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43400 UPM Serdang, voirs, is a complex problems. The purpose of this study was to formulate and improve
Selangor, Malaysia an approach of a genetic algorithm optimization model (GAOM) in order to increase
lFSUa”V':”ta%flsUaiht?e'gz(zr;‘fa;‘%” the maximization of annual hydropower generation for a single reservoir. For this
article purpose, two simulation algorithms were drafted and applied independently in that

GAOM during 20 scenarios (years) for operation of Mosul reservoir, northern Irag. The
first algorithm was based on the traditional simulation of reservoir operation, whilst
the second algorithm (Salg) enhanced the GAOM by changing the population values
of GA through a new simulation process of reservoir operation. The performances

of these two algorithms were evaluated through the comparison of their optimal
values of annual hydropower generation during the 20 scenarios of operating. The
GAOM achieved an increase in hydropower generation in 17 scenarios using these
two algorithms, with the Salg being superior in all scenarios. All of these were done
prior adding the evaporation (Ev) and precipitation (Pr) to the water balance equation.
Next, the GAOM using the Salg was applied by taking into consideration the volumes
of these two parameters. In this case, the optimal values obtained from the GAOM
were compared, firstly with their counterpart that found using the same algorithm
without taking into consideration of Ev and Pr, secondly with the observed values. The
first comparison showed that the optimal values obtained in this case decreased in

all scenarios, whilst maintaining the good results compared with the observed in the
second comparison. The results proved the effectiveness of the Salg in increasing the
hydropower generation through the enhanced approach of the GAOM. In addition, the
results indicated to the importance of taking into account the Ev and Pr in the model-
ling of reservoirs operation.
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Background

Many problems in the real world need optimal parameters, which are difficult to find
using traditional methods, although they can be found easily by GA (Sumathi and
Paneerselvam 2010). The GA is one of the optimization methods that are frequently used
to determine the optimal operating policy of water storage systems to obtain the great-
est benefit from its management. With regard to these systems, what operators need to
know includes knowledge of how much water should be released from the reservoir and
when. Every reservoir is designed to meet different downstream requirements relating
to water supplies, hydropower, the environment, recreation, and flood control. These
demands need to be met in the most effective and reliable way. According to Wurbs
(2005), the greatest benefits of storage systems include the maximization of hydropower
generation, the maximization of the advantages of irrigation projects based on reser-
voir water, the reduction of flood damage, and so on. These benefits are represented by
objective functions, which have values that change with changes in decision variables.
Many studies have been conducted using the GA to derive optimal policies for achieving
various objectives at different reservoirs. Wardlaw and Sharif (1999) used a four-reser-
voir, deterministic, finite-horizon problem to evaluate several alternative formulations of
a GA for reservoir systems. Real-value coding, tournament selection, uniform crossover,
and modified uniform mutation were chosen for application to find the optimal. A GA
approach was applied by Sharif and Wardlaw (2000) to find the optimal solution for a
reservoir system in Indonesia. The GA approach was compared with discrete differen-
tial dynamic programming (DDDP). GAs with artificial intelligence characteristics were
applied to the multi-reservoir system in the Chou-Shui River Basin in central Taiwan
(Kuo et al. 2003) to obtain the optimal rule curves for maximizing the benefits for power
generation, water supply, irrigation, and recreational purposes. The operational model
coupled with use of simulation and GAs for hydropower purposes in multi-reservoir
systems was presented by Lin et al. (2005). For case study, the joint operation of the Shi-
hmen and Festui reservoirs in northern Taiwan was chosen. To derive the optimal oper-
ational strategies for the Pechiparai Reservoir in Tamil Nadu, India, Jothiprakash and
Shanthi (2006) developed and applied a GA model. The objective function was to mini-
mize the annual sum of the squared deviation to obtain the desired irrigation release and
the desired storage volume. Reddy and Kumar (2006) derived an optimal operation pol-
icy by employing a multi-objective genetic algorithm (MOGA) for a multipurpose res-
ervoir system, the Bhadra Reservoir system, in India. This reservoir serves hydropower
generation, multiple purposes irrigation, and downstream water quality requirements.
The niche genetic algorithm (NGA) was suggested by Li and Mei (2007) for improving
the capability of the traditional algorithm in the optimal operation of reservoir releases.
This method has been adopted to derive the optimal operation policy for the cascaded
hydropower stations of the Qing River, China. Azamathulla et al. (2008) compared the
performance of a GA and the linear programming of by applying them to real-time res-
ervoir operation in an existing Chiller reservoir system in Madhya Pradesh, India. These
models were designed to maximize reservoir operation by using knowledge of the total
irrigation demand. Hingal et al. (2011) explored the efficiency and effectiveness of the
GA in the optimization of multi-reservoir systems. This model was used to maximize
the energy production of three reservoirs in the Colorado River Storage Project in the
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USA. Xu et al. (2012) suggested a new form for the GA in the operation of a multi-res-
ervoir system consisting of five reservoirs. The performance of this proposed GA was
evaluated by comparing its results with those of the traditional GA. Based on a multi-
use reservoir system, the optimal rule curves were derived by Ngoc et al. (2014) for Dau
Tieng Reservoir, located in the upper Saigon River in southern Vietnam. A penalty strat-
egy and a constrained genetic algorithm (CGA) were applied. This model was simulated
for 240 months and evaluated through a generalized shortage index (GSI).

In this study, the GAOM was formulated to maximize the annual hydropower gen-
eration for a single reservoir by proposing a new simulation approach to the reservoir
operation. In order to achieve this aim, two algorithms were formulated in the GAOM
independently. The first algorithm (Falg) is built according to the simulation process of
reservoir operation, while the Salg improves the performance of GAOM by enhanced
the simulation approach of reservoir operation. In the Falg, the population values of GA
(releases to the powerhouse) that were initialized or obtained through GA operations
are unchanged, whilst those releases are changed by using the Salg according to some
constraints in order to enhance the GAOM. Historical monthly data of Mosul reservoir
were used in the GAOM to evaluate those two algorithm for 20 scenarios (years), from
October 1989 to December 2009. The optimal annual hydropower produced using these
two algorithms were compared with the actual hydropower. All of this was done by run-
ning the GAOM in each year separately prior to the inclusion of Ev and Pr in the water
balance equation. In the next step, the volumes of Ev and Pr were taken into considera-
tion by using the Salg that strengthened the performance of GAOM. By using this pro-
cedure, the GAOM determined the optimal annual hydropower generation during the
same 20 years mentioned previously. In this case, each optimal value was compared with
its counterpart, which was identified without taking into consideration the Ev and Pr. In
addition, it was compared with the observed hydropower. In this work all computations
were performed using a Dell Inspiron 14R laptop with an Intel (R) Core i7-4500U CPU
@ 1.80 GHz 1.80 GHz, installed memory (RAM) of 8.00 GB, Windows 7 (64-bit) operat-
ing system, and Matlab 2013b environment.

Methodology definition

Framework

The relationships among the components of a water storage system are generally rel-
atively complex. These relationships express the dynamics of that system through the
continuity equation and other physical constraints. The operators of the water storage
system usually seek to achieve the highest benefits from operating the system, with a
commitment to implement all of those constraints. These benefits are expressed by the
objective function. The objective function of this study is maximization of annual hydro-
power generation, while the constraints include water balance equation, and constraints
of storage and release. The constraints of storage include the limits of the calculated stor-
age at the end of each time period, and the limits of storage at the end of the last month
of the year. The constraints of releases include the limits of releases to hydroelectric sta-
tion, and the limits of the total releases from the reservoir. The objective function and
the constraints that mentioned above were used in the built of the GAOM to improve
the optimal operation policy for a single reservoir by formulating two algorithms. The
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Falg is based on the traditional simulation of reservoir operation, whilst the Salg has
enhanced the work of GAOM through changing the population values of GA according
to some constraints if achieved. These population values represent the releases to the
powerhouse, which initialized or obtained through GA operations.

Generally, GA looks for the optimal solution through several processes such as selec-
tion, crossover, and mutation. These processes represent the basic elements of GA. Each
of these elements has many forms which change according to the nature of the problem
to be solved. Therefore, these forms of processes should be selected to be appropriate
for solving the problem and finding the optimal solution (Roeva et al. 2013). The form of
these elements can be selected by relying on previous studies. The work of Hingal et al.
(2011) pertaining to investigate the parameters of GA that used in an optimization prob-
lem of water storage system, was used in this study. These parameters include encod-
ing, representation function, selection function, crossover function and probability of
mutation. In present study, fitness function referred by Back et al. (1997) was used. The
number of generations and population size were determined in the two algorithms for-
mulated independently, in a manner similar to the method used by Roeva et al. (2013).

This GAOM was applied and evaluated by using those two algorithms independently
in 20 scenarios for operation of single reservoir in terms of annual hydropower pro-
duction. This evaluation was done prior to the inclusion of Ev and Pr to the continuity
equation. From this evaluation, the best algorithm was identified. Secondly, in order to
determine the effect of Ev and Pr on the objective function, the GAOM was evaluated by
using the best algorithm in the same scenarios through adding the volumes of Ev and Pr
to the continuity equation.

Objective function

The capacity of hydropower plant basically is a function to water head and flow rate
through the turbines. The water head is the difference between the elevations of storage
in the reservoir to the tail water depth. Project design concentrate on both of these vari-
ables, and on the capacity of hydropower plant. The production of hydropower genera-
tion as energy during any period for any reservoir is dependent on several factors: the
plant capacity; the flows through the turbines; the average storage head; the number of
hours in the operating period; and a constant to convert the flows, water heads and plant
efficiency to electrical energy (Loucks et al. 2005).

The objective function of the GAOM in this study was to maximize the annual hydro-
power generation, as shown below in Eq. (1) (Loucks et al. 2005). This optimal oper-
ating policy includes the optimal monthly releases to the hydroelectric station and
the monthly levels corresponding to them. In general, these releases should meet the
monthly water requirements downstream of the reservoir throughout the year.

12
Maximize E =y _ k * RP, % Hy x Dt/10? (1)
t=1

E: hydropower over 12 months (GWh), K: constant (0.003), RP,: release to the hydroelec-
tric station (MCM), H,: average head in the time period (m), #: time (month), D#: number
of hours in the time period.
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The value of the constant k was obtained from the derivation of the hyropower Eq. (1)
after assuming that the efficiency of the hydropower station was 80 %. The efficiency
range of modern hydroelectric power stations that have been designed properly is gen-
erally between 70 % and a maximum of 90 % (Kaltschmitt et al. 2007), so, in this study,
the efficiency of the power plant was considered 80 %, which represents the average.

In Eq. (1), the average head during the time period was calculated by subtracting the
tail water depth from the average elevation in each month, which depends on the aver-
age storage. This average storage was determined from the volumes of storage at the
beginning and end of each time period, which were calculated by using the water bal-
ance Eq. (2) (Loucks et al. 2005). This equation calculates the storage at the end of the
time period, which is taken as the storage at the beginning of the next time period, and

SO on.

Constraints

To access the optimal solution, this operation should be subjected to several constraints.
These constraints express the behaviour of the water storage system in a realistic way.
The first of these constraints is the continuity Eq. (2) for the reservoir.

Sspi=8+1L —R 2)

S,,1: storage at beginning of time period (t + 1), S;: storage at beginning of time period
(t), 1 inflow during time period (t), R;: outflow during time period (t), ¢: time period
(month).

Note: The units used in Eq. (2) are usually millions of cubic metres (MCM).

Also, the storage should be equal to or below the maximum operational storage and
equal to or above the minimum operational storage. That is,

Smin = St+1 = Smax (3)

S, minimum operational storage, S,,,,: maximum operational storage.

Release to the hydroelectric station should be between the maximum allowable value,
which represents the capacity of these tunnels, and the minimum allowable value, which
represents monthly water requirements. These requirements include water for fisheries

development, forestry, population, industrial, and thermal energy. Therefore,
D; < RP; < PC “4)

PC: capacity of tunnels connected to the hydroelectric station, D; monthly water
requirements.

Total releases should be smaller than or equal to the maximum allowable value, which
represents the hydraulic capacity downstream of the reservoir. Thus,

R, <HC (5)

HC: hydraulic capacity in the river downstream the reservoir.
The storage at the end of the last month should be equal to the target storage or above.
So,

Se12 = St (6)
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S.10: storage at the end of the last month, S;: target storage at the end of the last month.

A penalty function is used for these constraints, except for the continuity equation,
and they are embedded into the objective function. Consequently, the constrained opti-
mization problem takes the form of an unconstrained optimization problem. This proce-
dure is adopted to handle the problem when using a GA.

The constraints of storage are expressed as a penalty function, as follows:

(St+1 Smin) = C1 % [St41 — Smin]>  For Se1 < Spin (7)
(St—i-lr Smax) = CZ * [St+1 - Smax]2 For St+1 < Smax (8)
(Se12,ST) = C3 % [Se12 — S1]*  For Sz < St 9)

The constraints of the release from outlets leading to the power house and the total
release are expressed as a penalty function, as follows:

(RP;,D;) = C4 % [RP, — D;]> For RP; < Dy (10
(RP;, PC) = Cs % [RP; — PC]> For RP; > PC (11)
(R;, HC) = Cg % [R; — HC]> For RP; > HC (12)

Ci,Cy, C3,C4,C5,C¢ Constants

These constants were chosen arbitrarily in order to reduce the possibility of selecting the
objective function value when one or more of these penalties become effective.

The deviations from maximum and minimum storage, target storage at the end of the
last month, maximum and minimum releases from the tunnel of the hydroelectric sta-

tion, and total releases are penalized as squares of deviations from constraints.

The two algorithms formulated
In this study, two algorithms were formulated and used independently in the GAOM. In
these two algorithms, firstly, the storage was calculated using the continuity Eq. (2) at the
end of each time period depending on the release from the outlets of the powerhouse
(RP,) instead of the total release (R,) as shown in the flowcharts of these two algorithm
in Figs. 1 and 2. According to the location of this storage in the reservoir, one track is
chosen from three tracks as shown in flowcharts of those two algorithm. These tracks
represent the zones of storage in the reservoir. These zones of storage are clarified below:
(a)Zoneone: S, ;, < S, <SS,
(b)Zone two: S, < S,
(c) Zone three: S, ; > S,

After that, the RP, will be replaced by the R, in the water balance Eq. (2), and the stor-
age will be recalculated. In addition, the average storage for each time period is calculated
according to the storage at the beginning and end of each time period. Relying on this

Page 6 of 21
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and during iterations of GA

After generate the initial population

Sy =S, +inf - RP,

N

TS, =S.,-S

1 "l max

R =TS, +RP,
Sy =S, +inf, -R

Sl-l = Sm.n\
Y
N .
Sl 1= “mm
Track @ Y
R =RP,
====¢ | TS,=0

SB, = BC

$S,= TS, - BC,

: In this case: penalty 7
" will be active
1
1

P=C,%S, ..~ Sua)

nun

Calculate the mean of storage, area of

storage, elevation of storage, and water head

TS, Release from bottom outlet

and spillway
BC: Capacity of bottom outlet
SB,: Release from bottom outlet

SS,: Release from spillway

}

Calculate the penalties

Calculate the objective function

Operations of GA

Fig. 1 Flowchart of the Falg (traditional GAOM)

average storage, the elevation of storage and water head are determined. This water head
is used in the equation of hydropower generation (1). In these two algorithms, the total
outflow was separated into three types of releases in each period as shown in their flow-
charts. These outflows are released, firstly from the powerhouse outlets, secondly from
the bottom outlets, and finally from the spillway, depending on the capacities of these
outlets. The working mechanism of each algorithm is explained in the following two

sections.

Page 7 of 21
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After generate the initial population
and during iterations of GA

Sp. =S, +inf ~RP,

RP, =D, R - RP,
R =RP, TS,=0
Siy =S§+inf-R, SB,=0
R =TS, +RP,
S =S, +inf -R,

R =RP,
TS:=0
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Calculate the mean of storage. | oP=CHs, -5 ) b
area of storage, elevation of RN
storage, and water head ,i _______
l | In this casc: penalty 8 |
| will be active |
I Calculate the penalties IL P=C*S, -S|

v

i Calculate the
and spillway

A objective function
BC: Capacity of bottom outlet JECRNE MG
SB; Release from bottom outlet
SS: Release from spillway Operations of GA

Fig. 2 Flowchart of the Salg (enhanced GAOM)

TS,: Release from bottom outlet

The first algorithm (Falg)

Through this algorithm the releases to the powerhouse (RP,) that were initialized or
obtained through GA operations are unchanged in all three tracks as shown in Fig. 1. In
this algorithm, it should be noted that the penalty function 8 was neglected. This algo-
rithm follows the traditional simulation of reservoir operation.

The second algorithm (Salg)

Through this algorithm the releases to the powerhouse (RP,) that were initialized or
obtained through GA operations, which represent the population of GA, are changed
according to the calculated storage, in the second and third tracks as shown in Fig. 2.
These measures are done in order to improve the traditional approach of GAOM in the
operation of water reservoirs, where,

Page 8 of 21
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* ifSt?+1 < Smin )
RP, = D,
Rt = Rpt

St+1=St+1t_Rt/

(—* ifSp i1 > Smax \

TS: = St41 — Smax
R, =TS; + RP;
St41 =S+ 1 — R;
-if R, > PC, then

RP, = PC

TS; =R, — PC

-if R; < PC, then
RP, = R;

kTSt =0 _)

TS, total release from bottom outlet and spillway.

Effect of evaporation and precipitation

The effect of Ev and Pr on the values of the objective function depends on their quanti-
ties and the differences between them. These quantities and differences relies on the area
of storage and the geographic location of the reservoir on the planet. Based on that, the
Ev and Pr may have a positive or negative impact on the value of the objective function,
or may not have any effect. Relying on the objective function used in present study, the
expected effect of these two parameters is positive, if they lead to increase the annual
hydropower generation, whilst their impact will be negative, if the opposite happened.
To identify the effect of Ev and Pr on the operation of the reservoir, their volumes as
measured by MCM were added to the continuity Eq. (2) (first constraint) to become as
shown in Eq. (13). The volume of seepage was neglected because, unfortunately, no data
are available.

St+1 =38 +1; — Ry — Ev¢ + Pry — Spy (13)

Ev,: evaporation in time period (t), Pr,: precipitation in time period (t), Sp,: seepage from
reservoir in time period (t) (neglected).

In each time period, the volumes of precipitation Pr, and evaporation Ev, were calcu-
lated by multiplying their monthly depth rates by the average of the water surface area.
This surface area of water was determined according to the average of storage at the
beginning and end in each time interval by using the storage-area curve.

Case study (Mosul reservoir)

The Mosul reservoir considered in this study is situated on the Tigris River in Iraq and is
about 50 km north of Mosul city (Fig. 3). It is considered Iraq’s largest reservoir. The geo-
graphical coordinates in location of the Mosul Dam are 36°37/49”N 42°49'23"E. It began
operating in August 1988. The watershed area upstream from the Mosul reservoir cov-
ers approximately 50,200 km? The Mosul reservoir serves multiple purposes, including
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Mosul Dam

Fig. 3 Site of the Mosul dam

flood control, hydropower generation, and irrigation of large parts of the Al-Jazera
region, fisheries, and the development of the tourism sector in the country. The Mosul
dam is a rockfill dam with a central clay core. The height of the dam is 113 m, and its
length at the top is 3650 m, including 50 m for a spillway. The width of the dam is 10 m
at its top and the elevation of its top is 341 m. The spillway has five radial gates for con-
trolling the release of water. The dam has four penstocks/tunnels leading to turbines at
the hydroelectric station. The maximum capacity of the hydroelectric station is 772 MW.
The bottom outlet is composed of two outlets with segment gates. The tail water depth
downstream the reservoir is 265 m. In addition, the elevations and volumes of storage in
the Mosul reservoir are shown in Table 1. The values of elevations are taken above mean
sea level through some level sensors. The outlets capacity of generating units 1120 m?/s,
whilst is 1900 m3/s for the bottom outlet and 10,000 m3/s for spillway. The observed
inflows of Mosul reservoir and the demands downstream the reservoir, that used in this
study were shown in Figs. 4 and 5 respectively.

Determination of elements in the GA

The form of the elements of the GA was chosen by referring to Hingal et al. (2011), which
included verification of a known global optimization problem for water storage system.
These elements are representation of the initial population, the selection mechanism,

Table 1 The elevations of storage and the volumes of storage in Mosul reservoir

Minimum level Maximum level Minimum operational Maximum operational
of operational of operational storage of reservoir storage of reservoir
storage (m) storage (m) (MCM) (MCM)

300 330 2950 11,100
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Fig. 4 The observed monthly inflow to Mosul reservoir

700

600
500
400
300
200

100

Monthly requirements {IMCM)

[y
N
w

4 5 6 7 8 9 10 11 12
Time (month)
Fig. 5 The monthly requirements downstream Mosul reservoir

crossover and its probability of occurrence, and the probability of occurrence of muta-
tion. The fitness function that mentioned by Back et al. (1997) was used in the present
study. Other elements, such as the population size and number of generations, were
identified by operating the GAOM using the continuity Eq. (2) as explained later in this
section. All these elements of GA are explained in detail below:

1. Encoding: Real coding was used in the GAOM. According to Michalewicz (1996),
and Walters and Smith (1995), the best technique used for the function optimization
problem is real-number encoding. It has been extensively confirmed that real-num-
ber encoding functions more effectively than grey or binary encoding for optimiza-
tion problems (Gen and Cheng 2000).

2. Representation function: In order to initialize and represent the initial population in
the GAOM, the dynamic coding shown in Eq. (14) was employed. This dynamic cod-
ing was proposed by Oyama et al. (2000).

Page 11 of 21
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max min min
Xiy = (xv — X, ) *rnjy + X, (14)

where i: Number of chromosomes (individual), v: Number of genes (variables) (12),
x;,- Initial population (represents RP,), x,"**: The maximum value of gene (represents
PC), x"": The minimum value of gene (represents D,), 7, ,; Random number located
within the range, 0 < rny < 1.

3. Fitness function: As the genetic representation is well-defined, the process continues
to the determination of the fitness functions related to the solutions. For a fitness
function, the distance between good and bad solutions is calculated by mapping the
solution to a non-negative interval. According to Back et al. (1997), there is a map-
ping that correspond to maximizing problems, as shown in Eq. (15).

ﬁtness(@(n)) = 1/(1 +fmax(@)i(”)) _f(ﬁ)i(”))) (15)

in which £, represents the maximum observed value of the objective function up to
generation (n) and frepresents the objective value.

4. Selection function: Roulette wheel selection was used as a selection mechanism.
The basic idea behind this process is to make a random selection from a genera-
tion and create a base for the next generation. The fitter individuals have a higher
chance of survival than the weaker ones. This process follows nature in the sense
that the individuals that tend to have a higher probability of survival will move
toward forming the mating pool for the following generation. Obviously, these
individuals are likely to have a genetic coding that could prove useful for future
generations (Sumathi and Paneerselvam 2010). In this selection, the individuals
from the population are considered to be like the slots of the roulette wheel. Each
slot is as wide as the probability of selecting the related chromosome. The fitness
function, which has already been scaled, is used to compute the corresponding
selection probabilities, as shown in Eq. (16) (Shopova and Vaklieva-Bancheva
2006):

T

Pr(ﬁ)i(n)) :ﬁtness(ﬁ)i(n))/ Zﬁtness (lﬁ)i(n)) (16)
i=1

where T represents the population size and Pr is the probability.

5. Crossover function: BLX-ot was chosen as a crossover function. According to Shop-
ova and Vaklieva-Bancheva (2006), blend crossover has been found to be the most
common recombination approach in real representation. Through this scheme, two
parents X' and X? are combined to produce two offspring Y* and Y? while a new
value is sampled. This occurs at [min (xll,xlz) — apj, max (xll,xlz) + api}, where each
position i is defined through Egs. 17 and 18 (Tomasz 2006):

yil € {min(xil,xiz) - ocpi,max(xil,xiz) —|—ap,} (17)

yiz € {min(xil,xiz) — ocpi,max(xil,xiz) —{—api} (18)
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where p; = Abs(xi1 — x?), and «a represents a positive real parameter. In the present
work, o = 0.1 was used, and the probability of crossover occurrence = 0.7.

6. Mutation function: Uniform mutation was adopted as a mutation function. Accord-
ing to Back et al. (1997), this is a simple mutation scheme. In uniform mutation, the
positions of the genes that are likely to mutate are determined at the beginning. The
chance of mutation is equal for all genes, but only those for which the mutation prob-
ability has taken place will undergo mutation. Then, the new gene is produced that
replaces the selected ones. They are randomly selected out in uniform distribution
from the search space (0, 1). The uniform mutation operator substitutes the value of
the selected gene, which has a uniform random value between the user-determined
upper and lower limits for that gene. The only application of this mutation opera-
tor is for float and integer genes (Sumathi and Paneerselvam 2010). In this work, the
probability of a mutation occurring is equal to 0.02.

7. The population size and number of generations were identified in a manner similar
to the method used by Roeva et al. (2013). For this purpose, the GAOM of Mosul
reservoir was operated using the two algorithms independently, based on three
assumptions. The first assumption: the initial storage was set to equal the average of
the minimum and maximum operational storage; the second assumption: the target
ending storage of the last month is equal to or greater than the minimum operational
storage; the third assumption: The average year of inflow for the Mosul reservoir

(monthly rate for 20 years) was used.

The population size and number of generations were identified by operating the
GAOM 130 times using the Falg and also 130 times using the Salg, as explained below:

+ Operation of the GAOM using the Falg: In Table 2, from cases No.1 to No.6, the
number of generations was set equal to 250, and then the population size was
changed from 250 to 1500. From these cases, the population was chosen to be 1000,
which represents the best population size. In the same table, from cases No. 7 to No.
13, the population size was set equal to 1000, and after that the number of genera-
tions was changed from 500 to 6000. From these cases, the number of generations
was set equal to 4000, which represents the best value. For each case of population
size and number of generations, the GAOM was run ten times to obtain the values of
the objective function.

+ Operation of the GAOM using the Salg: All of the steps referred to above in relation
to the Falg were repeated by using the Salg, as shown in Table 3. From the first six
cases, the population size was identified equal to 1000, which represents the best,
and from cases No. 7 to No. 13, the number of generations was set equal to 3000,
which represents the best value. The GAOM was run ten times in each case of popu-

lation size and number of generations.

In these tables, the statistical parameters for the values of the objective function were
used as functions of the evaluation to identify the best values of population size and
number of generations. In addition, these best population size and number of genera-
tions which were chosen, represent the optimal choice with respect to the execution
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Table 2 Determination of the statistical parameters for the values of the objective func-
tion obtained relying on the population size and number of generations, using the first

algorithm

No. of Population No. of Mean SD Max Min Avr. of Exec.
cases size generations time (min)
1 250 250 2938 215 2978 2905 2

2 500 250 2953 17.1 2973 2929 4

3 750 250 2960 109 2974 2943 5

4 1000 250 2966 11.3 2979 2943 7

5 1250 250 2960 129 2976 2938 9

6 1500 250 2964 114 2977 2941 1

7 1000 500 2963 168 2987 2935 14

8 1000 1000 2972 126 2992 2956 28

9 1000 2000 2977 11.7 2989 2955 56

10 1000 3000 2983 102 2998 2964 84

11 1000 4000 2984 82 2998 2972 119

12 1000 5000 2977 90 2993 2965 147

13 1000 6000 2979 83 2989 2962 185

The italics indicate to the population size and number of generations which were selected, using the first algorithm

Table 3 Determination of the statistical parameters for the values of objective function
obtained relying on the population size and number of generations, using the second

algorithm
No. of cases Population size No. of generations Mean SD Max Min Avr. of Exec.
time (min)

1 250 250 2962 16.9 2993 2937 2

2 500 250 2971 1.7 2984 2947 4

3 750 250 2974 11.6 2991 2955 5

4 1000 250 2985 89 3002 2971 7

5 1250 250 2979 113 3002 2961 9

6 1500 250 2980 10.7 3000 2963 11

7 1000 500 2983 1.3 2994 2958 15

8 1000 1000 2986 10.7 2999 2971 29

9 1000 2000 2993 12.5 3005 2973 57

10 1000 3000 2996 84 3008 2983 85

11 1000 4000 2996 12.6 3007 2971 112

12 1000 5000 2996 10.2 3009 2973 144

13 1000 6000 2999 7.3 3006 2982 173

The italics indicate to the population size and number of generations which were selected, using the second algorithm

time. The work progress of the GAOM using the two algorithms is shown in Fig. 6. This
figure shows the hydropower generation obtained using the first and second algorithms,

as an example.

Application and evaluation of the GAOM

Using the two algorithms without taking into consideration the effect of Ev and Pr

In this study, the objective function of the GAOM was to maximize the annual hydro-
power generation according to the historical monthly inflows of Mosul reservoir. To
evaluate the performance of the GAOM, each of the two algorithms was applied during

Page 14 of 21



Al-Aqeeli et al. SpringerPlus (2016) 5:797 Page 15 of 21

Objective function vs. No. of Geneations (Falg) Objective function vs. No. of Generations (Salg)
-~ 14 L4 3 | L) 14 i 4 T —~ 3000 L L 14 1
§ Ll ' ' ' ' ' ' § . b . v :
= R e s e s I - a i . . :
c ' ' ' ' ' ' ' = BW0R----oee- T PR i oo TTT ]
=3 ' ' ' ' ' ' ' g ' ' ' ' '
= H . ) . . , . 5 H : ' . '
2 J“L‘ § el Sy ri P v i 1
2 H : ' ' ' ' ' z H : ' : '
- e i ey (- R | S E — I A FR— iy
© H . : : : ' ' 8 . : ' . :
, 2800 i H : i i
1000 1500 2000 2500 3000 3500 4000 : e o 2 25 S5
No. of Generations No. of Generations
Fig. 6 The work progress for the GAOM using the two algorithms

20 scenarios in the operation of Mosul reservoir. These scenarios represent the num-
ber of years during the chosen period from October 1989 to September 2009, where the
water year in Iraq starts on October and ends on September in the following year. That
means that the GAOM was run 20 times using each algorithm, giving a total of 40 runs.
In each scenario (year), the storage at the beginning of the first month should be inserted
in the continuity Eq. (2) in order to operate the GAOM, in addition to the constraint
of the target storage at the end of the last month should be known. Based on that, the
initial storage (S,) was set to equal the observed storage on the first day of the year, and
the calculated storage at the end of the last month (S,;,) should equal to or greater than
the observed storage on the first day of the following year, which represents the target
storage (S;). This constraint was applied in all twenty scenarios (operating years) so as
to make the operation of the GAOM subject to the same real operational conditions. In
addition, the continuity Eq. (2) and other constraints described previously were applied.
The annual hydropower generated when using each algorithm was compared with the
observed annual hydropower generated and with that generated when using the other
algorithm. The execution times of these two algorithms were also compared. From these
comparisons, the better of these two algorithms was identified.

Using the best algorithm (Salg) while taking into consideration the effect of Ev and Pr

In order to evaluate the performance of the GAOM using the Salg, with taking into con-
sideration the effect of Ev and Pr, the volumes of these parameter were added to the con-
tinuity equation as shown in Eq. (13). In this study, the monthly Ev and Pr rates of Mosul
reservoir, that shown in Fig. 7 were used. The GAOM was applied using the Salg, which
represents the best, during the same 20 scenarios that mentioned previously. The values
of the objective function were compared twice, first with those resulting from use of the
Salg while ignoring the Ev and Pr and second with the observed hydropower generation.

From these comparisons, the effect of Ev and Pr was identified.

Results and discussion
As stated previously, the optimization model was applied in three phases as explained
below:

In the first phase, the GAOM was applied to determine the population size and num-
ber of generations for the two algorithms. The population size and number of gener-
ations were set as 1000 and 4000 for the Falg, whilst they were set equal to 1000 and
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Fig. 7 The monthly evaporation and precipitation rates of Mosul reservoir

3000 for the Salg. These population size and number of generations which were chosen,
represent the optimal choice with respect to the statistical parameters obtained and the
execution time.

In the second phase, the GAOM was applied without taking into consideration the
volumes of Ev and Pr, using two algorithms independently. Each of these two algorithms
was applied during 20 scenarios in the operation of Mosul reservoir. In this phase, the
values of the objective function obtained by using the first and second algorithms were
compared, and with the observed values as shown in Fig. 8. As well, the increments and
decrements in the hydropower generation achieved as percentages by using those two
algorithms were compared as shown in Table 4. These comparisons indicated that the
optimal values of annual hydropower generation using the two algorithms were often
better than observed during all 20 scenarios used. These two algorithms achieved an
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Fig. 8 The observed values and the values of the objective function using the two algorithms
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Table 4 The increments and decrements of hydropower as a percentage using the GAOM
with the two algorithms compared with the observed hydropower generated

Years Observed hydro- Percentage of incre-  Percentage of incre-  Percentage of incre-
power generated ment/decrement ment/decrement ment/decrement
(GWh) using the Falg (%) using the Salg (%) using the Salg adding
Ev. and Pr. (%)

1989-1990 2521 0.11 1.83 —-0.29

1990-1991 1277 33.26 36.25 29.93

1991-1992 2705 13.68 15.97 12.88

1992-1993 3470 2.76 3.09 1.20

1993-1994 2561 —3.46 —0.82 —3.68

1994-1995 3710 043 0.87 —1.34

1995-1996 2516 538 7.18 3.98

1996-1997 2645 —4.46 —1.93 —6.29

1997-1998 2465 5.05 532 2.86

1998-1999 1189 823 16.77 10.29

1999-2000 1084 15.60 24.17 16.67

2000-2001 1571 —3.99 -1.79 —7.01

2001-2002 2524 1.71 1.94 —0.88

2002-2003 2517 24.37 24.86 21.62

2003-2004 2935 037 0.81 —1.82

2004-2005 2193 588 7.49 3.32

2005-2006 2284 24.87 26.95 23.39

2006-2007 1586 56.56 5742 52.29

2007-2008 1076 13.65 16.80 11.91

2008-2009 1650 1.35 511 0.39

The italics indicate to the increments of hydropower as percentages, whilst the bold italics indicate to the decrements of
hydropower as percentages, achieved using the GAOM compared with the observed hydropower generated

increase in the hydropower generation in 85 % of the scenarios used, with the Salg being
preferable in all the scenarios used, by improvement the performance of the GAOM. The
execution times of the GAOM using these two algorithms were compared during all the
scenarios used as shown in Fig. 9. This comparison indicated that the execution times
of the Salg were less than those of the Falg by about 26 min in each scenario used. This
shortcut in the execution time using the Salg happened because of the difference in the
numbers of generations which were used.

In the third phase, the GAOM was applied using the same historical data for Mosul
reservoir by using the Salg, which represents the best, taking into consideration the
volumes of Ev and Pr. The values of the objective function obtained by using the Salg
with and without taking into consideration the volumes of Ev and Pr were compared as
shown in Fig. 8. In addition, the increments and decrements of hydropower generation
achieved as percentages by using the Salg with and without taking into consideration the
volumes of Ev and Pr were compared as shown in Table 4. These comparisons showed
the reduction in the values of the objective function in all the twenty scenarios taking
into consideration the volumes of Ev and Pr. This occurred because of the continuation
of Ev during all the months of the year, in contrast to the Pr which happens just during
8 months of the year with respect to the Mosul reservoir. In addition, the depths of Ev
are significantly higher than the Pr as shown in Fig. 7. All of these reflected negatively
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Fig. 9 The execution time of the GAOM using the first and second algorithms

on the storage volume and thus on the values of objective function. In addition, those
comparisons showed that the Salg with taking into consideration the volumes of Ev and
Pr achieved an increase in the annual hydropower generation in 65 % of the scenarios
used compared with the observed. Spill values from the spillway were zeros during all
the time periods of twenty scenarios used. In addition, the releases from the bottom out-
lets were zeros during the periods of scenarios used except the some months which were
shown in Table 5.

A new rule curve was determined for each year by using the Salg as shown in Fig. 10
for 4 years, as examples. These new rules curves maintained good levels for storages dur-
ing the majority of the 20 scenarios used, compared with the observed level. These new
operation rules achieved all the requirements downstream the reservoir and managed
to increase the annual hydropower production. Figure 11 shows the observed releases
compared with the optimal releases for 4 years, as examples. This figure shows that opti-
mal releases were not reduced to less than the monthly requirements.

Table 5 Releases obtained from bottom outlet, using the Salg taking into consideration

the Evand Pr
Years Month in water year Release from bottom
outlets (MCM)

1991-1992 May 7.86
1992-1993 May 1580

June 124.6
1993-1994 April 0.56
1994-1995 May 314
1996-1997 May 0.37
1997-1998 May 0.12
2001-2002 May 32.88
2002-2003 May 017
2005-2006 May 1.35

2006-2007 May 16.5




Al-Aqeeli et al. SpringerPlus (2016) 5:797

Elevation vs. Time (1583-1550)
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Fig. 10 Observed elevations and optimal elevations using the Salg taking into consideration the Ev and Pr
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Fig. 11 Observed outflows and optimal outflows using the Salg taking into consideration the Ev and Pr

Conclusions

First, the performances of the two algorithms formulated in the GAOM, were evaluated
without taking into consideration the volumes of Ev and Pr in the continuity equation.
The Falg is based on the traditional simulation process of reservoir operation, whilst the
Salg has enhanced the work of GAOM. Second, the GAOM was evaluated using the Salg

with taking into consideration the effect of Ev and Pr.

The first and second phases of the results and discussion section, showed that the Salg
is superior, where it achieved high values for the objective function in a short execution
time compared with the Falg. The Salg was able to enhance the performance of GAOM
through improve the traditional simulation process of reservoir operation by changing
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the population values of GA (releases to the powerhouse (RP,)) to increase the maximi-
zation of annual hydropower generation. From all of the previous results obtained using
various scenarios, arguably that using the Salg in GAOM is the most capable to deter-
mine the optimal operating policy for the Mosul reservoir or any similar reservoir by
increasing the optimal annual hydropower generation.

The third phase of the results and discussion section, showed that it is necessary inclu-
sion the parameters of Ev and Pr in the continuity equation when using or creating a
model simulates the dynamic processes of water storage system, such as the optimiza-
tion and simulation models.

In addition, the GAOM maintained good levels of storage in the most of the scenarios
used compared to the observed levels, which could be useful for recreation, especially in
the summer. As well, the GAOM lost small amounts of water through only the bottom
outlets during a few periods of operation.

In future, in order to apply this optimization model using future predictions, the model
should be operated in conjunction with good stochastically generated data. In addition
this GAOM can be developed to represent a single- or multi-reservoir system by using
three modes of annual inflows (minimum, average, and maximum) during historical and
synthetic inflows in order to determine the optimal policies.
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