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Background
Visual object tracking is a significant research hotspot in computer vision because of its 
numerous applications such as intelligent monitor system, precision guide system, intel-
ligent medical diagnosis, etc. However, it remains a challenging task to develop robust 
tracking algorithms due to the appearance change caused by illumination, motion, 
occlusion, and so on. Aimed at this issue, numerous algorithms have been proposed, 
which can be divided into algorithms based on generative appearance models (Babu 
et al. 2007; Lim et al. 2004; Adam et al. 2006; Mei and Ling 2009, 2011; Li et al. 2011; Liu 
et  al. 2013) and algorithms based on discriminative appearance models (Avidan 2004; 
Grabner and Bischof 2006; Grabner et al. 2008; Babenko et al. 2011; Zhang et al. 2013, 
2014a, b; Liu et al. 2015).

Generative algorithms typically learn a representative object model, which is utilized 
to search for the most similar region in image according to a certain similarity principle. 
Babu et al. (2007) make use of a linear subspace model to represent object appearance 
for tracking. Lim et al. (2004) utilizes an incremental learning method to update both 
subspace model and samples average. Adam et al. (2006) use the intensity histograms of 
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multiple fragments to represent object appearance, which can be computed by integral 
images efficiently. Recently, Mei and Ling (2009, 2011) proposed a robust object tracking 
method based on the sparse representation theory, named l1 tracker, which introduces 
the sparse representation theory into object tracking at the first time. Li et  al. (2011) 
further improved the l1 tracker by using the orthogonal matching pursuit algorithm 
for solving the optimization problems efficiently. Liu et  al. (2013) propose robust vis-
ual tracking method using local sparse appearance model and k-selection, which intro-
duces block cording coefficient into mean shift to search for the optimal tracking result. 
Despite much progress has been achieved, there are still several problems to be solve in 
generative tracking algorithms. First, numerous training samples are required for learn-
ing an object appearance model at the start. However, if the object appearance change 
significantly during this period, the drift problem is likely to occur. Secondly, all of these 
generative algorithms don’t use the background information, which is likely helpful to 
improve the tracking results.

Discriminative algorithms regard object tracking as a binary classification task, the 
goal of which is to find the optimal classify function between different classes. Avidan 
(2004) makes use of an off-line support vector machine (SVM) classifier to design a 
tracker. Grabner and Bischof (2006) propose an on-line features selected visual tracking 
method by using Adboost algorithm to select features on line. Soon afterwards, Grabner 
et al. (2008) propose semi-supervised on-line boosting for robust tracking, and the key 
of the method combines the advantage of both on-line and off-line classifier. Babenko 
et al. (2011) treat the tracking task as a multiple instance learning (MIL) problem, and 
propose a robust object tracking method with online MIL. Zhang et al. (2013) point out 
the shortcoming of on-line MIL, and propose a new tracking method, named ODFS, 
by introducing features selection into on-line MIL system. Recently, Zhang et al. (2012) 
propose a real-time compressive tracking (CT) algorithm that employs a very sparse 
random matrix to achieve a low-dimensional object appearance representation. Soon 
afterwards, Zhang et al. (2014a, b) further improve CT algorithm by reducing computa-
tional complexity. Liu et al. (2015) point out the shortness of CT algorithm, and propose 
adaptive compressive tracking method via online vector boosting feature selection.

In this paper, we propose a scale adaptive CT method which can adaptively adjusts 
the scale of tracking box with the size variation of the objects. Furthermore, the con-
fidence coefficients of features are computed and used to achieve different contribu-
tion to the classifier. Finally, a variable learning parameter λ is adopted, which can be 
adjusted according to the object appearance variation rate. Extensive experiments on the 
CVPR2013 tracking benchmark demonstrate the superior performance of the proposed 
method compared to state-of-the-art tracking algorithms in terms of efficiency, accuracy 
and robustness.

Compressive tracking
The idea of CT is motivated by the compressive sensing theory, in which the random 
projections of a high dimensional signal can keep the original information to a great 
extent (Candes and Tao 2005, 2006). The main components of CT are shown by Fig. 1. 
At the t-th frame, both positive samples and negative samples are represented by high-
dimensional multi-scale vectors via convolving each patch with some rectangle filters. 
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Then, each vector is projected onto a low- dimensional space by employing a very sparse 
random projection matrix that satisfies the restricted isometry property (RIP). And 
then, the compressed vectors are utilized to train the classifier. At the (t + 1)-th frame, 
each candidate sample is similarly processed, and then the trained classifier is utilized 
to search for sample with maximal classifier response. In order to analyze, we divide the 
CT algorithm into several steps as follows.

Step 1: Sample two sets of image patches Dα = {z|�l(z)− lt� < α } and Dζ ,β = {z|ζ <

�l(z)− lt� < β} with α < ζ < β, where lt is the tracking location at the t-th frame, Dα and 
Dζ,β represent the positive and negative samples respectively.

Step 2: Each patch is transformed into a high-dimensional multi-scale vector x via con-
volving each patch with some rectangle filters at multiple scales {h1,1, . . ., hw,h} defined as

where i and j are the width and height of a rectangle filter, respectively. Each vector 
x ∈ Rm represents the multi-scale features of each patch.

Step 3: A random matrix R ∈ Rn×m is employed to project the high-dimensional vector 
x onto a low-dimensional vector v ∈ Rn as v = Rx, where the entry of R is represented 
by

where ρ = 2 or 3, and Achlioptas (2003) has proved that this type of matrix in such a 
case satisfies the Johnson-Lindenstrauss lemma. Thus, each low-dimensional vector 
v = {vi}, i ∈ [1, n] represents the compressive features of each sampled patch, and it can 
be efficiently computed using the integral image method.

(1)hi,j(x, y) =
{

1, 0 < x ≤ i, 0 < y ≤ j
0, otherwise

,

(2)rij =
√
ρ ×







1 with probablity 1/2ρ
0 with probablity 1− 1/ρ
−1 with probablity 1/2ρ

,

Fig. 1 Main components of CT algorithm. a Updating classifier at the t-th frame, b Tracking at the frame 
(t + 1)-th
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Step 4: Each compressive feature’s conditional distributions in positive samples and 
negative samples both are assumed to be Gaussian distributed as p(vi|y = 1.) ∼ N(μi

1, σi
1), 

p(vi|y = 0.) ∼ N(μi
0, σi

0). And the low-dimensional vector v = {vi}, i ∈ [1, n] is utilized to 
update Gaussian parameters

where σ 1 =
√

1/n
∑n−1

k=0|y=1
(vi(k)− µ1)2, µ1 = 1/n

∑n−1
k=0|y=1

vi(k), � is a constant 
learning parameter, its value depends on particular situations. When the object appear-
ance change significantly, λ takes smaller value; otherwise, λ takes bigger value.

Step 5: Sample a set of image patches in the (t + 1)-th frame, Dγ = {z|� l(z)− lt� < γ }, 
where lt is the tracking location at the t-th frame, and extract the features with low 
dimensionality. In this step, the sliding window method is used to traverse the whole 
candidate region to sample the patches, the sizes of which are all same to the object at 
t-th frame, illustrated in Fig. 2. It is worth mentioning that the search radius γ and one 
pixel distance in the figure are enlarged for show.

Step 6: A native Bayes classifier is utilized to distinguish the classes of each patch,

In this step, all compressive features vi in the vector v are assumed independent and 
equal contribution to the classifier (Zhang et al. 2012; Ng and Jordan 2002). By using the 
classifier H(v), we find the tracking location lt+1 with the maximal classifier response.

Although CT algorithm is demonstrated efficient by several experiments in Zhang 
et al. (2012), it has some limitations that makes CT perform unfavorably in some cases: 
First, in the classical CT algorithm, the estimation of scale changes of the target is not 
solved. Second, its constant learning parameter λ and uniform weights of Haar features 
are likely to bring drift when the object appearance changes significantly. In the follow-
ing section, we will propose a scale adaptive CT that can deal with these issues well.

(3)
µ1
i = �µ1

i + (1− �)µ1

σ 1
i =

√

�(σ 1
i )

2 + (1− �)(σ 1)2 + �(1− �)(µ1
i − µ1)2,

(4)H(v) = log
(∏n

i=1 p(vi|y=1 )p(y=1)
∏n

i=1 p(vi|y=0 )p(y=0)

)

=
n

∑

i=1

log
(

p(vi|y=1 )

p(vi|y=0 )

)

.

Search Radius  

One pixel distance

γ

Candidate region

1
w h

tl R ×
− ∈

Patch 2 w hR ×∈

Patch n w hR ×∈

Patch 1 w hR ×∈

Patch 3 w hR ×∈

The t-th frame

Fig. 2 Sample patches with sliding window method
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Scale adaptive compressive tracking
Algorithm overview

The proposed adaptive compressive tracking is summarized in Algorithm  1, which 
improved CT algorithm mainly in three aspects. Firstly, both the location and size of the 
object are regarded as variable parameters, which make up a vector st =  (xt, yt, wt, ht). 
The vector is assumed to be Gaussian distributed under the assumption of Brownian 
motion model p(st|st−1) ∼  N(0,  Q), where Q =  diag(σs

2) is the covariance matrix con-
taining diagonal elements, each corresponding to the variance of individual parameter 
xt , yt ,wt and ht . In this way, a series of patches with different size and location are sam-
pled instead of all the patches in CT being in the same size. Secondly, the weights of the 
Haar features are defined by computing each feature’s ability of discriminating the object 
from background. These different weights are used in the classifier model instead of all 
the Haar features in CT having the same weight. Finally, a novel performance metric is 
applied to distinguish whether the current frame is reliable and low possibility of occlu-
sion from the background or intersection from other objects. Only when the metric is 
satisfied, are the parameters (μi

1, σi
1, μi

0, σi
0) incrementally updated. But the parameters in 

CT are updated at every frame instead.

Multi scale patches sampling and their features extraction

As illustrated by Fig. 2, the patches in CT are sampled by using sliding window method 
to traverse the whole candidate region. In this way, the sizes of all the patches are all 
same to the object at t-th frame. However, if the size of the object changes significantly 
in tracking, the drift problem is likely to occur. To handle this problem, a multi scale 
patches sampling method is proposed in this section, and the integral image method is 
still utilized to compute the compressive features efficiently.

In our algorithm, both the location and size of the object are regarded as variable 
parameters, which make up a vector lt =  (xt,  yt,  wt,  ht), where xt and yt represent the 
center coordinates of the object at t-th frame, wt and ht are the width and height of 
the object at t-th frame. The vector lt is assumed to be Gaussian distributed under the 
assumption of Brownian motion model

(5)p(lt+1

∣

∣lt ) ∼ N (0,Q),
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where Q = diag(σl
2) is the covariance matrix containing diagonal elements, each corre-

sponding to the variance of individual parameter xt , yt ,wt and ht . In this way, a series 
of patches with different size and location are sampled instead of all the patches in CT 
being in the same size.

As shown in Fig. 3, in CT algorithm, the t-thcompressive feature vi in the compressed 
vector v is constructed by several feature templates, whose sizes and locations are set 
randomly and fixed during tracking. While in our proposed method, the sizes and loca-
tions of the feature templates cannot be fixed during tracking, because the sizes of sam-
pled patches are various. The parameters of the feature templates are computed as

where (bx(n)
t+1, by(n)

t+1, bw(n)
t+1, bh(n)

t+1) represent the locations and sizes of future templates in 
the n-th sampled patches at (t + 1)-th frame, (bxt, byt, bwt, bht) represent the locations 
and sizes of future templates at t-th frame, w(n)

t+1 and h(n)
t+1 are the width and height of the 

n-th sampled patches at (t + 1)-th frame, wt and ht are the width and height of the object 
at t-thframe. The integral image method is still utilized to compute each rectangular fea-
ture efficiently.

Evaluation and application of features’ confidence

In CT, all the compressive features are supposed independent and equal contribution 
to the classifier (Zhang et  al. 2012; Ng and Jordan 2002). Actually, different compres-
sive features have different confidence coefficients. In our proposed algorithm, the con-
fidence coefficients of features are computed and used to achieve different contribution 
to the classifier.

As the references (Abraham et al. 2013; Jing et al. 2011; Zhang et al. 2014a, b) referred 
to, the confidence of a feature can be represented by computing the feature’s ability of 
discriminating the object from background, which is computed though using the Hell-
inger distance between a feature’s distributions of positive and negative samples in our 
method

(6)

bx
(n)
t+1 =

bxt

wt
· w(n)

t+1, by
(n)
t+1 =

byt

ht
· h(n)t+1

bw
(n)
t+1 =

bwt

wt
· w(n)

t+1, bh
(n)
t+1 =

bht

ht
· h(n)t+1

,

Feature template 1

( ) ( )i ij j
j

v t r x t=∑ Feature template 2

Feature template 3

( 1) ( 1)i ij j
j

v t r x t+ = +∑

Feature template 1

Feature template 2

Feature template 3

a

b

Fig. 3 Each compressed feature is constructed by several feature templates. a t-th frame, b (t + 1)-th frame
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where f1(x) and f0(x) are the feature’s probability density functions (PDF) of positive sam-
ples and negative samples. Similar to CT, the distributions are assumed to be Gaussian 
distributed as

Substituting (7) into (6), we can get

It is obvious that h satisfies 0 ≤ h ≤ 1, and the bigger value h takes, the stronger ability 
of discriminating the object from background. And afterwards, the Hellinger distance 
h is utilized in the classifier to achieve the goal that features with stronger ability make 
more contribution to the classifier

Online learning of features’ conditional distribution

After the tracking location has been found in a new frame, its positive and negative sam-
ples are used to update the Gaussian distribution parameters with introducing a learning 
parameter λ in CT, as (2) illustrated. However, CT suffers drift when the object appear-
ance changes much due to its fixed learning rate λ. In our proposed method, a variable 
learning parameter λ is adopted, which can be adjusted according to the object appear-
ance variation rate. To achieve this, ρ =

∑

u

√

qtup
t+1
u  is utilized to compute the Bhat-

tacharyya coefficient between the object being tracked and the last object at last frame 
(qu

t implies the histogram of the object at the t-th frame, pu
t+1 implies the histogram of 

the object at the (t + 1)-th frame). It is obvious that ρ satisfies 0 ≤ ρ ≤ 1. And a larger 
ρ means the object appearance changes rapidly, consequently the Gaussian distribu-
tion parameters need a larger learning rate. On the contrary, a smaller learning rate is 
needed. However, when ρ  <  Θ, which means the current location of the object is not 
accurate or the occlusion has occur, the Gaussian distribution model stop update. In 
conclusion, the new learning parameter can be represented as

where �′ is the given constant learning parameter, ρis the Bhattacharyya coefficient, λ is 
our new learning parameter, which can be adaptively adjusted according to the object 
appearance variation rate. Then λ in Eq. (3) will be instead by our new learning param-
eter, which is defined by (11).

(7)h2(p(vi
∣

∣y = 0 ), p(vi
∣

∣y = 1 )) =
1

2

∫

(
√

f1(x)−
√

f0(x))
2
dx,

(8)p(vi
∣

∣y = 1 ) ∼ N (µ1
i , σ

1
i ), p(vi

∣

∣y = 0 ) ∼ N (µ0
i , σ

0
i ),

(9)h2 = 1−
√

2σ1σ0

σ 2
1 + σ 2

0

exp

(

−
1

4

(µ1 − µ0)
2

σ 2
1 + σ 2

0

)

.

(10)H(v) =
n

∑

i=1

hi log

(

p(vi
∣

∣y = 1 )

p(vi
∣

∣y = 0 )

)

.

(11)

{

1, ρ < Θ

�
′/ρ = �

′
∑

u

√

qtup
t+1
u

, ρ ≥ Θ ,
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Experiments
We evaluate the proposed algorithm with 7 state-or-the-art methods on 50 challenging 
sequences, which are all among the CVPR2013 tracking benchmark (Wu et  al. 2013). 
The 7 contrastive trackers are summarized in literature (Wu et al. 2013), containing the 
CSK method, the VTS method, the SCM tracker, the VTD tracker, the TLD tracker, the 
Struck method, and the CT method. The reason of choosing these 7 trackers is that all of 
them except CT has been demonstrated much better performance than other trackers, 
like OAB, Frag, DFT, for example. We also choose CT method to verify if the proposed 
tracker can improve it greatly. For fair comparison, we use the source or binary codes 
provided by the authors with tuned parameters for best performance. For our compared 
trackers, we either use the tuned parameters from the source codes or empirically set 
them for best results.

Setup

The search radius of sampling positive samples is set to α = 3, where 50 positive samples 
are extracted. The inner and outer radiuses of sampling positive samples are set to ζ = 6 
and β = 25, where 40 negative samples are extracted randomly. The dimensionality of 
projected space is set to n = 50, and the given constant learning parameter �′ is set to 
0.8, and the threshold value is set to Θ = 0.5. The empirically determined parameters 
σx, σy, σw, σh in Q are empirically chosen depending on the motion and attributes of the 
target in different videos. Table 1 lists the parameter values of some sequences in our 
experiments.

Experimental Results

We use the precision plot and success plot defined in Wu et al. (2013) to evaluate the 
proposed algorithm with 7 state-of-the-art trackers. The precision plot shows the per-
centage of frames whose estimated average center location errors are within the given 
threshold distance to the ground truth. The score at the threshold 20 pixels is defined 
as the precision score. The success plot shows the percentage of frames whose over-
lap score are more than a threshold value, where the overlap score is defined as 
SCORE = area(ROTt∩ROTa)

area(ROTt∪ROTa)
 with the tracking bounding box ROTt and the ground truth 

bounding boxROTa. The threshold value ranges from 0 to 1, and the area under curve 
is used to measure the success score. Figure 4 shows the overall performance of the 7 
evaluated tracking algorithms and the proposed algorithm SACT in terms of precision 
plot and success plot. Table 2 lists the precision score and success score for the 7 state-
of-the-art trackers and SACT.

Table 1 Parameter Values used in the tests

Video (σx, σy, σw, σh) Video (σx, σy, σw, σh)

Dudek (5, 5, 0.3, 0.3) Football (3, 3, 0.1, 0.1)

Car scale (3, 3, 0.5, 0.5) Faceocc (5, 5, 0.1, 0.1)

Fish (1,1, 0.05, 0.05) Basketball (8, 8, 0.05, 0.05)

Car dark (1,1, 0.01, 0.01) Soccer (3, 3, 0.2, 0.2)
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The proposed SACT achieves the best tracking results in terms of both precision score 
and success score: the precision score of SACT is 0.694, which outperforms the STRUCK 
algorithm (ranking 2nd) by 5.79 %; meanwhile, the success score of SACT is 0.517, which 
outperforms the SCM algorithm (0.499 ranking 2nd). We note that the simple Haar-like 
features is employed to represent the object and background in the proposed algorithm 
SACT and the simple naive Bayesian classier with low computational complexity is 
adopted in SACT. Thus, the proposed algorithm SACT outperforms STRUCK and SCM 
that resort to complicate learning techniques in terms of both accuracy and efficiency. 
Besides, one can be seen from Table 2 that the proposed SACT improves CT to a large 
extent: the precision score of SACT outperforms 0.406 (the precision score of CT) by 
70.9 %; meanwhile, the success score of SACT outperforms 0.306 (the precision score of 
CT) by 68.9 %. Figure 5 shows screenshots of some tracking results.

Scale and pose change

For the Dudek sequence shown in Fig. 5a, the scale and pose of the object both change 
gradually. The tracking results of the front half images indicate that all of these algo-
rithms have a certain ability of dealing with pose variation (e.g., #125). But we also 
observe that CT, CSK and Stuck cannot deal with scale variation well due to the error 
caused by their constant tracking box. On contrary, other methods concluding the pro-
posed SACT can adjust their tracking boxes according to the scale of the object (e.g., 
#565). Furthermore, it is obviously that the tracking box of SACT is tighter and more 
accurate than TLD, SCM, VTS and VTD, especially when the object gets smaller in 
size (e.g., #1080). The proposed SACT can deal with scale and pose variation due to the 

Fig. 4 Precision plots and success plots of the 8 trackers

Table 2 Precision score and success score of the 8 trackers

SACT Stuck SCM TLD VTD VTS CSK CT

Precision plots 0.694 0.656 0.649 0.608 0.576 0.575 0.545 0.406

Success plots 0.517 0.474 0.499 0.437 0.416 0.416 0.398 0.306
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Gaussian distributed tracking box and random features selection that has been proved 
to handle pose variation well.

For the Car scale sequence shown in Fig. 5b, the object suffers from great scale change. 
Challenges also come from the interference caused by the tree when the object goes 
through it. We observed that CT, CSK and TLD drift when the object goes through the 
tree in the video. VTS, VTD and Struck only track a certain part of the object as it gets 
larger in size. On contrary, SCM and our SACT can track the object accurately in the 
whole sequence.

Fig. 5 Screenshots of some sampled tracking results. a Dudek, b Car scale, c Fish, d Car dark, e Football, f 
Faceocc, g Basketball, h Soccer
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Illumination change

For the Fish sequence shown in Fig.  5c, the object undergoes several times of illumi-
nation change. The tracking result indicates that illumination getting stronger will have 
little effect on the tracking results of each algorithm (e.g., #156). But all the algorithms 
except SACT drift once the illumination get weaker (e.g., #160 and #437). The proposed 
SACT can deal with illumination Change in terms of its adaptive local appearance 
model, that is to say, different compressive features have different confidence coefficients 
in our tracker. For the Car dark sequence shown in Fig. 5d, the object undergoes large 
changes in environmental illumination with the car running along the street. CT, VTS, 
VTD and TLD drift gradually (320–388) as illumination changing while SCM, STRUCK, 
VTS and the proposed SACT achieve much better performance.

Background clutters or occlusion

The object in the football sequence (Fig. 5e) suffers from background clutters. Further-
more, the object also suffers from occlusion by other players, which make the sequence 
challenging. Overall, our tracker shows favorable performance to deal with the challeng-
ing sequence. The target in faceocc sequence in Fig. 5f undergoes heavy occlusion. The 
proposed tracker SACT achieves the best performance in terms of precision score and 
success score. Our tracker can handle occlusion variations and background clutters well 
as its adaptive appearance model and the online classifier update strategy. When the 
object appearance changes rapidly, a larger learning rate is applied. On the contrary, a 
smaller learning rate is applied. However, whenρ < Θ, which means the current location 
of the object is not accurate or the occlusion has occurred, the classifier stops updat-
ing. In this way, the tracker is prevented from drifting due to avoiding adding inaccurate 
samples.

Multiple challenges

The objects in the basketball (Fig. 5g) and soccer (Fig. 5h) sequences both suffer from 
multiple challenges, such as fast motion, motion blur, background clutters, occlusion 
and other challenges, which make these two sequences much challenging. Consequently, 
all the trackers drift to the background or other objects gradually except our tracker. 
Overall, SACT achieves the best performance in these two challenging sequences due to 
its adaptive appearance model and the online classifier update strategy.

Conclusions
In this paper, we proposed a novel scale adaptive compressive tracking method, which 
improves the CT algorithm by a significantly large margin on the CVPR2013 tracking 
benchmark. Our method significantly improves CT in three aspects: Firstly, the scale 
of tracking box is adaptively adjusted according to the size of the objects. Secondly, the 
confidence coefficients of features are computed and used to achieve different contribu-
tion to the classifier. Finally, a variable learning parameter λ is adopted in our method, 
which can be adjusted according to the object appearance variation rate. Numerous 
experiments have shown that the superior performance of the proposed method over 
other 7 state-of-the-art tracking algorithms in dealing with scale and pose change, illu-
mination change, background clutters, occlusion and multiple challenges.
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