lyapunov functions as follows:

and let

for t ≥ t0.
Through Theorem 1, we have

It is obvious that there exists a k ∈ {1, 2, . . . , n} such that

(39)V (t) ≤ V (t0),

(40)|xi(t)| ≤ βiW (t) ≤
βir

α�ϕ�C

βmin(t − t0 + r)α
,

�x(t)� ≤
�rα�ϕ�C

(t − t0 + r)α
,

(41)ui(t) =

n∑

j=1

ωijgj(xj(t))+

n∑

j=1

ρij fj(xj(t − τ (t))),

(42)

n∑

j=1

βj

(
Gjωij +

(
r

r − τ

)α

Fjρij

)
≤ βi

(
1−

1+ α

rαŴ(2− α)

)
−

n∑

j=1

βj

(
amij Gj +

(
r

r − τ

)α

bmij Fj

)
,

(43)

{
W (t) = max

{
|xi(t)|
βi

, i = 1, 2, . . . , n
}
,

V (t) = (t − t0 + r)αW (t),

(44)

{
W (t) = sup−τ≤θ≤t W (θ),

V (t) = sup−τ≤θ≤t V (θ),

(45)
C
t0
Dα
t V (t) ≤ (t − t0 + r)αCt0D

α
t W (t)+

1+ α

rαŴ(2− α)
V (t).

W (t) =
|xk(t)|

βk
,
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for given t ≥ t0.
From (43) and (44), we have

Hence

where θ ∈ [−τ , t] such that V (t) = (t + θ − t0 + r)αW (t), when V (t) = V (t).
From (45) and (47), we have

when V (t) = V (t).
It follows that

for all t ≥ t0.
On the basis of Definition 3, we get

for t ≥ t0. Hence i = 1, 2, . . . , n,

(46)

C
t0
Dα
t W (t) ≤

1

βk
sgn(xk (t))

C
t0
Dα
t0
xk (t)

≤
1

βk
sgn(xk (t))



−xk (t)+

n�

j=1

γ a
kj(xj(t))gj(xj(t))+

n�

j=1

γ b
kj(xj(t))fj(xj(t − τ(t)))

+

n�

j=1

ωkjgj(xj(t))+

n�

j=1

ρkj fj(xj(t − τ(t)))





≤ −
|xk (t)|

βk
+

1

βk

n�

j=1

βja
m
kjGj

|xj(t)|

βj
+

1

βk

n�

j=1

βjb
m
kj Fj

|xj(t − τ(t))|

βj

+
1

βk

n�

j=1

βjωkjGj
|xj(t)|

βj
+

1

βk

n�

j=1

βjρkjFj
|xj(t − τ(t))|

βj

≤ −[1−
1

βk

n�

j=1

βjGj(a
m
kj + ωkj)]W (t)+

1

βk

n�

j=1

βjFj(b
m
kj + ρkj)W (t).

(47)

(t − t0 + r)αCt0D
α
t W (t) ≤ −


1−

n�

j=1

βj

βk

�
Gj

�
amkj + ωkj

�
+

�
r

r − τ

�α

Fj

�
bmkj + ρkj

��

V (t),

(48)

C
t0
Dα
t V (t) ≤ −


1−

n�

j=1

βj

βk

�
Gj

�
amkj + ωkj

�
+

�
r

r − τ

�α

Fj

�
bmkj + ρkj

��

V (t)+

1+ α

rαŴ(2− α)
V (t)

≤



−


1−

n�

j=1

βj

βk

�
Gj

�
amkj + ωkj

�
+

�
r

r − τ

�α

Fj

�
bmkj + ρkj

��

+

1+ α

rαŴ(2− α)



V (t),

(49)C
t0
Dα
t V (t) ≤ 0,

(50)V (t) ≤ V (t0),

(51)|xi(t)| ≤ βiW (t) ≤
βir

α�ϕ�C

βmin(t − t0 + r)α
,
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where βmin = min{βi, i = 1, 2, . . . , n}, for t ≥ t0, it follows

where � = 1
βmin

∑n
i=1 βi. Therefore, FMDNNs (1) can be achieved global O(t−α) stabili-

zation under the designed control law (41).  �

Remark 3 It needs to point out that fractional-order systems can be said rarely expo-
nential stability. While, global Mittag–Leffler stability or global O(t−α) stability can be 
used to describe asymptotic stability of fractional-order systems. In consideration of 
the complex and rich nonlinear behaviors of fractional-order systems, especially, for the 
fractional-order systems with time delays, we employ global O(t−α) stabilization for a 
class of FMDNNs in Theorems 1–4.

Remark 4 As a useful tool, Lyapunov function method has been introduced to frac-
tional-order systems by borrowing ideas from classical Lyapunov function method in 
integer-order systems. In Theorems 1–4, a class of new fractional Lyapunov functions 
have been established, which consist of two Lyapunov functions [i.e., time-invariant Lya-
punov function W(t) and time-varying Lyapunov function V(t)]. For this structure of 
Lyapunov functions, we can regard the Caputo derivative of V(t) as two parts which can 
be estimated by means of Leibniz rule.

Numerical examples
In this section, two numerical examples are given to show the effectiveness of the pro-
posed theoretical results.

Example 1 Consider a two-dimensional FMDNNs as follows:

where α = 0.95, τ = 1, t0 = 0, gj(χ) = fj(χ) = tanh(χ) (j = 1, 2), and

It is obvious that we can get Gj = Fj = 1, j = 1, 2.

Figure 1 shows the results of time response of (52) without external controller, which 
implies that the state trajectory of (52) can not convergence to the origin.

Assume that there exist two positive constants β1 and β2 to satisfy

�x(t)� ≤
�rα�ϕ�C

(t − t0 + r)α
,

(52)





C
t0
Dα
t x1(t) = −x1(t)+ a11(x1(t))g1(x1(t))+ a12(x2(t))g2(x2(t))

+b11(x1(t))f1(x1(t − τ))+ b12(x2(t))f2(x2(t − τ))+ u1(t),
C
t0
Dα
t x2(t) = −x2(t)+ a21(x1(t))g1(x1(t))+ a22(x2(t))g2(x2(t))

+b21(x1(t))f1(x1(t − τ))+ b22(x2(t))f2(x2(t − τ))+ u2(t),

a11(x1) =

{
1.5, |x1| > 1,

2.0, |x1| < 1,
a12(x2) =

{
0.1, |x2| > 1,

0.2, |x2| < 1,
a21(x1) =

{
0.5, |x1| > 1,

0.4, |x1| < 1,

a22(x2) =

{
1.8, |x2| > 1,

1.5, |x2| < 1,
b11(x1) =

{
−3.5, |x1| > 1,

−4.0, |x1| < 1,
b12(x2) =

{
−1.8, |x2| > 1,

−1.5, |x2| < 1,

b21(x1) =

{
1.2, |x1| > 1,

1.0, |x1| < 1,
b22(x2) =

{
−1.8, |x2| > 1.

−1.5, |x2| < 1.
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it follows that there exists a positive constant r such that

which implies the conditions of Theorem 1 hold.
From Example 1, we have

then we can choose p11 = −5, p12 = −2, p21 = −2, p22 = −3, i.e., the state feedback 
controller without time delays can be designed as follows:

(53)

{
β1p11 + β2p12 ≤ β1

(
1−

(
am
11
G1 + bm

11
F1
))

+ β2
(
am
12
G2 + bm

12
F2
)
,

β2p22 + β1p21 ≤ β2
(
1−

(
am
22
G2 + bm

22
F2
))

+ β1
(
am
21
G1 + bm

21
F1
)
,





β1p11 + β2p12 ≤ β1

�
1− 1+α

rαŴ(2−α)
−

�
am
11
G1 +

�
r

r−τ

�α
bm
11
F1

��
− β2

�
am
12
G2 +

�
r

r−τ

�α
bm
12
F2

�
,

β2p22 + β1p21 ≤ β2

�
1− 1+α

rαŴ(2−α)
−

�
am
22
G2 +

�
r

r−τ

�α
bm
22
F2

��
− β1

�
am
21
G1 +

�
r

r−τ

�α
bm
21
F1

�
,

{
β1(p11 + 5)+ β2(p12 + 2) ≤ 0.

β2(p22 + 2.6)+ β1(p21 + 1.7) ≤ 0,

0 5 10 15 20 25

−3

−2

−1

0

1

2

3

t

x 1

0 5 10 15 20 25
−3

−2

−1

0

1

2

3

t

x 2

Fig. 1 Transient behavior of x1(t) and x2(t) for (52) without external controller
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According to Theorem 1, system (52) can be achieved global O(t−α) stabilization. From 
Fig. 2, we can get that the state trajectory of the resulting closed-loop system of (52) with 
the designed control law (54) is globally O(t−α) stable.

Similarly, select the state feedback controller with time delays designed as follows:

Then it follows from Theorem 2 that system (52) can be achieved global O(t−α) stabiliza-
tion. From Fig. 3, we can get that the state trajectory of the resulting closed-loop system 
of (52) with the designed control law (55) is globally O(t−α) stable.

Example 2 Consider an one-dimensional FMDNNs as follows:

(54)

{
u1(t) = −5x1(t)− 2x2(t).

u2(t) = −2x1(t)− 3x2(t).

(55)

{
u1(t) = −7x1(t)− 3x2(t)+ 0.5x1(t − 1)− 0.1x2(t − 1).
u2(t) = −3x1(t)− 5x2(t)+ 0.1x1(t − 1)− 0.5x2(t − 1).

0 5 10 15 20
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−0.8
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t

x 1

0 5 10 15 20 25
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t

x 2

Fig. 2 Transient behavior of x1(t) and x2(t) for (52) with state feedback control rule u1(t) = −5x1(t)−

2x2(t), u2(t) = −2x1(t)− 3x2(t)
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where α = 0.5, τ = 1, t0 = 0, g(χ) = sin(χ), f (χ) = tanh(χ), and

It is obvious that we can obtain G = F = 1.

Figure 4 shows the results of time response of (56) without external controller, which 
implies that the state trajectory of (56) can not convergence to the origin.

In order to apply Theorem 3, the following inequality needs to be satisfied

then we can choose ω = −5, i.e., the state feedback controller without time delays can be 
designed as follows:

(56)C
t0
Dα
t x(t) = −x(t)+ a(x(t))g(x(t))+ b(x(t))f (x(t − τ))+ u(t),

a(x) =

{
1.0, |x| > 1,
1.2, |x| < 1,

b(x) =

{
−4.8, |x| > 1.
−3.5, |x| < 1.

(57)ω + 5 ≤ 0,

(58)u(t) = −5 sin(x).
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Fig. 3 Transient behavior of x1(t) and x2(t) for (52) with state feedback control rule u1(t) = −7x1(t)− 
3x2(t)+ 0.5x1(t − 1)− 0.1x2(t − 1), u2(t) = −3x1(t)− 5x2(t)+ 0.1x1(t − 1)− 0.5x2(t − 1)
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It follows from Theorem 3 that system (56) can be achieved global O(t−α) stabilization. 
From Fig. 5, we can get that the state trajectory of the resulting closed-loop system of 
(56) with the designed control law (58) is globally O(t−α) stable.

Similarly, select the output feedback controller with time delays designed as follows:

Then it follows from Theorem 4 that system (56) can be achieved global O(t−α) stabiliza-
tion. From Fig. 6, we can get that the state trajectory of the resulting closed-loop system 
of (56) with the designed control law (59) is globally O(t−α) stable.

Concluding remarks
In this article, we exploit the global O(t−α) stabilization for a class of fractional-order 
memristive neural networks with time delays. The main theoretical results of this article 
are that the linear state feedback control law and the output feedback control law are 

(59)u(t) = −7 sin(x)− tanh(x − 1).
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Fig. 4 Transient behavior of x(t) for (56) without external controller
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Fig. 5 Transient behavior of x(t) for (56) with output feedback control rule u(t) = −5 sin(x)
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constructed to stabilize the fractional systems. In addition, some sufficient conditions 
ensuring to stabilize fractional-order systems are also given in terms of algebraic ine-
qualities according to a new fractional Lyapunov function and a fractional-order differ-
ential inequality skill. The article provides a novel way to construct a Lyapunov function 
and a new method to deal with fractional-order inequalities, which may be applied to 
discuss other properties or analyze other more complex systems such as the fractional-
order form of the model explored in the literatures Chandrasekar and Rakkiyappan 
(2016), Lou et al. (2013), Shang (2014, 2015, 2016), Wang et al. (2003), Yang and Tong 
(2016) and so on. Future research will focus on these issues.
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