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Background
In Taiwan, the bridge safety evaluation for floods is often a two-step procedure. The 
first step is to examine bridge safety through a preliminary inspection evaluation form 
(PIEF). If the overall assessment score from the PIEF does not meet a predefined stand-
ard, the evaluation should proceed to an advanced investigation such as pushover analy-
sis to ensure the safety of the bridge. The PIEF consists of several items that are potential 
threats for bridge safety. Each evaluated item is allocated a weight to indicate its rela-
tive importance. The sum of all of the weights is 100. The items in the PIEF proposed 
by Chern et al. (2007) include the scouring depth, the foundation type, the attack angle 
of the river flow, the presence of protective facilities at the river bank and bed and the 
presence of a dam upstream. Among all of the items, the scouring depth has the highest 
weight and is considered as the most influential factor. Thus, the goal of this study is to 
investigate the safety of a scoured bridge. To fulfill this purpose, the strengths of a bridge 
structure such as the strengths of the pile shear stress, the pile axial stress, the hori-
zontal displacement on the pile head, the soil bearing and the soil pulling force need to 
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be carefully considered. In addition, the corresponding demands for the aforementioned 
strengths are water surface elevation, water velocity, local scour depth, wind load and 
soil properties that should be included in the safety evaluation as well. Because the vari-
ation of the main channel location is not considered, the worst case scenario is used. In 
other words, this study does not analyze every pier in a bridge; instead, only the pier that 
has the highest risk is analyzed. Because a one-dimensional hydraulic model is adopted 
here, all of the piers in the same river cross section share the same water level and veloc-
ity. The pier with the lowest river bed profile is selected for analysis because it has the 
largest flow depth, resulting in the largest scour depth.

Currently, bridges in Taiwan are designed against a specific return period (e.g., 100-
year flood) that is represented by a set of deterministic numbers (e.g., a fixed stream 
velocity and level). For this reason, many studies have evaluated bridge safety through a 
deterministic process. For example, Chern et al. (2007) evaluated the safety of a bridge 
through a stability examination of the soil bearing capacity, pile strength and bridge 
serviceability. A deterministic finite element method was used by the National Freeway 
Bureau in Taiwan (NCREE 2010) and Sung et al. (2011). To further consider the influ-
ence of floods, in addition to the bridge model, hydraulics and fluid–solid interaction 
analyses were included in the safety evaluation (Wang et al. 2011). A recently retrofit-
ted bridge (Shuangyuan Bridge) that failed to survive under Typhoon Morakot (Fig. 1) 
has drawn the attention of many engineers. Sixteen piers of the Shuangyuan Bridge col-
lapsed. The 24-h accumulated rainfalls of 11 (out of 15) precipitation stations (located 
in the Gaoping River basin) ranged from 1147 to 1340 mm. Based on a frequency analy-
sis (Water Resources Agency 2009), the return periods are 2000  years and more than 
200 years for rainfall and flow discharge, respectively. Apparently, using a deterministic 
number with a safety factor to design or retrofit a bridge cannot ensure bridge safety 
against a hazard that has a longer return period than the designated one. Therefore, a 
probabilistic approach is needed and adopted in the current study.

Many researchers have evaluated bridge safety using a probabilistic approach. For 
example, Carturan et al. (2012) used a stochastic finite element method to retrieve the 
reliability of a bridge. Wu et al. (2011) used a most probable point-based (MPP-based) 
reliability method to evaluate the reliability of a levee system in the Keelung River. 
Adarsh and Reddy (2013) used advanced first-order and second-moment (AFOSM) and 

Fig. 1  Collapse of Shuangyuan Bridge (2009/8/10) (photo courtesy of Apple Daily)
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a Monte Carlo simulation (MCS) to evaluate the safety of artificial open channels. Davis-
McDaniel et al. (2013) used a fault-tree model to perform bridge failure risk analysis for 
bridges in South Carolina. The results showed that flood, scour, overloading, corrosion 
of post-tensioning tendons and earthquakes are the top five critical factors. Saydam 
et al. (2013) evaluated the bridge superstructure safety via a probabilistic approach, in 
which the component and system level failures were both considered. Zhao et al. (1997) 
integrated the linearly constrained MCS with unit hydrograph theory and routing tech-
niques to evaluate the reliability of hydraulic structures.

Although many studies have shown that a reliability analysis is necessary for evaluat-
ing bridge safety, few of the studies in Taiwan have adopted this approach. Thus, this 
study builds a reliability analysis framework to reflect several important bridge safety 
issues through a case study. For example, only reliability analysis takes the uncertainty 
or variation of the influencing factors into consideration in the safety evaluation pro-
cess. Based on the current study, uncertainty plays an essential role in bridge safety. 
Many issues such as the pile shear stress, the pile axial stress, the pile head horizontal 
displacement, the soil bearing and the soil pulling force, are involved in a bridge failure; 
therefore, a system reliability analysis is needed. Thus, the five performance functions 
above are considered in our bridge system. Among these five performance functions, 
variables such as the water surface elevation, water velocity, local scour depth, wind load 
and soil property are pertinent and treated as probabilistic density functions. Although 
MPP-based approaches are often adopted in a reliability analysis, they are not suitable in 
the current study because of the nonlinearity and complexity of the analyzed problem. 
Sampling approaches such as MCS and importance sampling (IS) are potential reliability 
analysis tools in the current study. However, the cost of such approaches is often unaf-
fordable for a practical problem. Recently, many studies have utilized a response surface 
in reliability analysis. For example, Sun et al. (2016) analyzed the reliability of a 2.5D/
SiC composite turbine blade using a response surface built by support vector machines 
(SVM). Zhao and Qiu (2013) used the center point of the experimental points to control 
the construction of their response surface for reliability-based optimization. This study 
adopts Bayesian least squares support vector machines (LS-SVM, Suykens et al. 2002) to 
build the response surface, followed by an MCS. Both the accuracy and variation of the 
proposed approach are ensured by comparing the solution from the MCS.

The five performance functions, the random characteristics of a bridge against floods, 
the construction of a response surface and the proposed reliability analysis process are 
described below, followed by a demonstration via a numerical example.

Descriptions of the performance functions
Load types

The loads that are considered in this study include the vertical load, wind load and 
hydrodynamic pressure. The hydrodynamic pressure is calculated according to Eq.  (1) 
(Wu et al. 2014):

(1)pave =
52.5K (Vave)

2

1000
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where Pave is the average water flow pressure (tf/m2), Vave is the average water velocity 
(m/s) and K is 1.4, 0.7 and 0.5 for flat, round and pointed pier shapes, respectively.

The maximum water flow pressure Pmax is twice the average water flow pressure Pave. 
The water flow pressure is triangularly distributed from the top of the water surface ele-
vation (Pmax) to the riverbed (zero), as shown in Fig. 2. The hydrodynamic force is the 
product of multiplying the water pressure by the corresponding projected area on the 
bridge. If the water flow reaches the bridge PCI girder, then the influence of the hydro-
dynamic force on the superstructure is also considered.

A deterministic analysis approach (e.g., the analysis procedure provided in the design 
code) uses the load and reduction factors (i.e., LRFD in steel structure design) to con-
sider the uncertainty in the variables (i.e., loads or material properties). Because this 
study utilizes reliability analysis to take the uncertainty into consideration, the vertical 
load (both dead and live loads) and wind load are calculated according to the provisions 
of “The Bridge Design Specifications” without using the load factors (2009). The bridge 
that is considered in the numerical example is a 4-lane bridge with a span of 35 ms.

Performance functions

The five performance functions considered in this study are described in Eqs.  (2), (3), 
(4), (5) and (6) (Liao et al. 2015), which correspond to the performances of the pile shear 
stress, the pile axial stress, the bridge serviceability (the horizontal displacement on the 
pile head), the soil bearing and the soil pulling force, respectively.

(2)f (S1) = Aτy − Vte
−�x[cos(�x)− (1+ 2�h0) sin(�x)] = 0

(3)f (S2) =
Iσy

y
−

Vt

�
e−�x[�h0 cos(�x)+ (1+ �h0) sin(�x)]

Fig. 2  The pressure distribution of water flow
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where A is the pile area, τy is the pile shear strength, Vt is the applied shear force on the 
top of the pile (tf), λ =  4

√

kD/EI  (m−1), k is the horizontal subgrade reaction coefficient 
(tf/m3), D is the pile diameter (m), E is the elastic modulus (tf/m2), I is the pile cross-
sectional moment of inertia (m4), x is the distance between the measured point to the 
top of the river bed, h0 = Mt/Vt(m), σy is the yielding stress, 1.5 (cm) is the displacement 
capacity, Mt is the applied bending moment on the pile head, As is the pile surface area, fs 
is the friction resistance pressure on the surface of the pile, Ab is the area of the pile bot-
tom, qb is the allowable vertical pressure at the pile bottom, P is the applied vertical load, 
n × m is the total number of piles, σ is the resulting stress of the outermost pile due to 
the bending moment, wp is the pile weight and K2 is 3 for the case of short-term loading 
and 6 for the case of long-term loading. The on-site standard penetration test N value is 
used to estimate fs and qb, as shown in Table 1.

The demands of the pile strength [Eqs. (2), (3) and (4)] are calculated based on Chang’s 
simplified lateral pile analysis (Chang and Chou 1989). However, the boundary condi-
tions that are defined in Chang’s method (Chang and Chou 1989) are not exactly the 
same as in the situation that is considered here. For example, in Chang’s method, the 
external force is a concentrated force and is applied at the pile head, which is not appli-
cable when scouring occurs, as shown in Fig. 2. To use Chang’s formula, an equivalent 
force of the hydrodynamic pressure is calculated, for which the detailed description is as 
follows.

According to Chang’s approach, there are two boundary conditions for the pile head: 
free or restrained. The boundary condition of the pile head depends on the stiffness of 
the pile cap. Based on “Building infrastructure design specifications in Taiwan,” if the 
thickness of the pile cap is less than the pile diameter, then the deformation effect of 
the pile cap should be considered and is assumed to be free in the current study. On 
the other hand, if the thickness of the pile cap is greater than the pile diameter, then the 
pile head is assumed to be restrained. If the pile head is free (Fig. 3), then the equivalent 
force of the dynamic hydraulic pressure, as shown in Fig. 3d, is estimated by assuming 
that the boundary conditions at the riverbed surface are fixed, as shown in Fig.  3b, c. 
A similar approach is applied to the case when the pile head is restrained, as shown in 
Fig. 4. After obtaining the equivalent force (Mr, Mg and Vg), superposition theory is used 

(4)
f (S3) = 1.5− 0.01

(

Vt

2EI�3
+

Mt

2EI�2

)

(5)f (S4) = Asfs + Abqb −
P

n×m
− σA

(6)f (S5) = wp +
1

K2
Asfs +

P

n×m
− σA

Table 1  fs and qb estimated by the N values

Driven pile Bored pile Implant-type pile

fs min
[

N/5, 15
]

min
[

N/5, 15
]

min
[

N/5, 15
]

qb 30 N 7.5 N 25 N
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to calculate the demand of the pile axial stress, shear stress and top displacement. Taking 
the free pile head as an example, to obtain the pile demand, we first convert the original 
pile (Fig. 5a) to an equivalent pile (Fig. 5b); the pile demand is then calculated by adding 
the pile demand with the original external force (Fig. 5c) and the pile demand with the 
equivalent force (Fig. 5d). The pile demand with the original external force is calculated 
according to the prominent pile equations of Chang’s formula; the pile demand with 
the equivalent force is calculated according to the embedded pile equations of Chang’s 
formula ignoring the cantilevered part of the pile. The pile axial stress and shear stress 
demands are obtained via the superposition theory, as described above. The displace-
ment demand requires further consideration, as illustrated below.  

Figure 5d, together with Chang’s formula, provides only the displacement on the river-
bed surface. To obtain the pile head displacement, taking the case in which the pile head 

Fig. 3  The equivalent force of water pressure when pile head is free: a the original pile; b, c the equivalent 
pile, d pile with equivalent force

Fig. 4  The equivalent force of water pressure when pile head is restrained: a the original pile; b, c the equiva‑
lent pile, d pile with equivalent force

Fig. 5  Using superposition to calculate pile demand: a the original pile; b the equivalent pile, c pile with 
original external force only, d pile with equivalent force only
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is free, for example, the pile head displacement is approximately computed according to 
Eq. (7). If the pile head is restrained, then the pile head displacement is approximately 
computed according to Eq. (8).

where δt: the pile head displacement due to an equivalent force, δg: the displacement at 
the riverbed surface due to an equivalent force, α: the angular amount at the riverbed 
surface due to an equivalent force, ht: total length of the pile, hleft: pile length embedded 
in the ground.

Random characteristics of a bridge failure against floods
The uncertainty of the hydrodynamic pressure is affected by the water elevation and 
water flow velocity, as described in Eq.  (1). Water flow often causes foundation scour-
ing, and the scour depth has a major impact on the bridge safety evaluation. However, 
calculating or measuring the scour depth is not an easy task. As a result, the scour depth 
is also a factor that has a high degree of uncertainty. The following uses a simple example 
to explain the unsuitability of using FORM in bridge reliability analysis. FORM consid-
ers the reliability problem to be an optimization problem. The goal is to minimize the 
distance (β) between the limit state function and the origin in U-space, while the ran-
dom variables must stay on the limit state function. The optimum point is known as the 
most probable point (MPP). Taking the limit state function of the pile head displacement 
as an example, its mathematical formula of using FORM is as follows:

where β is the objective function, in other words, the distance between the origin to 
the limit state function in the U-space; and X is the group of design variables, in other 
words, the random variables in the reliability analysis (e.g., the water flow velocity and 
scour depth). Here, g(X) = 0 is the limit state function, and Xlb and Xup are the lower and 
upper bound of the design variables, respectively.

Using data from the Liugui Bridge as an example, after a simple calculation, the g(X) in 
Eq. (9) can be represented as a function of the random variables, as follows:

(7)δt = δg + (ht − hleft) sin α

(8)δt = δg +
(ht − hleft)

2
α

(9)

Min β =

√

∑

X2

s.t. g(X) = 1.5− 0.01
(

Vt

2EI�3
+

Mt

2EI�2

)

= 0

Xlb ≤ X ≤ Xup

(10)

g(X) = 0.015−

{

(0.0061898D−0.75hscour + 1)3 + 2

217222.77D1.75

[

Fw + 0.03675 dpV
2
ave(hwt − 2)

(

1+
hscour + 2

hwt + hscour

)

+ 2.0874 V 2
avg

(

hscour + 1

hwt + hscour

)]

+
DV 2

ave

1810.19 (hwt + hscour)

[

0.03675 h2scour
D1.75

+
0.032156 h3scour

D2.5
+

0.013781 h4scour
D3.25

]}
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where D is the pile diameter; Fw is the wind load (tf); dP is the pier diameter (m); Vave 
is the average water velocity (m/s); hwt is the designated water level against a specific 
return period flood (m); and hscour is the scour depth (m). The standard penetration test 
value (SPT-N value) is not shown in Eq. (10) because a single soil stratum is found from 
the on-site survey.

On the other hand, the MCS regards reliability analysis as an integral problem, as 
follows:

where Pf is the probability of failure, Df is the failure domain and fX(x) is the probability 
distribution function of the random variables. The reliabilities of using FORM and MCS 
are displayed in Table 2. Together with Eq. (10), it is evident that FORM is not an appro-
priate tool for analyzing bridge reliability. To overcome the shortcomings of using MPP-
based methods in a nonlinear problem, many studies have proposed modified versions 
(Zhao et al. 2007). However, this approach is beyond the goal of the current study. Some 
detailed random characteristics of the bridge reliability are given as follows:

1.	 In the calculation of the soil bearing capacity and the pile head displacement demand 
(δD), qb (the allowable vertical pressure), introduced in Eq. (5), and the coefficient of 
the horizontal subgrade reaction (kh) are required. Here, qb and kh are functions of 
the value of N, as shown in Table 1 and Eq. (12). In general, the value of N is not a 
deterministic number from an on-site survey, as illustrated in “SPT-N values and the 
wind load” section. As a result, the soil bearing capacity and δD should be measured 
using a probabilistic approach.

	

2.	 Similarly, fs in the calculation of the soil pulling capacity is a function of the value of 
N, as shown in Table 1. Furthermore, because the scour depth is a random variable, 
the pile length embedded in the ground is also a random variable. As indicated by 
Eq. (13), the number of soil stratums (n) to be considered in the analysis depends on 
the scour depth. As a result, Fs (the friction resistance force on the pile surface) will 
become a non-continuous function. Thus, it is inappropriate to use the MPP-based 
approach to calculate the reliability.

	

where hi is the ith soil stratum thickness (m), Ni is the N value for the ith soil stratum 
and n is the number of soil stratums embedded in the ground.

(11)Pf = J =

∫

...
Df

∫

fX(x)dx

(12)kh =
502N 0.37 + 691N 0.406

2

(13)Fs = Asfs = Dπ

n
∑

i=1

hi ×min

[

Ni

5
, 15

]

Table 2  Illustration of difference in reliability analyzed by MCS and FORM

Method Pf

MCS 3.64 × 10−3

FORM 2.68 × 10−3
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3.	 As mentioned earlier, Eqs. (2), (3) and (4) can be applied to only one of Chang’s equa-
tions. The applicability of Chang’s equation depends on whether the pile is embed-
ded in the ground or not. In other words, once scouring occurs, Chang’s formula 
should be changed to meet the required boundary conditions. As a result, the cor-
responding performance functions should be modified accordingly. In this case, the 
MPP-based approach is not suitable for reliability analysis.

This study applies response surface methodology (RSM) to replace the existing per-
formance functions to improve the efficiency of an MCS. Before explaining the response 
surface method that was adopted here, the random variables in this study are intro-
duced, which are the water surface level, water velocity, local scour depth, wind load and 
SPT-N values.

Water velocity and water surface level

A probabilistic-based HEC-RAS model is used to investigate the variations and distri-
butions of the water level and water velocity, in which the discharge rate and Manning’s 
roughness coefficient are considered to be random variables. In HEC-RAS, the water sur-
face levels and velocities are calculated from one cross section to the next by solving the 
Energy equation. That is, for a given discharge, the water depths and velocities are calcu-
lated using an iterative procedure. The distribution types and variations of the discharge 
rate and Manning’s roughness coefficient are determined as follows. The Manning’s rough-
ness coefficient in the Gaoping River basin is modeled as lnN(−3.395, 0.5508), lnN(−3.571, 
0.575) and lnN(−3.802, 0.664) for upstream, midstream and downstream, respectively 
(Liao et al. 2015). The discharge rate is modeled as N(Q100, 0.182) (Sheen 2012). A simu-
lated water level and the cross section of the demonstrated bridge are illustrated in Fig. 6. 
The distributions of the simulated water level and water velocity are verified by the Chi-
square goodness-of-fit test (the p-values are 0.973 and 0.5658 for the water level and water 
velocity, respectively), indicating that the log-normal distribution is the most suitable dis-
tribution for both parameters. From the simulation of HEC-RAS, the coefficient of vari-
ations (COV) of the water level and water velocity are 0.135 and 0.35, respectively. The 
correlation coefficient between the water level and velocity is 0.92. The mean values of the 
water velocity and water surface are determined according to a 100-year flood suggested 
by the Ministry of Transportation and Communications R. O. C (2009).

Local scour depth

An empirical formula is often used to determine the local scour depth. Among many 
well established equations, Li et  al. (2011) selected seven formulae for use in Taiwan. 
Of these seven formulae, five are selected to compute the local scour depth (Neill 1965; 
Shen et  al. 1966, 1969; Jain and Ficher 1980; Jain 1981). The other two formulae sug-
gested by Li et al. (2011) are not included in this study due to a lack of data required for 
these two equations. On the other hand, two more up-to-date formulae (Fischenich and 
Landers 1999; HEC-18 2012) are adopted here to improve the prediction accuracy. Thus, 
this research uses seven empirical formulae to calculate the local scour depth. The scour 
depth suggested by Fischenich and Landers (1999) and HEC-18 (2012) is a function of 
attack angle. If the extreme cases are used to determine the attack angle, the resulting 
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values are 0°0 and 90°. Here, the extreme cases mean that the selected attack angle will 
cause the maximum and minimum scour values. However, based on field observation, 
an attack angle of 90° is rare. In addition, the scour depth with an angle of 30° is approxi-
mately 85 % of the scour depth with an angle of 90° for both formulae. Thus, this study 
uses two attack angles (0° and 30°) to calculate the scour depth for the equations sug-
gested by Fischenich and Landers (1999) and HEC-18 (2012). Because two attack angles 
for the flow (0° and 30°) are considered in the latter two formulas, nine equations are cal-
culated, as shown in Fig. 7. The figure shows the local scour depth for a bridge that has 
a pile diameter of 2–5 m. It is observed that Neill (1965) provides the maximum scour 
depth, while HEC-18 (2012) gives the minimum local scour depth (theta = 0°). Similarly, 
probability plots and the Chi-square goodness-of-fit test are used to determine the dis-
tribution type of the scour depth. The results indicate that the log-normal distribution is 
suitable for describing the local scour depth for the considered bridge.

Using the 9 scouring depth formulas and 30 pairs of water levels and water velocities, 
270 samples of the scour depth are obtained. The sample mean and standard deviation 
are used as the mean value and standard deviation of the scour depth in the following 
reliability analysis. The total scour depth of the pier is usually the sum of the depths of 
the local scouring, contraction scouring and general scouring (i.e., scouring without 
structures). The local scouring often dominates the overall scouring depth, and thus, 
other scouring is not considered at present (Alipour et al. 2013; HEC-18 2012; NRCS of 
USDA 2010). The correlation coefficients between the scour depth and water level and 
between the scour depth and water velocity are found to be 0.93 and 0.92, respectively.

SPT‑N values and the wind load

The distribution of the SPT-N is summarized according to the geological reports by the 
Ministry of Transportation, as shown below:

1.	 The first stratum (immediately below the riverbed): the thickness is approximately 
1.3 m, and the SPT-N value has an approximate range of 0–10.
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2.	 The second stratum (below the first stratum): the thickness is approximately 20 m, 
and the SPT-N value has an approximate range of 2–28.

3.	 The third stratum (below the second stratum): the thickness is approximately 19.6 m, 
and the SPT-N value has an approximate range of 3–16.

4.	 The SPT-N value of the soil stratums below the third stratum is approximately 50.

Because there is no more detailed information for the SPT-N values in the investigated 
bridge site, the SPT-N values in the first three stratums are assumed to follow a uniform 
distribution that has the upper and lower bounds indicated above.

Regarding the wind load, the force on the bridge is calculated by multiplying the wind-
induced pressure by its corresponding area that is affected by the water level. Once the 
water level is determined as described in “Water velocity and water surface level” sec-
tion, the projected area of the wind load can be obtained. The wind load is a random 
variable because of the uncertainty in the water level.

The proposed reliability approach and a numerical example
A response surface is utilized to calculate the bridge reliability. The proposed flowchart 
is displayed in Fig. 8. The first step is to construct the response surface, and the second 
step is to perform the required reliability analysis using MCS. Five parameters of the 
RSM, which are w, b, μ, ζ and σ, are determined through a 3-level Bayesian inference, as 
described below. To confirm the accuracy and efficiency of the proposed algorithm, the 
results of a direct MCS are used as a baseline. Similar to the classical MCS, the reliability 
calculated from the proposed approach is a random variable. To ensure the accuracy, 
this study proposes that the maximum error percentage in a 95 % confidence interval 
should not be greater than 10 %. Because the MCS solution is a binomial distribution, 
the aforementioned accuracy requirement will result in a COV of 5 %. Thus, for both 
MCS and the proposed approach, the COV is limited to 5 %.

Fig. 7  Results of local scour depth using empirical formulae
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Response surface methodology (RSM)

As shown in Fig.  8, this study first utilizes Bayesian LS-SVM to build the RSM, fol-
lowed by the classical MCS. The equations needed for constructing a general RSM are 
described in this section. The purpose of RSM is to replace the performance functions. 
To fulfill this goal, the equations mentioned in “Descriptions of the performance func-
tions” section are needed in the establishment of the particular RSM in the current 
study. To be specific, five Bayesian LS-SVM RSMs were built to replace the five perfor-
mance functions considered here.

A standard SVM, as described in Eq. (14), solves a nonlinear classification problem by 
means of convex quadratic programs (QP).

where w is a normal vector to the hyper-plane, c is a real positive constant and ξk is 
the slack variable. If ξk  >  1, the kth inequality becomes violated compared to the ine-
quality from the linearly separable case. yk is the class (e.g., the failure or safe class), 

(14)
minimize

w,b,ξ

1
2w

Tw + c
N
∑

k=1

ξk

Subject to

{

yk(w
TK (xi)+ b) ≥ 1− ξk

ξk ≥ 0, i = 1, 2, . . . ,N

Fig. 8  The flowchart of the proposed reliability analysis
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[wTK(xi) + b] is the classifier, N is the number of data points and K is the kernel function. 
In the current study, the Gaussian radial basis function (RBF) kernel is used, as shown in 
Eq. (15).

where X is the input vector, σ is the kernel function parameter and Xi are the support 
vectors.

LS-SVM (Suykens et al. 2002), instead of solving the QP problem, solves a set of linear 
equations by modifying the standard SVM, as described in Eq. (16).

where γ is a constant number and e is the error variable. Compared to the standard SVM, 
there are two modifications leading to solving a set of linear equations. First, instead of 
inequality constraints, the LS-SVM uses equality constraints. Second, the error variable 
is a squared loss function.

Variables such as w, b and σ in the LS-SVM are determined through Bayesian infer-
ence in this study. Bayesian considers undetermined variables as a distribution instead of 
a single value providing a probabilistic-based classification. The formulation of the LS-
SVM is slightly modified, as shown in Eq. (17), for Bayesian inference.

where c is the classification and the single regularization constant (γ) in Eq.  (16) 
is replaced by two constants, μ and ζ. To build a response surface using Eq.  (17), five 
unknown parameters (w, b, μ, ζ and σ) need to be determined. Because the radial base 
function (RBF) is adopted as the kernel function, σ stands for the width of the kernel. 
Because of the sequence of determining these unknown parameters, the Bayesian infer-
ence adopted here is a 3-level calculation, as shown in Eqs. (18), (19) and (20).

where D stands for the given training data set and Hσ indicates one attempt of several 
values of σ for the RBF kernel. It is observed that the primal weight space parameters (w 
and b) are inferred at Level 1; the hyperparameters (μ, ζ) are inferred at Level 2; and the 
RBF kernel parameter is inferred at Level 3.

(15)K (X ,Xi) = e−σ(||X−Xi||)
2

(16)
min 1

2w
Tw +

γ
2

N
∑

k=1

e2k

s.t. yk(w · K (xk)+ b) = 1− ek , k= 1, . . . , n

(17)
min µ 1

2w
Tw +

ς
2

N
∑

k=1

e2c,k

s.t. yk(w · K (xk)+ b) = 1− ec,k , k = 1, . . . , n

(18)p(w, b|D,µ, ς ,Hσ ) =
p(D|w, b,µ, ς ,Hσ )

p(D|µ, ς ,Hσ )
p(w, b|µ, ς ,Hσ )

(19)p(µ, ς |D,Hσ ) =
p(D|µ, ς ,Hσ )

p(D|Hσ )
p(µ, ς |Hσ )

(20)p(Hσ |D) =
p(D|Hσ )

p(D)
p(Hσ )
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Case study

The Shuangyuan Bridge was selected as our case study. Several piers of the Shuangy-
uan Bridge were seriously damaged during Typhoon Morakot. Thus, the motivation 
of selecting this bridge is to determine its reliability to provide a more comprehensive 
explanation of its failure. Information about the bridge before restoration can be found 
in Liao et al. (2014).

MCS reliability and its COV

The MCS solution is a binomial distribution in which its COV with respect to the failure 
probability is estimated by Eq. (21).

where pf is the failure probability and n is the sample size. Several MCSs with different 
sample sizes were conducted to find the necessary number of samples having a COV of 
5 %. Table 3 illustrates the relationship between the sample size and COV. It is found 
that the COV decreased when the number of samples increased, and the sample number 
corresponding to the target COV was 3000. The system failure probability against a 100-
year flood was 2.32 × 10−1, which is approximately equal to an annual failure probability 
of 2.32 × 10−3 if the flood is the dominant parameter.

Reliability analyzed by Bayesian LS‑SVM

As indicted, five performance functions were considered; therefore, five Bayesian LS-
SVM RSMs were built. A series system was assumed, and any component failure was 
considered as a failure of the bridge system. The inputs for each RSM were the five con-
sidered random variables and the output was the status of safety or failure. Detailed 
information for the built RSMs is displayed in Table 4. Please note that this study pro-
posed using Bayesian LS-SVM for RSM construction, indicating that instead of provid-
ing a deterministic classification outcome, a posterior class probability was delivered.

(21)COV =

√

1− pf

npf

Table 3  100 year failure probability of the selected bridge by MCS

Sample size 100 300 3000

Pf 2.34 × 10−1 2.30 × 10−1 2.32 × 10−1

COV 0.181 0.106 0.033

Table 4  The inputs and outputs of the response surfaces

Inputs Outputs

Water level Safety or failure for pile pulling force

Water velocity Safety or failure for soil bearing force

Local scour depth Safety or failure for pile shear stress

Wind load Safety or failure for pile axial stress

SPT-N value Safety or failure for pile head displacement



Page 15 of 19Liao et al. SpringerPlus  (2016) 5:783 

Although the RSM has been utilized in many fields, the locations of the sample points 
significantly influence its accuracy (Zhao and Qiu 2013). Many methods, such as the fac-
torial design, central composite design (CCD), and Latin hypercube design (LHD), are 
available for engineers to use. Because this study used a computer simulation to ana-
lyze bridge reliability, such a process was considered as a computer experiment. The 
minimum bias design (MBD) was often considered as a good principle for selecting the 
sample location in this case. The LHD was considered as a space-filling design, focus-
ing inside the design region rather than in the perimeter or the extremes of the design 
region, and satisfies the criteria of the MBD (Myers and Montgomery 2002). Thus, the 
LHD was adopted here to construct the RSM for the reliability analysis.

One of the primary goals of this study is to find the optimal sample size of the RSM 
that has an equivalent solution to that of the MCS. Five sample sizes of 50, 80, 100, 
120 and 150 were selected for evaluation. In addition to the sample size, the sample 
range may influence the reliability calculation. For example, the MCS reliability was 
2.32 × 10−1, indicating that very few failure points were located outside the ±3σ bounds. 
Thus, except for the sample size of 150, a sample range of ±2σ was adopted. Although 
one can compare the RSM reliability with the MCS reliability to examine the accuracy, 
the root mean squared error (RMSE) was used as an alternative accuracy measurement 
for the established RSM. Table 5 shows the RMSEs of the five response surfaces with a 
sample size of 50. It is observed that the highest RMSE was 4.80 %, indicating the built 
response surface had a good agreement with the original model. Table 6 describes the 
estimated reliability for the response surface with different sample sizes. As expected, 
increasing the number of samples reduces the RMSE, resulting in a reliability estimation 
that is closer to the MCS reliability. Assuming that the allowable error percentage of the 
reliability estimation is 5 %, among several sample sizes, a sample size of 80 was selected 

Table 5  The RMSEs of the 5 response surfaces with a sample size of 50

No. of response surface RSM RMSE (%)

1 Pile pulling force 4.80

2 Soil bearing force 4.72

3 Pile shear stress 3.30

4 Pile axial stress 3.48

5 Pile head displacement 3.45

Table 6  System 100 year failure probability (Pf) and accuracy measurements (RMSE) using 
the response surface with different sample sizes

Sample size Sample range Pf (LS-SVM) Pf (Bayesian LS-SVM) RMSE (%)
#5

50 μ ± 2σ 2.57 × 10−1 2.51 × 10−1 3.45

80 μ ± 2σ 2.42 × 10−1 2.41 × 10−1 1.10

100 μ ± 2σ 2.38 × 10−1 2.37 × 10−1 0.65

120 μ ± 2σ 2.34 × 10−1 2.34 × 10−1 0.45

150 μ ± 3σ 2.33 × 10−1 2.32 × 10−1 0.32
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as the optimal size because it has the minimum sample size that satisfied the predefined 
requirement. Table  7 compares the reliability estimation by the MCS and RSMs with 
sample sizes of 80 and 150. It was observed that using the RSM can effectively reduce the 
computational cost for evaluating the bridge reliability.

Table 6 also shows the reliabilities estimated by the LS-SVM. It is observed that using 
the LS-SVM or Bayesian LS-SVM had only a small difference in the reliability calcula-
tion. However, the variation of the reliability solution was significantly reduced by using 
the Bayesian LS-SVM. Taking a sample size of 50 as an example, the COVs were 0.09 and 
0.03 for the LS-SVM and Bayesian LS-SVM, respectively. In this particular case, using a 
moderate classification successfully reduced the prediction variation. Figure 9 shows two 
classifiers (LS-SVM and Bayesian LS-SVM) for the pile head displacement performance 
function. Please note that the established response function consisted of five variables. 
Only the water velocity and local scour depth are included in Fig. 9. Nevertheless, it is 
clear that this serviceability performance was highly nonlinear. Figure 9 shows the dif-
ference between the deterministic and probabilistic classifiers. The Bayesian LS-SVM, 
called a moderate prediction machine, delivered an outcome with a probability between 
0 and 1, as shown in Fig. 9 (right). The detailed results of the Bayesian LS-SVM (square 
abcd and square efgh in Fig. 9) are displayed in Fig. 10.

Please note that the COVs of the MCS (the values in Tables 3 and 7) were computed 
according to Eq.  (21). The COVs of the proposed approaches, however, did not follow 
the binominal distribution. Thus, the COVs of the proposed approaches (the values in 
Table 7) were calculated from 50 simulations (i.e., performing the MCS 50 times using 
the established RSM).

Table 7  Comparison of 100 year failure probability (Pf) using response surface and MCS

a  Lower and upper bounds for samples to generate the RSM
b  Sample size

Approach Boundsa Pf COV

MCS NA 2.32 × 10−1 0.033

RSM(150)b μ ± 3σ 2.32 × 10−1 0.01

RSM(80)b μ ± 2σ 2.41 × 10−1 0.02

Fig. 9  Two established classifiers for the pile head displacement
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Based on the aforementioned computation and discussion, using a response surface 
with a sample size of 150 can deliver accurate and efficient bridge reliability against 
floods. To be specific, the sample size was reduced from 3000 to 150. The computational 
cost can be further reduced to a sample size of 80 if a 5 % error tolerance is allowed in 
both the accuracy and variation.

Based on the MCS solution, the failure probability of the selected bridge was 
2.3 × 10−1, which was greater than the threshold value (1.00 × 10−3) suggested by the 
International Organization for Standardization (ISO), indicating that this bridge did not 
have sufficient reliability, which was consistent with the failure event observed in the 
Marokot floods. When the proposed algorithm was designed, the sample size and range 
were two factors that could impact the reliability estimation. Several trial and error tests 
were conducted to find the appropriate sample size. To determine the sample range, it is 
intuitive to select a range that basically covered all possible values of the considered ran-
dom variables. For example, using μ ± 3σ can cover 99.73 % of the possible values of the 
corresponding variables. However, because the 100-year failure probability of the con-
sidered bridge was not a small number, a sample range of μ ± 3σ could be too broad for 
the current probability level. Thus, a narrower sample range (e.g., μ ± 2σ) was adopted 
to perform the RSM-based reliability calculation, as shown in Tables 6 and 7. If a 5 % 
error tolerance was applicable for the accuracy and variance, this approach could effec-
tively reduce the required sample size from 150 to 80.

Conclusions
A deterministic bridge design or evaluation process is often adopted in Taiwan. After the 
Morakot Typhoon, engineers realized that a probabilistic approach is needed to consider 
the uncertainty in the parameters. Therefore, this study builds an accurate and efficient 
reliability methodology to fulfill such a need. Bridge failure is a complicated system prob-
lem, and many different types of events should be considered. Based on the literature and 
PIEF suggested by an earlier study, the safety of a bridge substructure is one of the most 
pertinent factors in bridge reliability and is the scope of this study. The random variables 
considered include the water surface elevation, water velocity, local scour depth, wind load 
and soil property. A probabilistic hydraulic analysis and on-site survey data are used to 
capture the variation in these variables. The Bayesian LS-SVM is adopted to establish the 
response surface, in which the LHS is used to generate the samples. Compared with results 
from a direct MCS, the accuracy and variation of the proposed method is confirmed. In 
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addition, the reliability obtained from the proposed algorithm for the case study indicated 
that the selected bridge does not have sufficient reliability, which is consistent with the fail-
ure event observed in the Marokot floods. From the reliability derivation for a simplified 
case and the classifier outcomes, it is observed that the limit state functions are likely to be 
highly nonlinear and that the sampling method is a suitable choice for reliability analysis. 
The MCS analysis, however, is time consuming. In the presented case, 3000 samples are 
needed. The proposed response surface-based reliability analysis can improve the compu-
tation efficiency with the same accuracy and variation of the traditional approach (MCS). 
For example, the sample size is reduced from 3000 to 150. If a 5 % error tolerance is appli-
cable, the proposed approach can further reduce the sample size to 80.
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