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Background
Let X be a compact metric space and f be a continuous self-map. We denote by F(X) all 
nonempty fuzzy sets on X endowed with the levelwise topology and we define f̂  as the 
Zadeh’s extension of the map f:

With the complexity of situations rising, the zadeh’s extension has failed to be an accu-
rate description for discrete fuzzy systems affected by the uncertainty. The time evo-
lution of a chosen initial state is very important. We take the fuzzy set “short people” 
for example. “short people” in ancient time are not defined as short at present since 
the average height of people is increasing. It’s not difficult to find some other examples 
to figure out that the zadeh’s extension can’t reflect the complex systems accurately. A 
very important generalization of the concept of zadeh’s extension is g-fuzzification 
introduced in Kupka (2011a). It can be used for changing relevant membership grades 
and developed to describe the complex fuzzy systems in a more efficient way. The map 
f̂g : F(X) −→ F(X) is called g-fuzzification of f and F(X) denotes all nonempty and 
fuzzy compact subsets of X. Over the last ten or so years, since many research works 
have been devoted to the chaotic behaviors of the fuzzified dynamical systems, such 
as, topological entropy, Devaney chaos, Li-Yorke chaos and its connections with erratic 
functions which has been done by Cánovas and Kupka (2011), Kupka (2011b), Diamond 
(1994), Diamond and Kloeden (1994), Diamond and Pokrovskii (1994). Recently, J.Kupka 
have studied various chaotic behaviors (Li-Yorke chaos, ω-chaos, distributional chaos, 
topological chaos etc.) between a given dynamical system (X,  f) and its g-fuzzification. 

f̂ (u(x)) = sup
y∈f −1(x)

(u(y)), u ∈ F(X).

Abstract 

Let X be a compact metric space and f : X −→ X  a continuous map. Considering the 
space F(X) of all nonempty fuzzy sets on X endowed with the levelwise topology, we  
proved that its g-fuzzification is turbulent or erratic if the given system f is turbulent or 
erratic correspondingly and f is �-expansive if and only if its g-fuzzification  
is �-expansive.
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See more details in Kupka (2014). But it remains to be asked to study the other chaotic 
properties on g-fuzzification. Then the turbulence and erratic properties between a crisp 
dynamical system and its g-fuzzification are taken into our considerations in this paper.

On the other hand, the �-expansive property in fuzzy systems is explored in this paper. 
Thus, the left work is to demonstrate the �-expansiveness relationship between f̂g and f. 
Meanwhile, it is not difficult to see that the �-expansive property can exhibit the sensi-
tivity of f̂g.

Preliminaries
Metric space of fuzzy sets

Let (X, d) be a compact metric space and C(X) denote all continuous functions. f ∈ C(X) 
is a self-map. K(X) denotes all nonempty and compact subsets of X with the Hausdorff 
metric dH defined by

for any A,B ∈ K. f̄ : K(X) −→ K is defined as f̄ (A) = f (A) for any A ∈ K.
A fuzzy set u on the space X is a function u : X −→ I where I = [0, 1] . 

For any α ∈ (0, 1], [u]α = {x ∈ X | u(x) ≥ α} is called the α-level of u and 
[u]0 = {x ∈ X | u(x) ≥ 0} is the support of u (shortly: supp(u)) (Román-Flores et  al. 
2011).

Throughout this paper, F(X) is defined as all upper semi-continuous fuzzy sets and 
equipped by the following metric:

Let

and F1(X) is denoted as the system of all normal fuzzy sets on X.

g‑fuzzifications

Let Dm(I) be the set of all nondecreasing right-continuous functions g : I −→ I ,  
I = [0, 1] . If x = 0 and x = 1, g(x) = x. A map f̂g denoted by

is defined as a g-fuzzification. Especially, it is the Zadeh’s extension when the function 
g(x) = 1. Also, a definition of α-cut [A]gα is presented by [A]gα = {x ∈ [A]0 | g(A(x)) ≥ α}. 
The following equation in Kupka (2011a) is indispensable.

dH (A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}

d∞(u, v) = sup
α∈(0,1]

dH ([u]α , [v]α).

F
�(X) = {A ∈ F(X) | A(x) ≥ �}

f̂g (x) = sup
y∈f −1(x)

{g(u(y))} for any u ∈ F(X), x ∈ X

f ([A]gα) = [f̂g (A)]α , ∀A ∈ F(X).
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Lemma 1  Kupka (2014): Let f ∈ C(X) and g ∈ Dm(I). For any α ∈ (0, 1] and nonempty 
fuzzy set A ∈ F(X), if [A]gα �= ∅ then there is c ∈ (0, 1] such that [A]gα = [A]c.

To explore some properties of g-fuzzification, for any U ⊂ X, we define

and

Clearly, e(U) �= ∅ if and only if U �= ∅. Moreover, the following lemma is essential in the 
paper.

Lemma 2  Kupka (2014): Let U, V be two subsets of X , f ∈ C(X) and g ∈ Dm(I). Then:

1)	 e(U ∩ V ) = e(U) ∩ e(V ).

2)	 f̂g (e(U)) ⊆ e(f (U)).

3)	 f̂g (e(U)) = e(f (U)) whenever U is closed.

Likewise, ϑ(U) has the same properties compared with e(U).

Lemma 3  Kupka (2014): Let U, V be two subsets of X , f ∈ C(X) and g ∈ Dm(I). Then:

1)	ϑ(U ∩ V ) = ϑ(U) ∩ ϑ(V ).
2)	 f̂g (ϑ(U)) ⊆ ϑ(f (U)).
3)	 f̂g (ϑ(U)) = ϑ(f (U)) whenever U is closed.

Turbulence, erratic property, Block and Coppel chaos and �‑expansiveness

Before we present the elegant results, we need to introduce some basic definitions of 
chaotic behavior explored in this paper.

Definition 1  Román-Flores et  al. (2011): Let f : X −→ X be a continuous function. 
We say that f is a turbulent function if there are disjoint nonempty closed subsets J , K  of 
X such that:

Definition 2  Román-Flores et  al. (2011): A map f ∈ C(X) is erratic if there exists a 
nonempty closed set A ⊆ X satisfying the following two conditions:

1)	 A ∩ f (A) = ∅.
2)	 A ∪ f (A) ⊆ f 2(A).

Definition 3  Román-Flores et al. (2011): Let f : X −→ X be a continuous function.We 
say that f is chaotic in the sense of Block and Coppel (in short: B-C chaos) if and only if 
its iterates is turbulent, i.e., there exists n ≥ 1 and two disjoint nonempty compact sub-
sets J, K of X such that

eα(U) = {B ∈ F(X) | [B]α �= ∅ and [B]α ⊆ U}

ϑ(U) = e1(U) ∩ e(U),

e(U) = {A ∈ F(X) | supp (A) ⊆ U}.

J ∪ K ⊆ f (J ) ∩ f (K ).
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It should be remarkable that the erratic property is stronger than B-C chaos.

Definition 4  Let f : X −→ X be a function. We claim that f is expansive if and only if 
there exists a real constant � > 1 such that

In this case we claim that f is �-expansive Román-Flores and Chalco-Cano (2005).

Main results
To prove the turbulent and erratic properties, firstly, a theorem on e(U) is given here.

Theorem 1  Let U be closed subset of X and e(U) = { B ∈ F(X) | supp(B) ⊆ U}, f ∈ C(X)  
and g ∈ Dm(I). Then,

Proof  It can be proved by the mathematical induction.

When n = 1, Left = Right = f̂g (e(U)). Clearly, the theorem holds.
Assume that the theorem is true for n = k, i.e.,

By the Lemma 2 in Kupka (2014), we have

When n = k + 1,

Consequently, the statement is proved completely. � �

Likewise, we can achieve the similar result on ϑ(U).

Theorem  2  Let U be closed subset of X and ϑ(U) = e1(U) ∩ e(U). f ∈ C(X) and 
g ∈ Dm(I). Then,

J ∪ K ⊆ f n(J ) ∩ f n(K ).

d(f (x), f (y)) � �d(x, y), ∀x, y ∈ X .

f̂ ng (e(U)) = f̂ ng (e(U)).

f̂ kg (e(U)) = f̂ kg (e(U)).

f̂ kg (e(U)) = e(f k(U)).

̂
f k+1
n (e(U)) = e(f k+1

n (U)) = e(fn ◦ (f
k
n (U)))

= f̂n(e(f
k
n (U)))

= f̂n ◦ f̂
k
n (e(U))

= f̂ k+1
n (e(U)).

f̂ ng (ϑ(U)) = f̂ ng (ϑ(U)).
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Here, we make a point that ∀α ∈ (0, 1],

See Lan and Mu (2014) for more details.
Román-Flores et al. (2011) explored the dynamics of f̂  and f. These conclusions can be 

listed as follows:

More precisely, Román-Flores et al. (2011) present some examples in order to show the 
irreversible links between f and f̂ . We generalizes the results with f̂g. As the Zadeh’s 
extension is a spacial case of the g-fuzzification, we can make a conclusion:

The left work is to prove the following implication:

Theorem 3  If f ∈ C(X), f : X −→ X is a turbulent function, then f̂g : F(X) −→ F(X) 
is a turbulent function.

Proof  Since f is turbulent, there exists nonempty and closed U ,V ⊆ X and U ∩ V = ∅ 
such that U ∪ V ⊆ f (U) ∩ f (V ).

By the definition of e(U), clearly, e(U) and e(V) are two disjoint nonempty closed sub-
sets of F(X). Applying the Lemma 2, we have

Finally, we can conclude that f̂g is a turbulent function. � �

Theorem 4  Let f ∈ C(X) be erratic, then, f̂g is a erratic function.

Proof  Since f is erratic, there exists a nonempty closed subset U ⊆ X such that 
U ∩ f (U) = ∅ and U ∪ f (U) ⊆ f 2(U). Thus, e(U) is nonempty closed subset of F(X) and

f̂ ng (eα(U)) �= f̂ ng (eα(U)).

f is turbulent (erratic) ⇒ f̂ is turbulent (erratic)

f̂ is turbulent (erratic) � f is turbulent (erratic).

f̂g is turbulent (erratic) � f is turbulent (erratic).

f is turbulent (erratic) ⇒ f̂g is turbulent (erratic).

e(U) ∪ e(V ) ⊆ e(U ∪ V ) ⊆ e(f (U) ∩ f (V ))

= e(f (U)) ∩ e(f (V ))

= f̂g (e(U)) ∩ f̂g (e(V )).

e(U) ∩ f̂g (e(U)) = e(U) ∩ e(f (U))

= e((U) ∩ f (U))

= e(∅) = ∅.
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On the other hand, using the Theorem 1 and the Lemma 2, we have

Consequently, f̂g is erratic. � �

Corollary 1  Let f ∈ C(X) be erratic, then, f̂g is a B-C chaos function.

Remark 1  Because ϑ(U) has similar properties to the e(U), it can be verified with ϑ(U) 
that the statements are true. Comparing Theorem 3 with Theorem 4, the fuzzy set con-
taining e(U) at least is perfect for the two theorems to make sense.

Next, we shall discuss the �-expansive property of f̂g.

Theorem  5  Let f : X −→ X be a continuous function and g ∈ Dm(I). Then f is �
-expansive if and only if f̂g is �-expansive.

Proof  (⇒) Since f is �-expansive, for any u, v ∈ F(X) and α ∈ (0, 1], it follows that

Applying f ([A]gα) = [f̂g (A)]α, it follows that

By the Lemma 1, there is c ∈ (0, 1] such that

which implies f̂g is �-expansive.
(⇐) Based on the two following equations:

e(U) ∪ f̂g (e(U)) = e(U) ∪ e(f (U))

⊆ e(U ∪ f (U))

⊆ e(f 2(U))

= f̂ 2g (e(U)).

sup dH (f ([u]α), f ([v]α))

= max
α∈(0,1]

{ sup
x∈[u]α

inf
y∈[v]α

d(f (x), f (y)),

sup
y∈[v]α

inf
x∈[u]α

d(f (x), f (y))}

≥ max
α∈(0,1]

{ sup
x∈[u]α

inf
y∈[v]α

�d(x, y), sup
y∈[v]α

inf
x∈[u]α

�d(x, y)}

= � max
α∈(0,1]

{ sup
x∈[u]α

inf
y∈[v]α

d(x, y), sup
y∈[v]α

inf
x∈[u]α

d(x, y)}

= � sup dH ([u]α , [v]α)

= �d∞(u, v).

d∞(f̂g (u), f̂g (v)) = sup dH ([f̂g (u)]α , [f̂g (v)]α)

= sup dH (f ([u]
g
α), f ([v]

g
α)).

sup dH (f ([u]
g
α), f ([v]

g
α)) = sup dH (f ([u]c), f ([v]c))

≥ �d∞(u, v),

d∞(χ{x},χ{y}) = d(x, y)
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and

it is obvious that f is �-expansive. � �

Corollary 2  If f̂g is �-expansive, � > 1, then f̂g is sensitively dependent.

Proof  Applying the method of induction, it is obvious that

Thus, f̂g is sensitively dependent. � �

Corollary 3  If f is �-expansive, then f̂g is sensitively dependent.

Conclusions
In this paper, exploiting the turbulent and erratic properties, we develop the ideas of 
Román-Flores et al. (2011) and present some properties of e(U) and ϑ(U) for f̂g , which 
can be applied to the proof of Theorem  3 and Theorem  4. Moreover, the �-expansive 
property between f and f̂g is studied and exhibit the sensitivity. Inducing sensitivity on 
fuzzy systems contains asymptotic sensitive, Li-Yorke sensitive and spatial-temporal 
sensitive etc, which will be further investigated and solved in a later work.
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