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Background
Alcohol use and abuse have been part of human society for centuries. The College Alco-
hol Study defines alcoholism as male students who had five or more and female stu-
dents who had four or more drinks in a row at least once in a 2-week period (Wechsler 
2000). Similar to other drug addictions, alcoholism can cause to a series of serious con-
sequences. The World Health Organization estimates that about 140 million people 
around the world under the influence of alcohol-related problems, such as being sick, 
losing a job and so on (Saunders et al. 1993). What is more serious is that chronic alcohol 
consumption damages almost all parts of the body and contribute to a number of human 
diseases including but not limited to liver cirrhosis, pancreatitis, heart disease, and sex-
ual dysfunction and eventually be deadly (Glavas and Weinberg 2005). Early recognized 
since the 1800s that alcoholism produced not only impairment of the senses but also 
higher predisposition for tuberculosis. William Osler reported in 1905 that patients who 
misused alcohol had higher predisposition to pneumonia  (Giraldina et  al. 2015). And 
studies over the last 30 years have also demonstrated that chronic alcohol consumption 
impairs the functions of both T cells and B cells (Sumana et al. 2015). Between 2006 and 
2010 in the United States, alcohol abuse resulted in approximately 88,000 deaths, and the 
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average death rate associated with alcoholism was 28.5 per 100,000 population (Gonza-
les et al. 2014). Importantly, the majority of alcohol-related deaths were among adults 
aged 20–64 years old (Giraldina et al. 2015). In view of the above situation, alcoholism 
has become a issue that need to be solved urgently.

Since mathematical model can mimic the process of alcoholism and provide use-
ful methods to control the spread of drinking behavior. Several different mathematical 
models for alcoholism have been formulated and studied recently. Sanchez et al. (2007) 
presented a simple model for alcohol treatment. Their model were based on studying 
binge drinking in a college system and assumed the same “leaving rate”. Manthey et al. 
(2008) built a model to capture the dynamics of campus drinking and to study the spread 
of drinking on campus. Benedict (2007) proposed an SIR model and used standard con-
tact rate between susceptible and alcoholics. Furthermore they obtained the alcoholism 
reproductive number and discussed the existence and stability of all the equilibria. Huo 
and Song (2012) introduced a two-stage model for binge drinking problem, which the 
youths with alcohol problems were divided into those who admit the problem and those 
who do not admit it. Wang et  al. (2014) presented a deterministic SATQ-type math-
ematical model for the spread of alcoholism with two control strategies and analyzed 
some properties of the solutions including positivity, existence and stability. Huo and 
Wang (2014) developed a nonlinear mathematical model with the effect of awareness 
programs on the binge drinking. Their results showed that awareness programs is an 
effective measure in reducing alcohol problems.

Quit drinking is usually temporary. Some drinking people may relapse since contacting 
with alcoholics or weak self-control ability. Sharma and Samanta (2015) developed an alco-
hol abuse model by introducing a treatment programm in the population and considered all 
possible relapses. They assumed that the drinkers in treatment most commonly relapse due 
to contact with heavy drinkers who are not in treatment. For the other mathematical mod-
els for alcoholism or smoking, please see Wechsler and Nelson (2008), Room et al. (2005), 
Mushayabasa and Bhunu (2011), Huo and Zhu (2013) and references cited therein. They 
commonly assume that communities are homogeneous, that is, communities are made up 
of individuals who mix uniformly and randomly with each other in the above models. These 
assumptions make the analysis tractable but not realistic (Bansal et al. 2007).

In contrast to classical compartment models, a lot of studies on complex networks 
have been investigated during the past years. Liu et al. (2013) presented an SIR model 
with individual’s birth and death on scale-free networks and analyzed the stability of 
three equilibria. They also gave out two immunization schemes. But they didn’t consider 
recuperator’s temporarily immune, that is to say, recuperator is likely to become infected 
or susceptible because of the loss of immune. Zhu et al. (2012a) investigated a new epi-
demic SIS model with nonlinear infectivity on heterogeneous networks. The global 
behavior of the model is studied. Wang et al. (2012) proposed a modified SIS model with 
an infective vector on complex networks. They treated direct human contacts as a social 
network and assumed spatially homogeneous mixing between vector and human popu-
lations. Huo and Liu (2016) proposed an alcoholism model on complex heterogeneous 
networks and proved stability of all the equilibria.

Nodes usually represent individuals and links represent potential contacts among 
those individuals on the complex network (Zhu et al. 2012a). The connectivity of a node 



Page 3 of 19Huo and Liu ﻿SpringerPlus  (2016) 5:722 

is defined as the number of the links connected to the node, represent by k. The degree 
distribution of a network is defined as the probability of a randomly chosen node to have 
a degree k, represent by P(k). Many networks (Zhu et  al. 2012b; Liu and Zhang 2011; 
Zhang and Jin 2011; Liu et al. 2004) have been found to be scale-free networks, that is to 
say the degree distribution follows a power law distribution P(k) = ck−γ , (2 < γ ≤ 3), 
where c is any constant satisfy the equation 

∑n
k=1 P(k) = 1.

Notice that in many real contact networks, there are groups of nodes with a high den-
sity of edges within them and a lower density of links between groups. The differences 
between links within a contact network can be described by link weights, which can rep-
resent the amount of time two individuals interact or the intimacy between individuals. 
The larger the weight is, the more the two nodes communicate, while, the more possible 
a susceptible individual will be infected through the edge  (Chu et al. 2009). The usual 
assumption is that weights are constant and driven by the network connectivity, which 
is fixed as time goes on. For example, the weight between two nodes with degrees i and 
j are represented by a function of their degrees  (Barrat et al. 2004a, b, c). However, as 
the disease becomes severe, individuals tend to be more cautious in social contacts and 
make some reflection such as decreasing the out going visits, cutting down the meeting 
time and reducing the intimacy. Such behaviors will change the strengths of nodes and 
the weights of links, which can be seen as an adaptive weight network. Further, it was 
found that the infectivity exponent has a stronger effect on the epidemic threshold and 
the epidemic prevalence than the weight exponent (Chu et al. 2011). For the other math-
ematical models on network with weights, please see Macdonald et al. (2005), Zhu et al. 
(2013) and references cited therein.

Motivated by the Liu et  al. (2013), Zhu et  al. (2012b, 2013), we introduce the indi-
viduals’ birth and death in our model, and set up an SIRS alcoholism model in complex 
network. Furthermore, we study the impact of the fixed weight and adaptive weight on 
the spread of alcoholism. We not only introduce general forms of the weight function to 
account for different cases of transmission but also to analyze the influence of weights 
on alcoholism spreading. In addition, we add the group of recuperator and study the 
relapse of the recuperator. We also give some control strategies against drinking, our 
results show that the treatment of recuperator for stopping relapsing and preventing the 
susceptible people to drink are two effective control strategy, and the latter has more 
effective than the former when the proportion of recuperator to accept treatment is 
equal to the proportion of susceptible people to refuse drinking alcohol.

The paper is organized as follows: in “Model formulation” section, we set up the model 
via differential equations. Then we present a global analysis of the model in “Global 
dynamics of the model” section. In “Control strategy” section, we perform two control 
strategies. In “Sensitivity analysis and numerical simulations” section, we perform sen-
sitivity analysis and numerical simulations. We finally conclude the paper and give some 
measures to control alcoholism in “Conclusion and discussions” section.

Model formulation
In epidemic model, the total population N generally is divided into susceptible, repre-
sented by S, infections, represented by I and recovery, represented by R. An SIRS model, 
susceptible people usually infected by infections and become infected individual, after 
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infection acquired immunity, it will be recovery. It allows members of the recovered 
class to be free of infection and rejoin the susceptible class. Zhu et  al. (2012b) intro-
duced an SEIRS epidemic model with the incubation period on complex network. Zhu 
et al. (2013) proposed a modified epidemic SIS model on an adaptive and weighted con-
tact network, they introduced the general forms of the weight function and presented a 
new weight called “adaptive weight”. Liu et al. (2013) presented an SIR model with indi-
vidual’s birth and death on scale-free networks and analyzed the stability of three equi-
libria. Motivated by these work, we set up a new SIRS alcoholism model on complex 
network. First, we introduce the individual’s birth and death in our model, Second, we 
take into account adaptive weight in our model. At last, we studied the effect of alcohol 
relapse on the spread of the alcoholism. In our model, we divide the whole population 
into three compartments: the susceptible S(t), denote the people who do not drink or 
drink limited; the problem alcoholic I(t),  denote the people who drink more than daily 
and weekly limit; the recuperator R(t),   denote the people who recover from alcohol-
ism after treatment. In order to reflect the heterogeneity of the contact network, it is 
necessary to consider the node with different degree. Let Sk(t), Ik(t) and Rk(t) denote 
the densities of susceptible individuals, problem alcoholics and recuperator individuals 
with degree k at time t respectively. Then S(t) =

∑

k P(k)Sk(t), I(t) =
∑

k P(k)Ik(t) and 
R(t) =

∑

k P(k)Rk(t) are the average densities of susceptible individuals, problem alco-
holics and recuperator individuals respectively, where P(k) is the probability that a ran-
domly chosen node has degree k.

On complex networks, as alcoholism spread in a crowd, every site of N is empty or occu-
pied by only one individual. Just as Liu et al. (2013), we give each site a number: 0, 1, 2, 3. We 
interpret the four states as: state 0: vacant; state 1: a susceptible individual occupied; state 2: 
a problem alcoholic occupied; state 3: a recuperator individual occupied. The states of the 
system at time t can be described by a set of numbers {0, 1, 2, 3}. Each site can change its 
state at a certain rate. We assume that a birth event occurs at a vacant node at rate b. A sus-
ceptible individual can be infected through contact with a problem alcoholic. While a prob-
lem alcoholic can be cured at rate α or lead to relapse at rate β through contact with problem 
alcoholics or other reasons. All individuals’ death rate is µ and we assume that alcoholism is 
not fatal. If a person is dead, the corresponding side becomes vacant. Therefore, the dynam-
ics of Sk(t), Ik(t) and Rk(t) are described by the following differential equations

with initial conditions

where

(1)







dSk (t)

dt
= b(1− Sk(t)− Ik(t)− Rk(t))

−kSk(t)�(t)+ σRk(t)− µSk(t),
dIk (t)
dt

= kSk(t)�(t)+ βRk(t)− αIk(t)− µIk(t),

dRk (t)
dt

= αIk(t)− βRk(t)− σRk(t)− µRk(t),

(2)
�∗ = {(Sk(t), Ik(t),Rk(t)) ∈ R3n

+ |0 ≤ Sk(t) ≤ 1, 0 ≤ Ik(t) ≤ 1, 0 ≤ Rk(t) ≤ 1,
k = 1, 2, . . . , n},

(3)
�(t) =

∑

i

�ik
ϕ(i)

i
P(i|k)Ii(t),
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and the parameters are all positive constants. The model structure is shown in Fig. 1.
The meanings of the parameters and variables in model (1) and (3) are as follows

• • b(1− Sk(t)− Ik(t)− Rk(t)) represents the new born susceptible individuals per unit 
time, which is proportional to vacant nodes’ birth rate b and the density of vacant 
nodes (1− Sk(t)− Ik(t)− Rk(t)).

• • kSk(t)�(t) represents the new problem alcoholic individuals per unit time, which 
is proportional to the degree k, the density of susceptible individuals Sk(t) and the 
probability that alcoholism transmits through a link �(t), while �ik is the transmis-
sion rate from nodes with degree i to nodes with degree k, ϕ(i) is the infectivity of the 
problem alcoholic nodes with degree i. So ϕ(i)i  is the link’s average infectivity of the 
problem alcoholic nodes with degree i. P( i|k ) is the probability that a node of degree 
k connected to a node of degree i. In this paper, we focuses on degree uncorrelated 
networks. Hence, P(i|k) = iP(i)/�k�, where �k� =

∑

i iP(i) is the average degree of 
the network.

• • µ is the natural death rate. Since the disease of alcoholism is assumed not fatal, so 
there is no disease related death. We assumed that if an individual dies, the corre-
sponding side will become empty. α represents the recovery rate of the problem alco-
holics. Some recuperators are likely to recur drinking. The density of relapse alcohol-
ics is βRk, where β means the recurrence rate. σ represents the transfer rate from 
recuperator to susceptible people.

There is little literature about the network model with links’ or nodes’ weights, but 
the weighted patterns on complex networks have various formats. Weighted pat-
terns are used to represent the different intensities of infection by contact. Usually, 
the weight between two nodes with degree i and j are measured by a function of their 
degrees ω(i, j) = ω0(ij)

m (Barrat et al. 2004a, b, c; Macdonald et al. 2005), where ω0 and 
m depend on the specific network. In the Escherichia coli metabolic network m = 0.5; 
in the US airport network m = 0.8; in the scientist collaboration network m = 0. 
Here, we use a different expression for the weight function ω(i, j) = g(i)g(j) (Zhu et al. 
2013), where g(k) is an increasing function of k, because the nodes with more connec-
tions will be more influential and gain larger weights. Since ω(i, j) estimates the links’ 
weight, the weight of each node �k can also be measured by summing up the weights 
of links connected to it. Thus, �k = k

∑

i P(i|k)ω(i, k). On uncorrelated networks, 
�k = kg(k)�kg(k)�/�k�. We assume that the node with degree i has a fixed transmission 
rate given by �i, and the transmission by the link from the i-degree node to a k-degree 
node is measured by the proportion of this link’s weight accounting for the k-degree 
nodes’ weight (Chu et al. 2011). So, we have

Fig. 1  Transfer diagram for alcoholism model
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In this paper, we also consider people’s health-conscious behavior, so the value 
of weight function will become less and less as the alcoholism progresses. In par-
ticular, if a person has more neighbors, it will be more cautious, therefore the 
weight will decrease more obviously. Thus, the weight function can be expressed as 
g ′(k , t) = g(k) exp(−h(k)I(t)), where h(k) is an increase function of k. The correspond-
ing �ik becomes

where �kg(k) exp(−h(k)I(t))� =
∑

i ig(i) exp(−h(i)I(t))P(i).
Substituting (4) and (5) into (3) respectively, we get two �(t) respectively

and

it is clear that when h(k) = 0, (7) reduces to (6).
Then, substituting (6) into (1), we obtain the fixed weight system

and substituting (7) into (1), we obtain the adaptive weight system

where θ(t) =
∑

i ϕ(i)Ii(t)P(i) in (8) and (9).
Let Nk(t) = Sk(t)+ Ik(t)+ Rk(t) be the density of the whole individuals with degree 

k, k = 1, 2, . . . , n. Then adding the three equations in (8) or (9) gives

(4)�ik = �i
ω(i, k)

�i
=

�g(k)�k�
〈
kg(k)

〉

(5)�
′
ik =

��k�g(k) exp(−h(k)I(t))
〈
kg(k) exp(−h(k)I(t))

〉

(6)�′(t) =
�g(k)

��g(k)�

∑

i

ϕ(i)P(i)Ii(t),

(7)�′′(t) =
�g(k) exp(−h(k)(I(t)))
〈
�g(k) exp(−h(k)(I(t)))

〉

∑

i

ϕ(i)P(i)Ii(t)

(8)







dSk (t)
dt

= b(1− Sk(t)− Ik(t)− Rk(t))+ σRk(t)

−µSk(t)−
�g(k)

�kg(k)�
kSk(t)θ ,

dIk (t)
dt

=
�g(k)

�kg(k)�
kSk(t)θ + βRk(t)− αIk(t)− µIk(t),

dRk (t)
dt

= αIk(t)− βRk(t)− σRk(t)− µRk(t),

(9)







dSk (t)
dt

= b(1− Sk(t)− Ik(t)− Rk(t))

−
�g(k) exp (−h(k)I(t))

�kg(k) exp (−h(k)I(t))�
kSk(t)θ + σRk(t)− µSk(t),

dIk (t)
dt

=
�g(k) exp (−h(k)I(t))

�kg(k) exp (−h(k)I(t))�
kSk(t)θ

+βRk(t)− αIk(t)− µIk(t),

dRk (t)
dt

= αIk(t)− βRk(t)− σRk(t)− µRk(t),

(10)
dNk(t)

dt
= b− (b+ µ)Nk(t).
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By Eq. (10), we get that Nk(t) =
b

b+µ
+ Nk(0)e

−(b+µ)t, where Nk(0) represents the ini-
tial density of whole population with degree k. Hence, limt→∞ supNk(t) =

b
b+µ

, then 
Nk(t) = Sk(t)+ Ik(t)+ Rk(t) ≤

b
b+µ

 for all t ≥ 0.
Due to the limit system and original system have the same dynamic behaviors for a 

long time. And Sk(t) = b
b+µ

− Ak(t)− Ik(t)− Rk(t) at steady-state, it is sufficient to 
study the limiting systems

and

It is easy to obtain that 0 ≤ Ik(t) ≤
b

b+µ
 and 0 ≤ Rk(t) ≤

b
b+µ

 for t ≥ 0. So the region 
� = {(Ik ,Rk)|0 ≤ Ik(t) ≤

b
b+µ

, 0 ≤ Rk(t) ≤
b

b+µ
, k = 1, 2, . . . , n} is the positive invariant 

for both (11) and (12).

Global dynamics of the model
The basic reproduction number R0

Here, we first calculate the fix weight model’s basic reproduction number. Using the next 
generation method in Driessche and Watmough (2002), it is clear that model (11) has an 
alcohol free equilibrium E0 = (0, 0, . . . , 0)2k. System (11) can be written as

and

where the rate of appearance of new infections is

and the rate of transfer of individuals out of compartments is

The Jacobian matrices of F(x) and V(x) at the alcohol free equilibrium E0 are

(11)







dIk (t)
dt

=
�kg(k)

�kg(k)�

�
b

b+µ
− Ik(t)− Rk(t)

�

θ(t)

+βRk(t)− αIk(t)− µIk(t),
dRk (t)
dt

= αIk(t)− βRk(t)− σRk(t)− µRk(t),

(12)







dIk (t)
dt

=
�g(k) exp(−h(k)I(t))

�kg(k) exp(−h(k)I(t))�

�
b

b+µ
− Ik(t)− Rk(t)

�

θ(t)

+βRk(t)− αIk(t)− µIk(t),
dRk (t)
dt

= αIk(t)− βRk(t)− σRk(t)− µRk(t),

dx

dt
= F(x)− V(x),

x = (Ik ,Rk)
T ,

F(x) =

(
�kg(k)θ
�kg(k)�

(
b

b+µ
− Ik − Rk

)

0

)

,

V(x) =

(
−βRk + (α + µ)Ik
−αIk + (β + σ + µ)Rk

)

.

(13)F = DF(E0) =

(
F11 0
0 0

)
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where

and E is identity matrix, 0 is zero matrix. It is clear that V is a nonsingular M-matrix 
and F is a nonnegative matrix. According to the concept of next generation matrix and 
reproduction number given in Driessche and Watmough (2002), the reproduction num-
ber of (11) equals to

where �kg(k)ϕ(k)� =
∑k

i=1 iϕ(i)g(i)P(i).
Coincidentally, we get that matrices F and V in model (12) are the same as that in 

model (11). Therefore, the reproduction number R0 of model (12) is also given by (15), 
which implies that the adaptive weights cannot change the propagation threshold.

According to the above process and Theorem 2 in Driessche and Watmough (2002), 
we obtain the following results.

Theorem 1  For the two alcoholism models (11) and (12), we have

1.	 Both of their basic reproductive number are equal to R0 in (15).
2.	 If R0 < 1, the alcohol free equilibrium E0 of (11) and (12) is locally asymptotically sta-

ble, but unstable if R0 > 1, where R0 is defined by (15).

Next, we will investigate the global stability of the alcohol free equilibrium and the 
globally attractive of the alcoholism equilibrium of model (11). Since the stability of the 
equilibria in model (12) are difficult to demonstrate, so we only give some numerical sim-
ulations to discuss it at “Sensitivity analysis and numerical simulations” section.

Uniqueness of the alcoholism equilibrium

We first give the following Lemma which guarantee that the density of population in 
each compartment cannot become negative or greater than b

b+µ
.

Let I1 = y1, I2 = y2, . . . , In = yn,R1 = yn+1,R2 = yn+2, . . . ,Rn = y2n, we study the sys-

tem for (y1, . . . , yn, yn+1, . . . , y2n) ∈ � =
∏2n

i=1

[

0, b
b+µ

]

.

Lemma 1  The set � is the positively invariant for system (11).

(14)V = DV (E0) =

(
(α + µ)E −βE
−αE (β + σ + µ)E

)

,

F11 =
�b

(b+ µ)
�
kg(k)

�







g(1)ϕ(1)P(1) g(1)ϕ(2)P(2) · · · g(1)ϕ(n)P(n)
2g(2)ϕ(1)P(1) 2g(2)ϕ(2)P(2) · · · 2g(2)ϕ(n)P(n)

.

.

.
.
.
.

. . .
.
.
.

ng(n)ϕ(1)P(1) ng(n)ϕ(2)P(2) · · · ng(n)ϕ(n)P(n)






,

(15)R0 = ρ

(

FV−1
)

=
�b(β + σ + µ)

〈
kg(k)ϕ(k)

〉

(b+ µ)(α(σ + µ)+ µ(β + σ + µ))
〈
kg(k)

〉 ,
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Proof  We will show that if y(0) ∈ �, then y(t) ∈ � for all t > 0. Denote

where i = 1, 2, . . . , 2n. Let the ‘outer normals’ be denoted by ξ1i = (0, . . . ,−1
︸ ︷︷ ︸

ith

, . . . , 0)2n 

and ξ2i = (0, . . . ,+1
︸ ︷︷ ︸

ith

, . . . , 0)2n. We use the Nagumo’s result in Yorke (1967). Since � is a 

2n-dimensional rectangle. From (11), it is easy to obtain that for i = 1, 2, . . . , n.

So, any solution that starts in y ∈ ∂�1 ∪ ∂�2 stays inside �.
Furthermore, we will ascertain the uniqueness of the alcoholism equilibrium. We give 

the following theorem.

Theorem 2  There exists a unique alcoholism equilibrium y∗ = (y∗1, . . . , y
∗
n, y

∗
n+1, . . . , y

∗
2n) 

in model (11) when R0 > 1.

Proof  The alcoholism equilibrium y∗ = (y∗1, . . . , y
∗
n, y

∗
n+1, . . . , y

∗
2n) of system (11) is 

determined by equations

a direct calculation yields

Then we get a self-consistency equation of θ as follows

∂�1 =
{
y ∈ �|yi = 0 for some i

}
,

∂�2 =

{

y ∈ �|yi =
b

b+ µ
for some i

}

,

(

dy

dt

∣
∣
∣
∣
yi=0

· ξ1i

)

= −βyn+i ≤ 0,

(

dy

dt

∣
∣
∣
∣
yn+i=0

· ξ1n+i

)

= −αyi ≤ 0,

(

dy

dt

∣
∣
∣
∣
yi=

b
b+µ

· ξ2i

)

= −(α + µ)
b

b+ µ
≤ 0,

(

dy

dt

∣
∣
∣
∣
yn+i=

b
b+µ

· ξ2n+i

)

= −(β + σ + µ)
b

b+ µ
≤ 0.

{
�ig(i)θ

�kg(k)�

(
b

b+µ
− y∗i − y∗n+i

)

+ βy∗n+i − (α + µ)y∗i = 0,

αy∗i − βy∗n+i − σy∗n+i − µy∗n+i = 0,

yi =
b�ig(i)(β + σ + µ)θ

(b+ µ)[(α + µ+ iθ)(β + σ + µ)+ αiθ − αβ]
〈
kg(k)

〉

yn+i =
αb�ig(i)θ

(b+ µ)[(α + µ+ iθ)(β + σ + µ)+ αiθ − αβ]
〈
kg(k)

〉

θ =
∑

i

ϕ(i)P(i)yi

=
∑

i

ϕ(i)P(i)
b�ig(i)(β + σ + µ)θ

(b+ µ)[(α + µ+ iθ)(β + σ + µ)+ αiθ − αβ]
〈
kg(k)

〉
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Obviously, θ = 0 satisfies above equation, then yi = yn+i = 0, which is the alcohol 
free equilibrium of (11). We transform the self-consistency equation form as θ f (θ) = 0 , 
where

since

and

the equation f (θ) = 0 has a unique non-trivial solution θ∗ if and only if f (0) < 0.

then R0 =
b�(β+σ+µ)�kg(k)ϕ(k)�

(b+µ)[α(σ+µ)+µ(β+σ+µ)]�kg(k)�
> 1, through which the alcoholism equilibrium 

is admitted. The proof is completed.

Global stability of the alcohol free equilibrium

Here, we use the method in Lajmanovich and Yorke (1976), d’Onofrio (2008) to demon-
strate the global behavior of the system (11). By letting y = (y1, . . . , yn, yn+1, . . . , y2n)

T . 
Then, equations in (11) can be rewritten as a form

where Ay is the linear part, H( y) is the nonlinear part and

where E is unit matrix and

f (θ) = 1−
∑

i

ϕ(i)P(i)
b�ig(i)(β + σ + µ)

(b+ µ)[(α + µ+ iθ)(β + σ + µ)+ αiθ − αβ]
〈
kg(k)

〉

f ′(θ) =
∑

i

ϕ(i)P(i)
b�i2g(i)(β + σ + µ)(β + σ + α + µ)

(b+ µ)
〈
kg(k)

〉

[(α + µ+ iθ)(β + σ + µ)+ αiθ − αβ]2
> 0

lim
θ→∞

f (θ) = 1

f (0) = 1−

∑

i ϕ(i)P(i)ig(i)b�(β + σ + µ)

(b+ µ)[(α + µ)(β + σ + µ)− αβ]
〈
kg(k)

〉

= 1−
b�(β + σ + µ)

〈
kg(k)ϕ(k)

〉

(b+ µ)[(α + µ)(β + σ + µ)− αβ]
〈
kg(k)

〉

= 1−
b�(β + σ + µ)

〈
kg(k)ϕ(k)

〉

(b+ µ)[α(σ + µ)+ µ(β + σ + µ)]
〈
kg(k)

〉 < 0

(16)
dy

dt
= Ay+H(y),

A =

(
A11 βE
αE −(β + σ + µ)E

)

,

N (y) = −
(

�g(1)(y1+yn+1)θ
�kg(k)�

. . .
n�g(n)(yn+y2n)θ

�kg(k)�
0 . . . 0

)T
,
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Lemma 2  Let A = (aij)n×n be an n× n matrix, and assume aij ≥ 0 whenever i �= j. Then 
there exists an eigenvector ω of A such that ω ≥ 0, and the corresponding eigenvalue is S(A) .

The stability modulus S(A) is defined by S(A) = max Re�i, i = 1, . . . , n, where �i are the 
eigenvalues of A.

Proof  Choose c ∈ R, such that c + aii ≥ 0, for i = 1, 2, . . . , n. Then A+ cE is an n× n 
nonnegative matrix. Therefore, by Theorem 2.20 from Varga (2000), there exists a non-
negative eigenvector ω ≥ 0 with nonnegative real eigenvalue equal to its spectral radius 
ρ(A+ cE). So we have (A+ cE)ω = ρ(A+ cE)ω, where E is the unit matrix. Then, 
Aω = (ρ(A+ cE)− c)ω, so ω is also an eigenvector of A, and the corresponding eigen-
value is (ρ(A+ cE)− c). If � is any eigenvalue of A, then �+ c is an eigenvalue of A+ cE , 
so |�+ c| ≤ ρ(A+ cE), then we have �+ c ≤ ρ(A+ cE), and � ≤ ρ(A+ cE)− c, there-
fore Re� ≤ ρ(A+ cE)− c, that is to say ρ(A+ cE)− c is the maximum real part of all 
eigenvalues of A, so S(A) = ρ(A+ cE)− c. The proof is completed.

Lemma 3  (Lajmanovich and Yorke 1976) Consider the system

where A is an n× n matrix and N(y) is continuously differentiable in a region D ⊂ Rn. 
Assume

(i)		�  the compact convex set C ⊂ D is positively invariant with respect to the system 
(17), and 0 ∈ C;

(ii)		 limy→0 �N (y)�/�y� = 0;
(iii)	� there exist r > 0 and a (real) eigenvector ω of AT such that (ω · y) ≥ r�y� for all 

y ∈ C;
(iv)	 (ω · N (y)) ≤ 0 for all y ∈ C;
(v)		� y = 0 is the largest positively invariant set contained in 

H = {y ∈ C|(ω · N (y)) = 0}.

Then either y = 0 is globally asymptotically stable in C, or for any y0 ∈ C − {0} the solu-
tion φ(t, y0) of (17) satisfies limt→∞ inf �φ(t, y0)� ≥ m, independent of y0. Moreover, 
there exists a constant solution of (17), y = k , k ∈ C − {0}.

Theorem  3  For system (11). When R0 < 1, there exists an alcohol free equilibrium 
y = 0 is globally asymptotically stable in �. When R0 > 1, there exists an alcohol-
ism equilibrium y∗ is permanent in �− {0}, that is to say, there exists an m satisfies 
limt→∞ inf �y∗� ≥ m.

A11

=











�bg(1)ϕ(1)P(1)

(b+µ)�kg(k)�
− (α + µ)

�bg(1)ϕ(2)P(2)

(b+µ)�kg(k)�
. . .

�bg(1)ϕ(n)P(n)

(b+µ)�kg(k)�
2�bg(2)ϕ(1)P(1)

(b+µ)�kg(k)�
2�bg(2)ϕ(2)P(2)

(b+µ)�kg(k)�
− (α + µ) . . .

2�bg(2)ϕ(n)P(n)

(b+µ)�kg(k)�
.
.
.

.

.

.
. . .

.

.

.
n�bg(n)ϕ(1)P(1)

(b+µ)�kg(k)�
n�bg(n)ϕ(2)P(2)

(b+µ)�kg(k)�
. . .

n�bg(n)ϕ(n)P(n)

(b+µ)�kg(k)�
− (α + µ)











(17)
dy

dt
= Ay+ N (y),
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Proof  We will confirm that the system (11) satisfies all the hypotheses of Lemma 3.

Condition (i): Lemma 3 is satisfied if we suppose that C = � ⊂ R2n.
Condition (ii): using the mean inequality and limit rule can validate the conclusion.
Condition (iii): notice that AT is an 2n× 2n matrix with aij ≥ 0 whenever i �= j , 
then from Lemma  2, there exists an eigenvector ω = (ω1,ω2, . . . ,ω2n) ≥ 0 of 
AT and the associated eigenvalue is S(AT ). Let r = min1≤i≤2n ωi > 0, for y ∈ �, 
(ω · y) ≥ r

√
∑2n

i=1 y
2
i , therefore (ω · y) ≥ r||y|| for all y ∈ �.

Condition (iv): we know ω > 0 and N (y) ≤ 0, so it is clearly satisfied.
Condition (v): let H = {y ∈ �|(ω · N (y)) = 0}. If y ∈ H , then 

∑

i
i�ωig(i)(yi+y2i)θ

�kg(k)�
= 0 

for i = 1, 2, . . . , 2n. But since each term of the sum is nonnegative, then we get 
that 

i�ωig(i)(yi+y2i)
∑

j ϕ(j)P(j)yj

�kg(k)�
= 0. If this equation is established, then yj = 0 or 

yi = yn+i = 0. From system (11), if yj = 0 then yn+j = 0 for j = 1, 2, . . . , n. That is 
(y1, . . . , yn, yn+1, . . . , y2n) = 0. So, the only invariant set respect to (11) contained in H 
is y = 0, condition (v) is satisfied. This completes the proof.

Globally attractive of the alcoholism equilibrium

Theorem 4  When R0 > 1, the only alcoholism equilibrium y = y∗ in model (11) is glob-
ally attractive in �− {0}.

Proof  We define the following functions, M : � → R and m : � → R for y ∈ � , 
where M(y) = maxi(

yi
y∗i
), m(y) = mini(

yi
y∗i
) are continuous and the right-hand deriva-

tive exists along solutions of (11). Let y = y(t) be a solution of (11), we may assume that 
M(y(t)) =

yi0 (t)

y∗i0
(t)

, i0 = 1, 2, . . . , 2n and t ∈ [t0, t0 + ε]. For a given t0 and for sufficiently 
small ε > 0

from (11), if 1 ≤ i0 ≤ n, we have

or for i = 1, 2, . . . , n and i0 = n+ i, we have

According to the definition of M( y( t) ), we know

Then, if M(y(t0)) > 1, for 1 ≤ i0 ≤ n we have

M′
∣
∣
(2.11)

(y(t0)) =
y′i0(t0)

y∗i0
, for t ∈ [t0, t0 + ε].

y∗i0

y′i0(t0)

yi0(t0)
=

�i0g(i0)θ
〈
kg(k)

〉

(
b

b+ µ
− yi0(t0)− yn+i0(t0)

)
y∗i0

yi0(t0)

+ βyn+i0(t0)
y∗i0

yi0(t0)
− (α + µ)y∗i0 ,

y∗n+i

y′n+i(t0)

yn+i(t0)
= αyi(t0)

y∗n+i

yn+i(t0)
− βy∗n+i − σy∗n+i − µy∗n+i.

yi0(t0)

y∗i0
≥

yi(t0)

y∗i
, i = 1, 2, . . . , 2n.
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or for i = 1, 2, . . . , n and i0 = n+ i

and since y∗i0 > 0 and yi0(t0) > 0, we conclude that y′i0(t0) < 0. Therefore, if M(y(t0)) > 1 , 
then M′|(2.11)(y(t0)) < 0. Similarly, we can testify that if M(y(t0)) = 1, y′i0(t0) ≤ 0. And if 
m(y(t0)) < 1, then m′|(2.11)(y(t0)) > 0. If m(y(t0)) = 1, then m′|(2.11)(y(t0)) ≤ 0. Denote

Both Q( y ) and q( y ) are continuous and non-negative for y ∈ �. Notice that

Let HQ = {y ∈ �|Q′|(2.11)(y(t)) = 0} and Hq = {y ∈ �|q′|(2.11)(y(t)) = 0}, then 
HQ = {y|0 ≤ yi ≤ y∗i } and Hq = {y|y∗i ≤ yi ≤

b
b+µ

} ∪ {0}. According to the LaSalle invar-
iant set principle, any solution of (11) starting in � will approach HQ ∩Hq = {y∗} ∪ {0} . 
But if y(t) �= 0, by Theorem 3 we know that limt→∞ inf �y(t)� ≥ A > 0. Then we con-
clude that any solution y(t) of (11), such that y(0) ∈ �− {0}, satisfies limt→∞ y(t) = y∗, 
so y = y∗ is globally attractive in �− {0}.

Control strategy
Timely stopping recuperator recurrence drinking alcohol and stopping the susceptible 
people to drink are two important and effective ways to prevent the spread of the alco-
holism. Next, we give two kinds of control strategies for the treatment of recuperator 
for stopping relapsing and preventing the susceptible people to drink, respectively. Due 
to the fixed weight model and adaptive weight model have the same basic reproductive 
number, so we only study the control strategies of the fixed weight model.

Proportion treatment

Let ε be the treatment proportion for recuperator, 0 < ε < 1, then system (11) becomes

By the next generation method, the basic reproductive number of (18) is

y∗i0

y′i0(t0)

yi0(t0)
<

�i0g(i0)θ
(

y∗i0

)

〈
kg(k)

〉

(
b

b+ µ
− y∗i0(t0)− y∗n+i0

(t0)

)

+ βy∗n+i0
(t0)− (α + µ)y∗i0 = 0,

y∗n+i

y′n+i(t0)

yn+i(t0)
< αyi(t0)

y∗n+i

yn+i(t0)
− βy∗n+i − σy∗n+i − µy∗n+i = 0,

Q(y) = max
{
M(y)− 1, 0

}
,

q(y) = max
{
1−m(y), 0

}
.

Q|(2.11)(y(t)) ≤ 0,

q|(2.11)(y(t)) ≤ 0.

(18)







dIk (t)
dt

=
�kg(k)

�kg(k)�

�
b

b+µ
− Ik(t)− Rk(t)

�

θ(t)

−(α + µ)Ik(t)+ β(1− ε)Rk(t),
dRk (t)
dt

= αIk(t)− β(1− ε)Rk(t)− σRk(t)− µRk(t),

R̃0 =
b�(β(1− ε)+ σ + µ)

〈
kg(k)ϕ(k)

〉

(b+ µ)[α(σ + µ)+ µ(β(1− ε)+ σ + µ)]
〈
kg(k)

〉
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we can find that with the increase of the treatment proportion, R̃0 is smaller.
Change the form of R̃0, we get that

R0 is the basic reproductive number of (11). So, we can see that proportion treatment 
to recuperator is a very effective control strategy, and the bigger the proportion of recu-
perator to accept treatment, the alcoholism is more difficult to outbreak.

Proportion prevention

Let ψ be the proportion of susceptible people who understand the harm of alcoholism 
and refuse to drink, 0 < ψ < 1, then system (11) becomes

By the next generation method, we get the basic reproductive number of (19) is

It is easy to know that R̂0 < R0, and the greater the proportion of susceptible people 
refuse to drink, the smaller the number of alcoholics.

Next, we are going to compare which strategy is more useful. Transform the form of R̃0 
and R̂0, we have

and

When ψ = ε, we know that R̂0 < R̃0. That is to say, when the proportion of recuperator 
to accept treatment is equal to the proportion of susceptible people to refuse drinking 

R̃0 =
b�(β(1− ε)+ σ + µ)

〈
kg(k)ϕ(k)

〉

(b+ µ)[α(σ + µ)+ µ(β(1− ε)+ σ + µ)]
〈
kg(k)

〉

=
b�

〈
kg(k)ϕ(k)

〉

(b+ µ)

[
α(σ+µ)

(β(1−ε)+σ+µ)
+ µ

]〈
kg(k)

〉

<
b�

〈
kg(k)ϕ(k)

〉

(b+ µ)

[
α(σ+µ)
(β+σ+µ)

+ µ

]〈
kg(k)

〉

=
b�(β + σ + µ)

〈
kg(k)ϕ(k)

〉

(b+ µ)[α(σ + µ)+ µ(β + σ + µ)]
〈
kg(k)

〉 = R0

(19)







dIk (t)
dt

=
�kg(k)

�kg(k)�

�
b

b+µ
− Ik(t)− Rk(t)

�

(1− ψ)θ(t)

−(α + µ)Ik(t)+ βRk(t),
dRk (t)
dt

= αIk(t)− βRk(t)− σRk(t)− µRk(t),

R̂0 =
b�(β + σ + µ)(1− ψ)

〈
kg(k)ϕ(k)

〉

(b+ µ)[α(σ + µ)+ µ(β + σ + µ)]
〈
kg(k)

〉

R̃0 =
b�

〈
kg(k)ϕ(k)

〉

(b+ µ)

[
α(σ+µ)

(β(1−ε)+σ+µ)
+ µ

]〈
kg(k)

〉

R̂0 =
b�

〈
kg(k)ϕ(k)

〉

(b+ µ)

[
α(σ+µ)

(β+σ+µ)(1−ψ)
+ µ

(1−ψ)

]〈
kg(k)

〉
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alcohol, the strategy of in proportion to prevent susceptible people drinking alcohol will 
be more effective.

Sensitivity analysis and numerical simulations
In this section, we perform some sensitivity analysis on the basic reproduction num-
ber R0 in terms of the parameters. Our simulations take the scale-free networks with 
degree distribution is P(k) = 18k−3(2 < γ ≤ 3). Let n = 40, g(k) = kr1, ϕ(k) = kr2 and 
h(k) = kr3, k = 1, 2, . . . , 40, where r1, r2 and r3 are positive constants. Considering the 
influence of heavy alcoholics’ relapse and the weight between individuals. We focus 
on simulate the relapse parameter β, the weight parameter r1 and the nodes’ infectivity 
parameter r2.

From Fig. 2, it is clear that R0 presents growth trend with the increase of the relapse 
parameter β. It means that bigger alcoholism recurrence rate are easy to cause outbreaks 
of alcoholism. Figure 2a shows that the greater the weight parameter r1 lead to greater 
R0. It means that the greater the link’s weight between two nodes, the easier the alco-
holism broke out. Figure 2b shows that R0 increases as the nodes’ infectivity parameter 
r2 increases. That is to say, if a problem alcoholic has big“infectivity“, the alcoholism is 
more easy to broke out.

Next, we perform some numerical simulations to illustrate our theoretical results 
of the models (11) and (12), so as to find better control strategies. The parameters are 
used as b = 0.2, µ = 0.04, σ = 0.6, α = 0.6, β = 0.2, r1 = 1.1, r2 = 1, r3 = 1.2. It is clear 
that r2 = 0 means no weight model, r2 �= 0, r3 = 0 mean fixed weight model and r2 �= 0, 
r3 �= 0 mean adaptive weight model.

Figure 3a, b describe nodes without weight with � = 0.05 and 0.09 respectively, Fig. 3a 
shows that when R0 = 0.8981 < 1, the alcoholism dies out quickly. Figure 3b shows that 
R0 = 1.6166 > 1, the problem alcoholics’ population will maintain at a positive station-
ary level, which implies that the alcoholism will become endemic.

Figure  4a, b describe nodes with fixed weight with � = 0.02 and 0.05 respectively, 
Fig.  4a shows that when R0 = 0.6513 < 1, the alcoholism dies out quickly, which 
implies that the alcohol free equilibrium of (11) is stable. Figure  4b shows that when 
R0 = 1.6283 > 1 the problem alcoholics’ population will maintain at a positive station-
ary level of (11), which implies that the alcoholism will become endemic. Compared with 
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Fig. 2  The relationship between the basic reproduction number R0 and the parameters on scale-free net‑
works
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Figs. 3a and 4b, for same parameters, basic reproduction number is 0.8981 and 1.6283, 
respectively. So we know that R0 of model on networks with weights is larger than that 
on networks without weights.

Figure 5a, b describe nodes with adaptive weight. We know that (12) and (11) have the 
same R0. So we choose the same parameters as Fig. 4. From Fig. 5a, b, we can see that 
since the adaptivity of weight, the alcoholics rapidly drop first and experience a valley 
then up to a small peak or dies out. This is caused by the behavior of people’s self-protec-
tion awareness. From this point, the adaptive model is more close to the actual situation.

Figure 6a, b shows the densities of problem alcoholic individuals with different degrees 
and different the adaptive coefficient r3. We know that the stronger the adaptive coef-
ficient r3, the greater the self-protection awareness of susceptible. It lead to alcoholics 
density maintain in a lower value.

Conclusion and discussions
In this paper, we proposed a modified SIRS alcoholism model with relapse on weighted 
networks to study the influences of individual’s contact patterns on drinking dynam-
ics. We construct two complex network models with fixed weight and adaptive weight, 
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Fig. 3  The densities of alcoholics with different degrees and without weight when R0 > 1 (a) and R0 < 1 (b)
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respectively. We get the alcoholic propagation threshold R0 which determines the propa-
gation dynamics. We also obtain the existence of equilibria of (11). For the model with 
fixed weight, we prove that when R0 < 1, the model’s alcohol free equilibrium is global 
stable and alcoholism will disappear, otherwise, if R0 > 1, the alcoholism equilibrium is 
global attractivity and alcoholism will persistence. For the model with adaptive weight, 
we only make some numerical simulations. By comparing the alcoholism models with 
no weight, fixed weight and adaptive weight, we have:

1.	 Fixed weight model have larger propagation threshold than no weight model;
2.	 The adaptive weight cannot change the propagation threshold, but it can induce the 

alcoholism to decay quickly;
3.	 Strong adaptability can inhibit the alcoholism population reach a high level;
4.	 In order to eliminate alcoholism problem, first we should try to reduce the frequency 

of interaction between susceptible and problem alcoholic, that is to say decreas-
ing the link’s weight between two nodes, this may be a effective measures. Second, 
through education or media to spread the dangers of alcohol abuse in order to 
decrease the relapse β , it is also a very effective measures.
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Fig. 5  The densities of alcoholics with different degrees and adaptive weight when R0 > 1 (a) and R0 < 1 (b)
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Fig. 6  The densities of alcoholics with different adaptive coefficient r3 = 1.4 in a and r3 = 1.5 in b
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The delay differential equations usually exhibit much more complicated dynamics than 
ordinary differential equations because the time delay can lead to instability, oscillation, 
or bifurcation phenomena (Bianca et al. 2015; Bianca and Guerrini 2014). There is a time 
delay during a susceptible individual becomes the problem alcoholic, so it is more realis-
tic to consider the time delay in the modelling alcoholism process. We can modify (1) to 
the following model with delay

We leave this work for the future.
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