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Background
Due to its public and economic impacts and consequences, safety of a dam is of high pri-
ority. Based on the prototypical observations of dam body, dam foundation, high slope, 
surrounding environment, and impact on reservoir dam due to landslides (Pudasaini 
2014; Kafle et al. 2016) and seepage (Pudasaini 2016), some mathematical, mechanical 
and artificial intelligence theories and methods are usually used to analyze and evaluate 
the dam behavior. It is regarded as an effective approach ensuring service safety of dam 
engineering (Su et al. 2011). Noise, which can be caused by environmental, man-made 
and other uncertain factors, is an inevitable part of prototypical observations. The true 
characteristics of dam behavior sometimes even cannot be reflected from noisy observa-
tions. Moreover, the noise has certain effect on further data analysis precision. So some 
smoothing or filtering methods for noisy data are usually adopted to implement the 
noise removal of prototypical observations.

Abstract 

It is very important for dam safety control to identify reasonably dam behavior accord-
ing to the prototypical observations on deformation, seepage, stress, etc. However, 
there are many cases in which the noise corrupts the prototypical observations, and 
it must be removed from the data. Considering the nonlinear and non-stationary 
characteristics of data series with signal intermittency, an ensemble empirical mode 
decomposition (EEMD)-based method is presented to remove noise from prototypical 
observations on dam safety. Its basic principle and implementation process are dis-
cussed. The key parameters and rules, which can adapt the noise removal requirements 
of prototypical observations on dam safety, are given. The displacement of one actual 
dam is taken as an example. The noise removal capability of EEMD-based method 
is assessed. It is indicated that the dam displacement feature can be reflected more 
clearly by removing noise from prototypical observations on dam displacement. The 
statistical model, which is built according to noise-removed data series, can provide 
the more precise forecast for structural behavior.
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At present, wavelet methods are regarded as a powerful alternative tool for removing 
noise (Shark and Yu 2000; Athanasia and Theofanis 2011; Mohideen 2012). The wave-
let coefficients of signal and noise have different characteristics at each wavelet scale. 
The appropriate wavelet basis function and decomposition layer number are determined 
according to analyzed signals. The reconstruction of decomposed signals is implemented 
to fulfill the noise removal. These methods have been widely applied to data pretreat-
ment. However, it is well known that the basis function needs to be fixed in advance for 
implementing wavelet analysis. It is difficult to approximate accurately the local signal 
characteristics at different scales with the wavelet function, which is derived from basis 
function.

Huang et al. (1998) proposed the empirical mode decomposition (EMD) to implement 
the time–frequency data analysis for nonlinear and non-stationary time series. EMD-
based noise removal method has been used recently in many fields such as biology, 
ocean, medicine, acoustics, fault diagnosis (Huang et al. 1999; Liu et al. 2006; Lee et al. 
2011; Park et al. 2011; Ahrabian et al. 2013; Moghtaderi et al. 2013). It does not need 
to select the basis function in advance and has better adaptive feature. However, when 
the signal is a superposition of intermittent component and continuous basic compo-
nent, the unexpected mode mixing will be caused during the mode decomposition. The 
frequent appearance of mode mixing can make different intrinsic mode function (IMF) 
components not be effectively separated with EMD. A single IMF component consists 
of signals of widely disparate scales, or a signal of a similar scale resides in different IMF 
components. Mode mixing is often a consequence of signal intermittency. The signal 
intermittency can cause no enough signal extreme points or uneven distribution interval 
of signal extreme points. Upper and lower envelope generated based on above points is 
a superposition of intermittent signal envelope and basic signal envelope, which will not 
only cause serious aliasing in the time–frequency distribution, but also make the physi-
cal meaning of individual IMF component unclear.

To overcome the scale separation problem, Wu and Huang (2009) proposed the 
ensemble empirical mode decomposition (EEMD), which inherits the advantages of 
EMD. According to the statistical characteristics of Gaussian white noise, namely uni-
form frequency distribution, a white noise is added to original signal. This method solves 
the mode mixing problem caused by signal intermittency. The ensemble empirical mode 
decomposition is introduced to reduce the noise level of prototypical observations on 
dam safety. This paper is organized as follows. First, the general principle and step of 
EEMD are reviewed briefly in “Ensemble empirical mode decomposition of nonlin-
ear and non-stationary signal” section. Later, the EEMD-based noise removal process 
of prototypical observations on dam safety is presented and the algorithm is described 
in the following section “Noise removal of prototypical observations on dam safety”. In 
“Actual case analysis” section, the proposed method is applied to noise removal of pro-
totypical observations on one actual dam and statistical model construction. By com-
parison of fitting and forecasting precision of statistical models before and after noise 
removal, the validity of proposed method is discussed. Finally, this work briefly con-
cludes in “Conclusions” section.
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Ensemble empirical mode decomposition of nonlinear and non‑stationary 
signal
As an adaptive time–frequency data analysis method, EMD takes a nonlinear and non-
stationary signal as integration of some intrinsic mode function (IMF) components. 
The signal is decomposed layer by layer according to the characteristic scale of signal 
extrema. A series of IMF components from high frequency to low frequency can be 
produced, and a residual can be obtained. The handled IMF components are chosen to 
implement signal reconstruction and fulfill noise removal.

Given a signal x(t), all local extrema of x(t) are identified firstly. Cubic spline curves are 
adopted to fit local minima or local maxima, respectively. Upper and lower envelopes of 
x(t) are generated. Secondly, the mean of upper and lower envelopes, m1(t), is calculated. 
The mean m1(t) is subtracted from x(t) and the differential signal, h1(t) = x(t) − m1(t), 
is obtained where h1(t) is a signal without low frequency. If h1(t) satisfies the IMF con-
dition, then h1(t) is regarded as the first IMF component of the signal x(t). If not, the 
second sifting operation needs to be implemented, namely the above procedure for h1(t) 
needs to be repeated, to obtain h11(t) = h1(t) − m11(t). The sifting process is repeated 
j times, until h1j(t) = h1(j−1)(t) − m1j(t) satisfies the IMF condition. h1j(t) is regarded as 
the first IMF component of the signal x(t), namely c1(t) = h1j(t). Let r1(t) = x(t) − c1(t). 
The component c1(t) is extracted from x(t) and a residual signal r1(t), in which the high 
frequency component is filtered, is obtained. For r1(t), the above sifting operation is 
implemented again. Similarly, the second IMF component c2(t) of the signal x(t) and the 
residual signal r2(t) are extracted. Such sifting procedure is repeated until the stopping 
criterion of signal decomposition is satisfied. Once this is achieved, the signal x(t) can be 
decomposed adaptively into n IMF components from high frequency to low frequency, 
namely c1(t), c2(t),…, cn(t), and a residual rn(t),

According to the characteristic scale of signal extrema, the components of the signal 
x(t) are decomposed successively from high frequency to low frequency. The residual 
rn(t) is the signal trend component which represents the average trend of the signal x(t). 
Thus it can be seen that EMD algorithm has good filtering properties. The decomposi-
tion process can be regarded as a filtering process that the characteristic scale of signal 
extrema is taken as the measure criterion. Furthermore, this algorithm decomposes a 
signal based on own signal information and the basis function needs to be fixed dur-
ing signal decomposition. To alleviate the mode mixing problem of EMD, a new noised-
assisted data analysis method, namely the ensemble EMD (EEMD), is proposed. The 
principle of the EEMD is as follows. It defines the true IMF components as the mean 
of an ensemble of trials, each consisting of the original signal plus a white noise of finite 
amplitude. The added white noise would populate the whole time–frequency space uni-
formly with the constituting components of different scales. When the signal is added 
to this uniformly distributed white background, the signal components with different 
scales are automatically projected onto proper reference scales established according to 
the white noise. So the intermittent component of the signal has continuous feature. By 

(1)x(t) =
n

∑

i=1

ci(t)+ rn(t).
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adding finite noise, the EEMD eliminates largely the mode mixing problem (Taraphder 
and Chakraverty 2015).

Given a signal x(t), the effective algorithm of EEMD can be summarized as follows. 
Firstly, set the total number (N) of added white noise and its amplitude ε. Secondly, add 
the random Gaussian white noise sequence ωk(t) to the original signal x(t). Obtain the 
noise-added signal xk(t), namely

Thirdly, implement EMD operation for the noise-added signal xk(t). Then, obtain n IMF 
components, cik(t), i = 1,2,…, n, where cik(t) represents the ith IMF component obtained 
with EMD of the signal added kth white noise sequence. Lastly, calculate the ensemble 
mean of each IMF component. The result in the following can be obtained.

Figure 1 shows the flowchart of EEMD algorithm.

Noise removal of prototypical observations on dam safety
The prototypical observation series on dam safety has nonlinear and non-stationary 
characteristics. Most of its information focuses on the low frequency part, and the noise 
is mainly distributed in the high frequency part. It often contains the intermittent sig-
nal. EEMD is introduced to decompose the prototypical observations on dam safety 
into a series of IMF components from high frequency to low frequency. First few noise-
added IMF components are chosen to implement the noise removal with the threshold 
method, then we reconstruct the noise-removed observation of dam safety

where k denotes the number of IMF components which are chosen to implement the 
noise removal, ci(t) is the IMF component with noise, ci′(t) is the noise-removed IMF 
component, rn(t) is a residual.

Total number of added white noise and its amplitude

For EEMD algorithm, the added white noise has influence on the results, which follows 
the statistical principle as (Wu and Huang 2009)

where εn is the standard deviation representing the difference between the input sig-
nal and the final reconstructed result of IMF components, ε denotes the amplitude of 
added noise, and N is the total number of added noise. If the amplitude of added noise is 
too small, the added noise cannot affect the expected selection of extreme points. Fur-
thermore, if the amplitude of added noise is proper and the number of added noise is 
enough, the increasement of amplitude and number of added noise has no more effect 

(2)xk(t) = x(t)+ εωk(t), k = 1, 2, . . . ,N .

(3)ci(t) =
1

N

N
∑

k=1

cik(t), i = 1, 2, . . . , n.

(4)x′(t) =
k

∑

i=1

c′i(t)+
n

∑

i=k+1

ci(t)+ rn(t),

(5)εn = ε/
√
N ,
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on the decomposition results. It is suggested that the amplitude of added white noise is 
taken as 0.2 times of standard deviation of the signal (Wu and Huang 2009). For high 
frequency component-oriented signal, small amplitude of added noise should be chosen. 
In general, when the number of added noise is up to 100 or 200, the satisfactory result 
can obtained.

Input original signal, x(t), k=1

Add white noise and generate noise-added signal, xk(t) 

Find local extremum points of  s(t)

Construct upper and lower envelop of s(t) 

Calculate upper and lower envelope mean, mij(t)

hij(t)=s(t)-mij(t)

ri(t)=xk(t), i=0

s(t)=ri(t), j=0

Stopping criterion
of sifting procedure

s(t)=hij(t)
j=j+1

i=i+1, cik(t)=hij(t)

Stopping condition of
signal decomposition

N

Y

Y

 k<N
N

k=k+1

End

Y

Start

ri(t)=ri-1(t)-cik(t)

1

1
( ) ( )

N

i ik
k

c t c t
N =

= ∑

1

1
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n
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i

r t c t
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N

Fig. 1  EEMD flowchart
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Stopping criterion of sifting process

In fact, the EMD is a process sifting IMF components. The stopping criterion of sifting 
process is used to control the sifting times of generating one IMF component, namely 
the fulfillment of two conditions in the IMF definition. The too strict stopping criterion 
will cause the over-sift of IMF components and the elimination of amplitude changes. 
The easy stopping criterion will lead to the under-sift of IMF components, the riding 
waves cannot be eliminated and the condition of local zero mean cannot be satisfied. The 
conventional stopping criteria of sifting process have the standard deviation criterion 
and overall local combination rule (Huang et al. 1998, 1999). However, based on these 
stopping criteria, the decomposition process is very sensitive to local disturbance of the 
signal. The decomposition results of target signals with different local disturbances are 
very different and irregular. So these conventional stopping criteria of sifting process are 
not applicable to the EEMD algorithm that the white noises need to be added repeat-
edly. To overcome this problem, Wu and Huang (2004) proposed the approach fixing the 
sifting times and they reveal that the upper and lower envelopes of IMF component are 
almost symmetrical about the zero axis when the sifting times is up to 10.

Stopping condition of decomposition process

For the EMD algorithm, the decomposition process can be terminated when any follow-
ing condition is satisfied, namely, the nth IMF component cn(t) or the residual rn(t) is less 
than the preset value, or the residual rn(t) can be regarded as a monotonic function. It is 
known that for the white noise populating the whole time or frequency space uniformly 
with the constituting components of different scales, the role of EMD decomposition is 
equivalent to a binary filter group. The white noise can be decomposed into a series of 
IMF components with different average periods, and the average period of any IMF is 
double average period of previous IMF (Flandrin et al. 2004; Wu and Huang 2004). The 
average period represents the total number of data, namely signal length, divided by the 
peak point number, or local maximum point number. Therefore, for the EEMD algo-
rithm that the added white noise populates the whole time–frequency space uniformly, 
the total number n of IMF component decomposed completely approximates log2M − 1, 
where M represents the signal length. In practice, according to the actual requirement, 
other appropriate conditions can be adopted to terminate the decomposition process. 
For example, when the extreme point number is less than a certain number, or when the 
number of IMF component decomposed is up to a certain number, the decomposition 
process is over.

Endpoint effect

In the sifting process of the EMD algorithm, the extreme points of the signal can be 
selected to fit the upper and lower envelopes with one cubic spline curve. However, 
two endpoints of the signal may be not the extreme points. Divergence phenomenon 
of upper and lower envelopes often appears near two endpoints of the signal, which is 
called the endpoint effect. Furthermore, this divergence will gradually pollute the whole 
signal with subsequent sifting process and make the decomposition results distorted 
seriously. There are two conventional approaches solving the endpoint effect problem of 
EMD. The first one is that the data near two endpoints are discarded constantly to make 
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the distortion of upper and lower envelope be minimized. The second one is that enough 
extreme points are obtained by signal extension or forecast. In the sifting process, the 
maximum and the minimum at the endpoints need to be obtained to make the whole 
signal be included completely between the fitted envelopes. So a simple and effective 
method controlling the endpoint effect of EMD is adopted in this paper (Wu and Huang 
2009). The connection line between two maximum points near the endpoint is extended 
to the endpoint. This value is compared with the actual value of the endpoint. The larger 
one is regarded as the maximum at the endpoint which is used to fit the upper envelope. 
The connection line between two minimum points near the endpoint is extended to 
the endpoint. This value is compared with the actual value of the endpoint. The smaller 
one is regarded as the minimum at the endpoint which is used to fit the lower envelope. 
Above process is illustrated in Fig. 2. In Fig. 2, A1 and B1 are two maximum points near 
the left endpoint C of the signal, A2 and B2 are two minimum points near the left end-
point C of the signal. C1 is determined by extending the line A1–B1 to the endpoint. 
If C1 > C,then C1 is taken as the maximum at the left endpoint. C2 is determined by 
extending the line A2–B2 to the endpoint. If C < C2,then C is taken as the minimum at 
the left endpoint. Likewise, F and F2 are determined as the maximum and the minimum 
at the right endpoint, respectively.

EEMD‑based noise removal process of prototypical observations on dam safety

Figure  3 shows an implement process for EEMD-based noise removal of prototypical 
observations on dam safety. Its key steps are as follows.

A1

A2

B1

B2

C1

C2
C

D1 E1 F1

D2
E2

F

F2

Fig. 2  Endpoint effect control scheme

 Implement noise removal for 
the first k IMF components 

Other IMF 
components

Generate the residualGenerate IMF components

Reconstruct the signal

Output noise-removed observation series of dam safety

Start

Implement EEMD

End

Input original observation series of dam safety

Fig. 3  EEMD-based noise removal flowchart
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Implement EEMD

The amplitude of added white noise is taken as 0.2 times of standard deviation of proto-
typical observation series. The number of added noise is set as 200. The sifting number 
is set as 10. When the number n of IMF component decomposed is up to log2M − 4, 
the decomposition process is terminated, where M is the length of observation series. 
EEMD of prototypical observation series on dam safety is fulfilled and n IMF compo-
nents are obtained.

Select the IMF components to remove noise

It has been known that, for each IMF component of white noise signal, the product of its 
energy density and average period is a constant (Wu and Huang 2004). Namely,

where

Ei represents the energy density of the ith IMF component ci of white noise, M is the 
signal length,

T̄i represents the average period of ci, Mmax is the number of maximum point of ci.
A statistical magnitude Rk is defined as follows.

where Ek and T̄k represent, respectively, the energy density and the average period of the 
kth IMF component ck, which is obtained by implementing the EEMD of prototypical 
observation series on dam safety.

When Rk ≥ C, C is usually between 2 and 3, most of the noise is contained in the first k 
IMF components. The noise removal for the k IMF components need to be implemented.

Implement the noise removal with the threshold method

In general, the IMF component with noise contains a small amount of high frequency 
part of real signal. If the IMF components of certain scales are filtered completely, some 
useful information may be cleaned, which will affect the accuracy of subsequent analysis. 
The threshold method is introduced to implement the noise removal for the IMF com-
ponent ci(t). ci′(t) represents the noise-removed IMF component.

where sgn(•) represents the symbolic function, λi denotes the threshold of the IMF com-
ponent ci(t).

(6)EiT̄i = const,

(7)Ei =
1

M

M
∑

t=1

[ci(t)]
2,

(8)T̄i = M
/

Mmax,

(9)Rk =
∣

∣

∣

∣

∣

(

Ek+1T̄k+1 − EkT̄k

)

/(

1

k

k
∑

i=1

EiT̄i

)∣

∣

∣

∣

∣

,

(10)c′i(t) =
{

sgn(ci(t))(|ci(t)| − �i), |ci(t)| ≥ �i

0, |ci(t)| < �i
(i = 1, 2, . . . , k),
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When 1 ≤ i ≤ 2, the noise energy of corresponding IMF component is larger, and the 
signal-to-noise ratio is lower. The threshold λi is taken as

where σ̂ represents the noise level estimation, σ̂ = m/0.6745, m is the median of abso-
lute deviation for c1(t), M represents the sequence length.

When 2 ≤ i ≤ k, the useful signal energy of corresponding IMF component is close to 
the noise energy. The threshold should be reduced. So the threshold λi is taken as

Reconstruct the signal

Equation (4) is applied to the signal reconstruction. The reconstructed results x′(t) form 
a noise-removed observation series of dam safety.

Actual case analysis
One roller compacted concrete gravity dam called Mianhuatan in China is taken as an 
example. The maximum dam height is 113.0 m, the length of dam crest is 308.5 m, and 
the elevation of dam crest is 179.0  m. This dam consists of 6 dam sections which are 
numbered 1–6 from left bank to right bank. The normal storage water level and the 
check flood level are 173.00 and 177.80 m respectively. The dam construction officially 
began in April 1998, and the first unit was put into operation on April 29, 2001. The 
pendulum measurements in Fig. 4 were installed to observe the horizontal displacement 
of dam crest and dam body. The monitoring system was put into operation in Octo-
ber, 2002. Figure 5 shows the time curve of horizontal displacement along river direc-
tion, which is measured daily from January 1, 2003 to December 31, 2007 with the 
pendulum measurement PL6. It can be seen from Fig. 5 that obvious fluctuation with 

(11)�i = σ̂
√

2 ln (M),

(12)�i = σ̂
√

2 ln (M)

/

ln (i + 1).

PL5

PL2

PL7

PL4

PL1

PL6

PL3

IP3

IP1

IP2

179.00m

140.00m

100.00m

120.00m

76.00m

1#

2#

3# 4#

5#
6#

Fig. 4  Layout of pendulum measurements observing horizontal displacement
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small amplitude appears in the observation series of horizontal displacement of No. 5 
dam section crest. The proposed method is adopted to remove the noise of collected 
observations.

EEMD for the observation series shown in Fig. 5 is implemented. 7 IMF components, 
c1, c2,…, c7, and one residual r7 are obtained, as shown in Fig. 6.

The calculations with Eq. (9) implies that, when k = 3, Rk = 3.9 > C (C = 3). So the first 
3 IMF components are selected to implement the noise removal operation respectively 
with the threshold 0.0468, 0.0468 and 0.0338. The sum of noise-removed components, 
other IMF components and the residual, namely noise-removed observation series, is 
shown in Fig. 7.

Comparison between Figs. 5 and 7 shows that after the EEMD-based noise removal 
is implemented, most of the fluctuations with small amplitude appearing in the original 
observation series have been filtered. The time-varying feature of horizontal displace-
ment can be reflected more clearly.

To assess the noise removal performance of proposed method, the original and noise-
removed observation series are taken to build the statistical models of horizontal dis-
placement with the stepwise regression method. For the dam displacement caused by 
the action of water load, temperature load and other loads, such as large fluctuations in 
water level due to landslide induced tsunamis and submarine landslides impacting the 
dam (Pudasaini 2014; Kafle et al. 2016), it can be treated as the sum of hydrostatic pres-
sure term, temperature term and time effect term. In the case study of this paper, the fol-
lowing factor set F is adopted to build the statistical model (Su et al. 2012, 2015).

where H represents the upstream reservoir water depth, t denotes the cumulative days 
from the monitoring day to the beginning day, θ = t/100.

The statistical model can be described as follows (Su et al. 2012, 2015).

where y′ denote the model calculation, a0, ai, b1i, b2i, d1, d2 represent the regression 
coefficients.

(13)F =
[

H ,H2,H3, sin
2π t

365
, cos

2π t

365
, sin

4π t

365
, cos

4π t

365
, ln θ , θ

]

,

(14)y′ = a0 +
3

∑

i=1

aiH
i +

2
∑

i=1

[

b1i sin
2π it

365
+ b2i cos

2π it

365

]

+ d1θ + d2 ln θ ,

Time/year
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m
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Fig. 5  Original observations of horizontal displacement
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The original and noise-removed observation series from January 1, 2003 to December 
31, 2006, which are shown in Figs. 5 and 7 respectively, are chosen to build the statistical 
models of horizontal displacement. The built models are used to forecast the horizon-
tal displacement in 2007. The fitted and forecasted results of two models are shown in 
Figs. 8, 9 and 10. In this paper, the fitting and forecasting performances of built models 
are assessed using the squared correlation coefficient (r2) and the following mean square 
error (MSE).

where yi and yi′ denote the dam displacement observation and the model calculation 
respectively, l represents the number of measured values.

For the statistical model built based on the original observation series of horizontal 
displacement, its fitting MSE is 0.0051 and its forecasting MSE is 0.0073, its fitting r2 is 

(15)MSE = 1

l

l
∑

i=1

(

y′i − yi
)2
,
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D
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Fig. 8  Calculated results of two statistical models
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Fig. 10  Modeling error of noise-removed observations-based statistical model
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0.9536 and its forecasting r2 is 0.9250. For the statistical model built based on the noise-
removed observation series of horizontal displacement, its fitting MSE is 0.0050 and its 
forecasting MSE is 0.0071, its fitting r2 is 0.9861 and its forecasting r2 is 0.9568. It can be 
seen that the noise removal improve the performance of built model.

Conclusions
Considering the nonlinear and non-stationary characteristics of prototypical observa-
tions on dam safety, an EEMD-based method is introduced to remove noise from the 
original observation series with certain intermittency. Its basic principle and implement 
process are presented. To adapt the noise removal requirements of prototypical observa-
tions on dam safety, the key control parameters of EEMD algorithm are given and some 
improvement strategies are discussed.

The application example illustrates that the proposed method can filter the fluc-
tuations with small amplitude appearing in the prototypical observation series on dam 
safety. The statistical model, which is built by choosing the noise-removed observations 
on dam safety, has better performance forecasting the dam behavior. Due to the high 
ability solving the mode mixing and endpoint effect problems, the EEMD-based method 
is more suitable for implementing the noise removal of prototypical observations on 
dam safety, particularly with certain intermittency.
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