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Abstract 

The genetic cause of idiopathic congenital talipes equinovarus (ICTEV) is largely unknown. We performed a system‑
atic review to describe the findings from 21 studies that have examined the genetic variants related to ICTEV, and 
to evaluate the quality of reporting. We found that ICTEV was positively associated with Hox family genes, collagen 
family genes, GLI3, N-acetylation genes, T-box family genes, apoptotic pathway genes, and muscle contractile family 
genes. Negative and controversial results were also discussed, and several genes associated with ICTEV were identi‑
fied. Due to the limitation of the included studies, rare coding variants should be further investigated, sample size 
should be enlarged, and candidate genes should be replicated in larger ICTEV populations. Epigenetic study, path‑
ways, chromosome capture, and detailed gene-environment interaction will also allow further elucidation of factors 
involved in ICTEV pathogenesis and may shed light on diagnosis and timely and accurate interventions.
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Background
Idiopathic congenital talipes equinovarus (ICTEV), also 
called clubfoot, is a common orthopedic birth defect 
found in 1 of 1000 infants (Wynne-Davies 1964). Males 
are more commonly affected than females by a ratio of 2 
to 1 and the incidence of bilaterality is 50  %. The high-
est prevalence is found in Hawaiians and Maoris, and 
the lowest in Chinese (Chapman et al. 2000; Chung et al. 
1969). The etiology of ICTEV is largely unknown, but 
it is universally acknowledged that gene-environment 
interaction plays a major role (Lochmiller et al. 1998). A 
genetic component to the etiology of clubfoot has been 
established in several studies (Bacino and Hecht 2014). In 
this paper, we systematically review and summarize stud-
ies performed on ICTEV probands and families regard-
ing susceptible genes, pathways, and epigenetic changes. 

Major findings in humans in the last 30  years are pre-
sented and ideas for further study are discussed.

Methods
Literature search strategy
This systematic review was conducted according to the 
guidelines of the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (Moher et al. 2009). The 
process began with the first author (YBC) performing a 
systematic electronic literature search of PubMed, Web 
of Science, China Wanfang Med Online, and Cochrane 
Library, for publications from Jan 1985 to Dec 2014. 
Queries to identify potentially relevant publications on 
the genetic study of patients with ICTEV were based 
on Boolean combinations of the following search terms: 
((Talipes Equinovarus (MeSH) OR Club Foot (MeSH)) 
AND (Gene (MeSH) OR Genetics (MeSH)).

Study eligibility criteria
We limited this review to publications that were in Eng-
lish and Chinese, with full text available, concerning 
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patients diagnosed with ICTEV. Family based, discord-
ant sib pair association and case–control studies were 
included. Studies were excluded if they were case reports, 
dissertations, editorials, commentaries, or review 
articles.

Data extraction
The first author (YBC) screened the titles and abstracts 
of all the retrieved articles to determine whether they 
met the eligibility criteria, and appraised the methodo-
logical quality and evidence of each selected study. The 
second author (XFX) subsequently reviewed the accu-
racy and quality of the appraisal. Any disagreements 
were discussed between the first and the second authors 
until consensus was reached. The flow diagram describes 
the process used to select articles for this study, and 
the results of the literature search (Fig.  1). The follow-
ing information was extracted from each study: (1) Year 
of publication, (2) Study objectives, (3) Study’s inclu-
sion and exclusion criteria, (4) Sample size, (5) Method, 
(6) Gene examined, (7) Association or non-association 
study, (8) Results, and (9) Corresponding author. Due 
to the heterogeneity in the study design, in this review, 
meta-analysis was not performed for those observational 
gene(s) identified among the various reviewed stud-
ies. Two investigators independently assessed the qual-
ity of the reporting. Differences in the assessment were 
resolved by discussion.

Results
Literature search
We identified 902 relevant studies from various resources 
(Fig. 1); the included studies examined the genetic asso-
ciations between relevant genes and ICTEV. After read-
ing the titles, 715 irrelevant articles were excluded. A 
total of 67 abstracts addressing certain gene(s) associ-
ated with ICTEV were selected to be reviewed. After 
reviewing, 36 articles did not meet our criteria and 
were excluded, including case reports (n = 4), letters to 
the editor (n = 3), reviews (n = 16), animal only studies 
(n = 7), no specific genes studied (n = 5), and treatment 
related (n =  1). For the remaining 30 articles, full texts 
were screened. Nine more articles were excluded due to 
normal control being unavailable (n =  1), inconsistency 
between method and result (n = 1), and functional study 
and other reasons (n =  7). Twenty-one studies met the 
predetermined inclusion criteria (Fig. 1).

Description of the included studies (Table 1)
From the studies gathered, we identified 21 that inves-
tigated genes or pathways which may contribute to the 
occurrence of ICTEV. Among them, some genes are posi-
tively associated with ICTEV, while others have shown 

no evidence of association. The genes with positive 
results include: (1) Hox family genes (HoxA and HoxD), 
(2) collagen family genes (COL9A1 and COL1A1), (3) 
GLI3, (4) N-acetylation genes (NAT2), (5) T-box family 
genes (TBX3 and TBX4), (6) apoptotic pathway genes 
(Casp3, Casp8, Casp9, Casp10, Bid, Bcl-2, and Apaf1), 
and (7) muscle contractile family genes (TNNC2 and 
TPM1). The genes with negative or controversial results 
are CAND2, WNT7a, MYH, and DTDST. Our critical 
review of these genes affecting ICTEV is summarized as 
follows:

Positive gene results
Hox family genes
The HOX genes encode a highly conserved family of 
transcription factors that play fundamental roles in mor-
phogenesis during embryonic development. This group 
of genes determines the segment identity and also helps 
pattern the developing embryo in the development of the 
axial skeleton and limbs. Hoxa13 and Hoxd10-Hoxd13 
are expressed during specification of the hand/foot (auto-
pod) (Favier and Dollé 1997). A variety of limb malfor-
mations including synpolydactyly and hand-foot-genital 
syndrome are known to be caused by specific mutations 
in HOXD13 and HOXA13, respectively (Muragaki et al. 
1996; Mortlock and Innis 1997) In 2003, Wang identi-
fied 12 alleles at Hox4Ep-a microsatellite marker on 
HoxD gene; transmission of disequilibrium was found at 
the 12th allele, indicating that HoxD may be a potential 
gene for ICTEV (Wang et  al. 2003). Wang and her col-
leagues, who identified the susceptibility of HoxD with 
ICTEV from the previous study group, further found 
SNP rs847154 located in 5′ flanking sequence of HoxD12 
gene and SNP rs13392701 located in exon 1 of HoxD13 
to be associated with ICTEV (Wang et  al. 2005). In 
another study investigating HoxA in ICTEV patients, the 
authors found seven alleles at D7S516 microsatellite and 
the presence of transmission disequilibrium in Chinese 
populations (Wang et  al. 2008). Variants in HoxA and 
HoxD clusters and altered transmission in multiplex and 
simplex families were validated in a larger Western popu-
lation with ICTEV in 2009 (Ester et al. 2009).

Collagen family genes
COL9A1 encodes one of the three alpha chains of Type 
IX collagen, which is a minor (5–20  %) collagen com-
ponent of hyaline cartilage. Lack of Type IX collagen is 
associated with early onset of osteoarthritis, epiphyseal 
dysplasia, and intervertebral disc degeneration (Czarny-
Ratajczak et  al. 2001; Alizadeh et  al. 2005; Boyd et  al. 
2008). Liu et  al. studied COL9A1 which maps to chro-
mosome 6q12-13 and found that 84 nuclear pedigrees 
had transmission disequilibrium in SNPs rs592121 and 
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rs1135056, which are found in COL9A1(Liu et al. 2007). 
Expression of COL9A1 mRNA is significantly higher in 
patients with ICTEV than in healthy human subjects.

COL1A1 encodes the pro-alpha1 chains of Type I col-
lagen, a fibril-forming collagen found in most connective 
tissues and abundant in bone, cornea, dermis, and ten-
don. Mutations in this gene are associated with osteogen-
esis imperfecta Types I–IV (Prockop et  al. 1989; Takagi 

et al. 2015). Gene encoding collagen Type IV (COL1A1) 
was investigated in 2008 (Zhao et  al. 2008). The results 
of this study show that expression of COL1A1 on mRNA 
levels is significantly higher in patients with ICTEV than 
in healthy patients. A −161(T → C) heterozygous muta-
tion and a +274(C → G) homozygous mutation were also 
detected in the COL1A1 gene in patients with ICTEV, 
suggesting that COL1A1 mutations could cause ICTEV.

Fig. 1  Flow diagram of the study identification and selection process
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GLI3 gene
GLI3 encodes a protein which belongs to the C2H2-type 
zinc finger proteins subclass of the Gli family. The GLI3 
protein localizes in the cytoplasm and activates patched 
Drosophila homolog (PTCH) gene expression. Mutations 
in the limb development related gene GLI3 have been 
associated with polydactyly (Volodarsky et al. 2014). SNP 
rs929387, located in exon 14 of the GLI3 gene, has trans-
mission disequilibrium in 84 nuclear pedigrees, showing 
the association between the GLI3 gene and occurrence of 
ICTEV (Zha et al. 2006).

N‑Acetylation genes
The NAT2 gene encodes an enzyme that functions 
to both activate and deactivate arylamine, hydrazine 
drugs and carcinogens. Polymorphisms in this gene are 
responsible for the N-acetylation polymorphism which 
in human populations segregates into rapid, intermedi-
ate, and slow acetylator phenotypes. Since smoking is 
one of the known environmental risk factors for ICTEV 
and NAT2 metabolizes tobacco byproducts, Hecht et al. 
(2007) examined the variants of the NAT2 gene in 56 
ICTEV multiplex families, 57 trios with a positive fam-
ily history, and 160 simplex individuals. They reported 
a slight decrease in the expected number of homozy-
gotes for the NAT2 normal allele in the Hispanic simplex 
trios. Significantly slow NAT2 acetylator phenotype was 
detected among the ICTEV patients, suggesting slow 
acetylation may be a risk factor for ICTEV.

T‑box family genes
A possible association between TBX3 and ICTEV has 
been reported. The TBX3 gene is a member of a phylo-
genetically conserved family of genes that share a com-
mon DNA-binding domain, the T-box. T-box genes 
encode transcription factors involved in the regulation 
of developmental processes. The TBX3 protein is a tran-
scriptional repressor and mutations in this gene affect 
limb development. The third allele short tandem repeat 
(D12S378) in the region of chromosome 12q24, where 
the TBX3 gene is located, was proven to have transmis-
sion disequilibrium in ICTEV patients, suggesting that 
TBX3 is a susceptible gene for ICTEV (Ren et al. 2004). 
TBX4 shares a similar structure with TBX3. Expres-
sion studies in mice and chickens show that TBX4 is 
expressed in developing hindlimb but not forelimb buds, 
suggesting a potential role for this gene in regulating limb 
development and specification of limb identity (Dai et al. 
2014; Menke et al. 2008). TBX4 microdeletions/microdu-
plications have been found in individuals with clubfoot 
(Alvarado et  al. 2010). However, another study which 
examined the possible correlation between hindfoot 
specific gene TBX4 and ICTEV concluded that (1) there 

was minimal evidence indicating an association between 
TBX4 and clubfoot; (2) no pathogenic sequence vari-
ants were identified in the two known TBX4 hindlimb 
enhancer elements (Lu et al. 2012). However, the PITX-
TBX4 pathway was studied and further investigated by 
the common disease-rare gene supporters (Gurnett et al. 
2008). The study concludes that PITX1 or its pathways 
may be etiologically responsible for the increased inci-
dence of ICTEV.

Apoptotic pathway genes
Cysteine-dependent aspartate-directed proteases (Cas-
pases) are a family of cysteine proteases that play essen-
tial roles in apoptosis (programmed cell death), necrosis, 
and inflammation (Alnemri et al. 1996). The association 
between caspase genes and ICTEV was first studied in 
2005 (Heck et  al. 2005). The authors reported that the 
major allele of a variant in the CASP10 gene, a gene in 
the apoptotic pathway, is associated with ICTEV in sim-
plex white and Hispanic trios. Further examination on 
the mitochondrial apoptotic related genes was performed 
to investigate their association with ICTEV (Ester et  al. 
2007). One SNP in each of the apoptotic genes (Casp3, 
Casp8, Casp9, Casp10, Bid, Bcl-2, and Apaf1) provided 
evidence implying correlation with ICTEV, suggesting 
the potential role of genetic variation in apoptotic genes 
in development of ICTEV (Gahlmann and Kedes 1990).

Muscle contractile family genes
Troponin (Tn), a key protein complex in the regulation 
of striated muscle contraction, is composed of three sub-
units (Tn-I, Tn-T, and Tn-C). The Tn-I subunit inhibits 
actomyosin ATPase. The Tn-T subunit binds tropomyo-
sin and Tn-C. The Tn-C subunit binds calcium and over-
comes the inhibitory action of the troponin complex on 
actin filaments. TNNC2 encodes Tn-C subunit and plays 
a key role in initiating muscle contraction in fast-twitch-
ing muscle fibers (Mckillop and Geeves 1993). In 2011, 
Weymouth et  al. studied the association of the muscle 
contractile genes with ICTEV and identified two muscle 
contractile genes (TNNC2 and TPM1) associated with 
ICTEV (Weymouth et al. 2011).

TPM1 is a member of the tropomyosin family of highly 
conserved, widely distributed actin-binding proteins 
involved in the contractile system of striated and smooth 
muscles and the cytoskeleton of non-muscle cells. Tro-
pomyosin functions in association with the troponin 
complex to regulate the calcium-dependent interaction 
of actin and myosin during muscle contraction. The asso-
ciations of multiple SNPs in the TPM1 gene with ICETV 
suggest a potential role of genes that encode contractile 
proteins of skeletal myofibers on the etiology of ICTEV 
(Shyy et al. 2010a, b).
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Genome‑wide association study
Besides the aforementioned candidate gene studies, a 
genome-wide association study was conducted in 396 
isolated ICTEV patients and 1000 controls of European 
descent to identify novel genes for ICTEV (Zhang et al. 
2014). The selected genetic variants from the genome-
wide association study were further replicated with an 
independent cohort of 370 isolated ICTEV cases and 363 
controls with the same ethnicity. The genome-wide asso-
ciation and replication study found an intergenic SNP on 
chromosome 12q24.31 between NCOR2 and ZNF664 
that was significantly associated with ICTEV. However, 
Additional suggestive SNPs (Hox Genes, PITX1, TBX4, 
FOXN3, SORCS1 and MMP7/TMEM123) and identified 
pathways were not significant in the replication phase.

Negative or controversial results
Shyy et al. (2009) studied two candidate genes (CAND2 
and WNT7a) and tested the hypothesis that mutations 
in these genes would be associated with the phenotype 
of ICTEV. After sequencing ICTEV patients, they found 
a polymorphism in each gene. However, the associa-
tion results indicated that CAND2 and WNT7a are not 
the major genes that cause ICETV. In a study exploring 
variation in MYH gene families, the authors sequenced 

the exons, splice sites, and predicted promoters of MYH 
genes in ICETV patients (Shyy et  al. 2010a, b). They 
found many SNPs, but none proved to be significantly 
associated with the phenotype of ICTEV. Bonafé et  al. 
conducted research on diastrophic dysplasia sulphate 
transporter gene (DTDST) to test whether R279  W 
mutations are responsible for occurrence of ICTEV 
(Bonafé et al. 2002). Alterations in the coding region were 
not identified in 10 probands with ICTEV and a positive 
family history. The authors concluded that the R279  W 
mutation is no more frequent in this population of 
ICTEV probands than in controls. Contrary to this find-
ing, another author reported in 2009 that DTDST gene 
mutations were detected in 27 children with ICTEV, but 
in only two normal children in the Chinese population, 
indicating the possible role of DTDST in ICTEV (He 
et al. 2009).

Other miscellaneous findings
In 2006, Sharp et  al. found that children who carry the 
677T variant of the MTHFR gene have a lower risk of 
ICTEV (Sharp et al. 2006). In 2009, Li and his colleagues 
compared the expression of CD-RAP (cartilage derived 
retinoic acid sensitive protein) in the abductor hallu-
cis muscle from ICTEV and normal controls and found 

Fig. 2  Genetic study history of ICTEV is shown. Different genes were identified in different years which are listed in blue boxes. The genetic theories 
to explain the etiology of ICTEV are marked in the green boxes. Several genes were identified and verified by Professor Jacqueline T. Hecht and her 
research group (under the timeline on the left); they identified and verified several genes in addition to caspase pathway changes in ICTEV patients. 
Dr. Christina A Gurnett (under on the timeline on the right) first used second generation sequencing methods to study ICTEV. Professor Chun-Lian 
Jin (above the timeline) pioneered clubfoot genetic study among Chinese patients
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CD-RAP over-expressed in ICTEV patients, showing 
that CD-RAP might be a susceptibility gene of ICTEV (Li 
et al. 2009).

Discussion
In this systematic review, positive associations between 
genetic variants and ICTEV were established in sev-
eral studies. Certain genetic variants were found to have 
significant association with ICTEV. However, it must 
be noted that conflicting and negative results were also 
identified which do not necessarily undermine their con-
tribution to the occurrence of ICTEV.

ICTEV’s genetic study history is described in Fig.  2. 
Simple major genes like X-linked genes, autosomal 
recessive genes and autosomal dominant genes used 
to be considered as possible genetic factors for ICTEV 
(Palmer 1964; Böök 1948; Wynne 1965). At the same 
time, another study concluded that multifactorial inherit-
ance is significant in the etiology of ICTEV (Yamamoto 
1979). Palmer et al. (1974) suggested simple major inher-
itance and multifactorial inheritance might be operating 
together to induce ICTEV. This theory was supported 
later by Wang et  al. and Yang et  al. who showed that a 
major gene component played a dominant role with addi-
tional minor contributions of multifactorial genes (Yang 
et  al. 1987; Wang et  al. 1988). In 1993, Rebbeck et  al. 
(1993) rejected the non-Mendelian transmission pattern 
and concluded that the single Mendelian gene theory 
is adequate to explain the etiology of ICTEV. However, 
recent studies suggest that a polygenetic threshold 
model may explain its inheritance patterns. Contrary to 
the common disease-common variant hypothesis, one 
author introduced an alternative theory based on recent 
reports that rare genetic variants (with allele frequencies 
of <5  %) each confer a moderate risk with higher pen-
etrance, which might be the genetic inheritance pattern 
of ICTEV. According to this theory, the PITX1-TBX4 
transcriptional pathway directing early limb development 
is responsible for ICTEV (Dobbs and Christina 2012). 
However, further studies should be done to investigate 
other genes with low frequencies and how their variants 
affect ICTEV occurrence. Not only were gene mutations 
found in ICTEV, but chromosomal deletions and regula-
tory mutations were also reported.

Conclusion
Several genes were identified, though none of them could 
solely explain the occurrence of ICTEV. Because the 
sample size of most association studies was small, most 
of the studies included are largely underpowered.  In 
those included studies, rare coding variants were rarely 

investigated. Candidate genes were not replicated in 
larger ICTEV populations. These limitations should 
be addressed in future studies. In the future, genetic 
research on ICTEV could be focused on at least five 
aspects. First, high-throughput sequencing instead of 
GWA studies might be used to detect replicable candi-
date genes. The sample size should be calculated and can-
didate genes must be replicated in other studies. Second, 
epigenetic sequencing examining regulatory mechanisms 
for RNA could be studied. Third, novel genes like FOXN3 
and SORCS1 identified by the GWAS may be further 
investigated. Studying genes and their interactions could 
reveal common pathways which are responsible for the 
occurrence of ICTEV. Their functions and interactions 
are worthy of clarification. Fourth, recent advances in 
chromosome conformation capture may show more 
structural changes on a chromosomal level (Imakaev 
et  al. 2012). Three-dimensional variants may shed light 
on ICTEV etiology and treatment. Fifth, in clinical prac-
tice, some patients do not have any recurrence although 
they are not completely compliant with the brace treat-
ment, whereas other patients have a recurrence even 
though they are strictly compliant with the brace treat-
ment (Zhao et  al. 2014). It is conceivable that certain 
genes being activated at certain times results in the 
relapse of ICTEV. Therefore, integration of genomic risk 
assessment alongside other clinical investigations may 
help personalize the treatment of ICTEV and improve 
the prognosis in the era of precision medicine (Castaneda 
et al. 2015).
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