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Background
The finding of convex hulls is a fundamental issue in computer science, which has been 
extensively studied for many years. Several classic algorithms have been proposed, 
including the Graham scan (Graham 1972), the Jarvis’s march (Jarvis 1973), the divide-
and-conquer algorithm (Preparata and Hong 1977), the Andrew’s monotone chain 
(Andrew 1979), the incremental approach (Kallay 1984), and the QuickHull (Barber 
et al. 1996).

Recently, to speed up the calculating of convex hulls for large sets of points, sev-
eral efforts have been carried out to redesign and implement several commonly used 
CPU-based convex hull algorithms on the GPU. For example, Srikanth et  al. (2009) 
and Srungarapu et al. (2011) parallelized the QuickHull algorithm (Barber et al. 1996) 
to accelerate the finding of two dimensional convex hulls. Based on the QuickHull 
approach, Stein et al. (2012) presented a novel parallel algorithm for computing the con-
vex hull of a set of points in 3D using the CUDA programming model. Tang et al. (2012) 
developed a CPU–GPU hybrid algorithm to compute the convex hull of points in three 
or higher dimensional spaces.

Abstract 

This paper presents an alternative GPU-accelerated convex hull algorithm and a novel 
Sorting-based Preprocessing Approach (SPA) for planar point sets. The proposed convex 
hull algorithm termed as CudaChain consists of two stages: (1) two rounds of pre-
processing performed on the GPU and (2) the finalization of calculating the expected 
convex hull on the CPU. Those interior points locating inside a quadrilateral formed by 
four extreme points are first discarded, and then the remaining points are distributed 
into several (typically four) sub regions. For each subset of points, they are first sorted 
in parallel; then the second round of discarding is performed using SPA; and finally a 
simple chain is formed for the current remaining points. A simple polygon can be easily 
generated by directly connecting all the chains in sub regions. The expected convex 
hull of the input points can be finally obtained by calculating the convex hull of the 
simple polygon. The library Thrust is utilized to realize the parallel sorting, reduction, 
and partitioning for better efficiency and simplicity. Experimental results show that: 
(1) SPA can very effectively detect and discard the interior points; and (2) CudaChain 
achieves 5×–6× speedups over the famous Qhull implementation for 20M points.
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Tzeng and Owens (2012) presented a framework for accelerating the computing of 
convex hull in the divide-and-conquer fashion by taking advantage of QuickHull. Simi-
larly, White and Wortman (2012) described a pure GPU divide-and-conquer parallel 
algorithm for computing 3D convex hulls based on the Chan’s minimalist 3D convex hull 
algorithm (Chan 2003). In Gao et al. (2013), a novel algorithm is proposed to compute 
the convex hull of a point set in R3 by exploiting the relationship between the Voronoi 
diagram and the convex hull. In addition, Gao et al. (2013) designed ffHull, a flip algo-
rithm that allows nonrestrictive insertion of many vertices before any flipping of edges 
and maps well to the massively parallel nature of the modern GPU.

When calculating the convex hull of a set of points, an effective strategy for improving 
computational efficiency is to discard the interior points that have been exactly deter-
mined previously. This strategy is referred to as the preprocessing/preconditioning proce-
dure. The most commonly used preprocessing approach is to form a convex polygon or 
polyhedron using several determined extreme points first and then discard those points 
that locate inside the convex polygon or polyhedron; see Stein et al. (2012), Tang et al. 
(2012), Mei and Xu (2015). The simplest case in two dimensions is to form a convex 
quadrilateral using four extreme points with min or max x or y coordinates and then 
check each point to determine whether it locates inside the quadrilateral; see Akl and 
Toussaint (1978). Recently, several other strategies are also introduced to efficiently dis-
card interior points (Cadenas and Megson 2014; Xing et al. 2014; Gao et al. 2015).

In this paper, the objective is to design and implement an alternative and efficient con-
vex hull algorithm by exploiting the power of GPU. The contributions in this work can be 
summarized as follows: (1) a novel and effective Sorting-based Preprocessing Approach 
(SPA) for discarding interior points is proposed; (2) an efficient GPU-accelerated algo-
rithm termed as CudaChain for finding the convex hulls of planar point sets is also pre-
sented by utilizing the algorithm SPA .

The proposed convex hull algorithm, CudaChain, consists of two stages: (1) two 
rounds of preprocessing performed on the GPU and (2) the finalization of calculating 
the expected convex hull on the CPU. Those interior points that locate inside a quadri-
lateral formed by four extreme points are first discarded; and then the remaining points 
are distributed into several (typically four) sub regions. For each subset of points, they 
are first sorted in parallel; then the second round of discarding is performed using SPA; 
and finally a simple chain is formed for the current remaining points. A simple polygon 
can be easily generated by directly connecting all the chains in sub regions. The expected 
convex hull of the input points can be finally obtained by calculating the convex hull of 
the simple polygon using the Melkman’s algorithm (Melkman 1987).

The algorithm CudaChain is implemented by heavily taking advantage of the library 
Thrust (Bell and Hoberock 2011) for better efficiency and simplicity. Those very efficient 
data parallel primitives such as parallel sorting, reduction, and partitioning that are pro-
vided by Thrust are directly utilized to implement the CudaChain. The use of the library 
Thrust makes the implementation easy to develop.

The presented convex hull algorithm, CudaChain, is tested against the Qhull library 
(Qhull 2015) on various datasets of different sizes using two machines. Experimen-
tal results show that CudaChain achieves 5×–6× speedups on average over the Qhull 
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implementation for 20M points. It hopes that this algorithm is an alternative choice in 
practical applications for the trade-off between its simplicity and efficiency performance.

Methods
Algorithm design

The proposed GPU-accelerated algorithm CudaChain is designed on the basis of the fast 
convex hull algorithm introduced by Akl and Toussaint (1978). The procedure of Cuda-
Chain roughly consists of three steps: (1) a first round of preprocessing is first carried 
out by discarding those points locating inside a quadrilateral formed by four extreme 
points. This commonly used strategy of preprocessing was described in Akl and Tous-
saint (1978); (2) the remaining points are distributed into several (typically four) sub 
regions; and those points in the same region are sorted according to their coordinates; 
then a novel Sorting-based Preprocessing Approach (SPA) is performed to further dis-
card interior points for each sub region and form a simple polygon; (3) the Melkman’s 
algorithm (Melkman 1987) is finally employed to calculate the convex hull of the simple 
polygon. The obtained convex hull is exactly the expected convex hull of the input point 
set. The first and second steps of CudaChain are performed on the GPU, while the third 
is carried out on the CPU.

More specifically, the procedure of the proposed algorithm is listed as follows:

1.	 Find four extreme points that have the max or min x and y coordinates by parallel 
reduction, denote them as Pminx, Pmaxx, Pminy, and Pmaxy

2.	 Determine the distribution of all points in parallel, and discard the points locating 
inside the quadrilateral formed by Pminx, Pminy, Pmaxx, and Pmaxy

3.	 Denote the subset of points locating in the four sub regions, i.e., the lower left, lower 
right, upper right, and upper left as SR1, SR2, SR3, and SR4, respectively

4.	 Sort SR1, SR2, SR3, and SR4 separately in parallel; see Table 1 for the orders of sorting
5.	 Perform the SPA for SR1, SR2, SR3, and SR4 to discard interior points further, and form 

a simple chain for the remaining points in each sub region
6.	 Form a simple polygon by connecting those four chains in counterclockwise (CCW)
7.	 Find the convex hull of the simple polygon using Melkman’s algorithm (Melkman 

1987).

Table 1  Regions and corresponding rules for discarding interior points

Region First point Last point Order of x  
coordinates

Order of y  
coordinates

Rule for discarding

Lower left (R1) Pminx Pminy Ascending Descending Sort x in ascending order first; 
Discard point P according to 
the rule listed in Fig. 2a

Lower right (R2) Pminy Pmaxx Ascending Ascending Sort y in ascending order first; 
Discard point P according to 
the rule listed in Fig. 2b

Upper right (R3) Pmaxx Pmaxy Descending Ascending Sort x in descending order; 
Discard point P according to 
the rule listed in Fig. 2c

Upper left (R4) Pmaxy Pminx Descending Descending Sort y in descending order; 
Discard point P according to 
the rule listed in Fig. 2d
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In the above procedure, the most commonly used strategy for discarding interior points 
is first carried out (i.e., the Steps 1 and 2); and then those remaining points are divided 
into four subsets. After that, each subset of points is sorted separately. The key step in this 
procedure is the second round of discarding interior points and the forming of a simple 
chain for each subset. A simple polygon can be easily created by directly connecting the 
chains; and the expected convex hull can be found using Melkman’s algorithm (Melkman 
1987) which is specifically designed for calculating the convex hull of a simple polygon.

Step 1: Points’ distribution and the first round of discarding The strategy of discard-
ing the interior points locating inside a quadrilateral formed by four extreme points is 
straightforward; see Fig. 1. There is no need to describe this strategy in more details. The 
only remarkable issue is that: to reduce the computational cost, in the process of check-
ing whether a point is interior (i.e., locating in the region R0 in Fig. 1a), the distribution 
of those non-interior points can also be easily determined. For all points, the following 
simple method is adopted to determine their distributions:

(1)	if point P lies on the right side of the directed line PminxPminy, then it falls in the 
region R1;

(2)	else if P lies on the right side of the directed line PminyPmaxx, then it falls in the region 
R2;

Pminx

Pminy

Pmaxx

Pmaxy

R1

R2

R3

R4

R0

Left

Left

Right

Right
Upper

Lower

Pminx

Pmaxy

Pminy

Pmaxx

a

b
Fig. 1  The distribution of points and the first round of discarding. a The four extreme points; b The four sub-
regions
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(3)	else if P lies on the right side of the directed line PmaxxPmaxy, then it falls in the region 
R3;

(4)	else if P lies on the right side of the directed line PmaxyPminx, then it falls in the region 
R4;

(5)	else P falls in the region R0.

After the above procedure of determination, all points are distributed into five regions. 
Those points in the region R0 are interior ones, and need to be directly discarded in this 
step, while the remaining points in the other four regions should be taken into consid-
eration for calculating the convex hull.

Step 2: Second round of discarding and forming simple polygon This section will 
describe a novel sorting-based preprocessing approach that is specifically applicable to 
the previously sorted points. This method is termed as the SPA. The rules for discarding 
interior points in those four sub regions, i.e., lower left (R1), lower right (R2), upper right 
(R3), and upper left (R4), are presented in Fig. 2 and Table 1.

The correctness of SPA for each sub region is demonstrated in Fig. 3. For the region 
R1, the first point and the last point are the Pminx and Pminy, respectively; see Fig.  3a. 
Assuming the point Pi has been determined to be non-interior, and now it is checking 
the point P according to the relationship between Pi and P. Since all the points in the 
region R1 have been sorted in the ascending order of x coordinates, thus xP > xPi; and if 
yPi is larger than yP, then the point P must be located in the shaded triangular area; and 
obviously it also falls in the triangle formed by three points Pi, Pminy, and Pminx. Hence, 
the point P must be an interior one and needs to be discarded. The correctness of SPA 
for other three regions can also be explained similarly.

The forming of the chain in the upper left region (R3) is also illustrated as an example; 
see Fig. 4. Previously, seven points have been sorted in the descending order of x. The 
point P1 is first checked; and obviously it is not an interior point according the rule pre-
sented in the Fig. 2c. Similarly, it is also found that the point P2 is an exterior point and 
needs to be kept. However, the point P3 is an interior point since its y coordinate is less 
than that of the point P2; and obviously, the point P3 locates inside the triangle formed 

n1 = number of points in the region R1

t = y0

for i = 1 to i < n1 - 1 do
if yi > t, then point Pi is interior 
else t = yi

end  

n2 = number of points in the region R2

t = x0

for i = 1 to i < n2 - 1 do
if xi < t, then point Pi is interior 
else t = xi

end  

n3 = number of points in the region R3

t = y0

for i = 1 to i < n3 - 1 do
if yi < t, then point Pi is interior 
else t = yi

end  

n4 = number of points in the region R4

t = x0

for i = 1 to i < n4 - 1 do
if xi > t, then point Pi is interior 
else t = xi

end  

a

c

b

d

Fig. 2  The rules for discarding interior points of the SPA. a Rules for discarding points in the low left sub-
region; b Rules for discarding points in the low right sub-region; c Rules for discarding points in the upper 
right sub-region; d Rules for discarding points in the upper left sub-region
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by the first point (i.e., the point Pmaxx), the last point (i.e., the point Pmaxy), and P2. After 
discarding the point P3, the point P4 can also be discarded, while both the points P5 and 
P6 are not exterior points. However, for that the coordinate y of the point P7 is less than 
that of the point P6, it also should be removed.

Step 3: Calculating the convex hull of simple polygon the output of the previous step 
is a simple polygon, which is also an approximate convex hull. To calculate the exact 
convex hull of the input point set, the fast algorithm introduced by Melkman (1987) is 
chosen to compute the convex hull of the simple polygon. The convex hull of the simple 
polygon is the convex hull of the input data set; see Fig. 5.

Proof of correctness

As described in “Algorithm design” section, the proposed convex hull algorithm is com-
posed of two stages, and has three main steps, including two rounds of preprocessing 
procedures on the GPU and the finalization of computing the expected convex hull on 
the CPU. Here the correctness of each step is analyzed to demonstrate the correctness of 
the entire algorithm.

The first round of preprocessing

This pass of preprocessing is carried out to discard those points that locate inside a con-
vex quadrilateral formed by four extreme points with min or max x or y coordinates. 
This preconditioning method is first introduced by Akl and Toussaint (1978), and is also 
used as the initiation/first step in the famous convex hull algorithm, QuickHull (Barber 
et al. 1996), for two-dimensions. According to the definition of convex hull, the correct-
ness of this preprocessing procedure can be obviously guaranteed since the points locat-
ing inside a convex polygon formed by other points are not the extreme points and thus 
can be directly discarded.

X

Y
Pminx

Pminy

Pi

P

X

Y

Pminx

Pmaxy
Pi

P

X

Y

Pminy

Pmaxx

Pi

P

X

Y

Pmaxx

Pmaxy

Pi

P

ba

dc
Fig. 3  Demonstrations for the correctness of discarding interior points in the method SPA. a The region R1; b 
the region R2; c the region R3; d the region R4
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Fig. 4  A simple example of forming the chain in the upper left region (The eight steps of forming the chain 
in the upper left region are illustrated in the subfigures a–h, respectively)

a

b
Fig. 5  The convex hull of a simple polygon. a A simple polygon; b The desired convex hull
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The second round of preprocessing (SPA)

This pass of preprocessing is performed to further discard interior points. The basic idea 
behind the SPA is to identify interior/non-extreme points according to the monotonic-
ity of x and y coordinates for the remaining points in each sub region. The following two 
efforts are carried out to demonstrate the correctness of SPA:

1.	 It will be proved that: in each sub region there exists monotonicity of the x and y 
coordinates for the extreme points of a Convex Hull.

2.	 It will be also proved that: if those points in each sub region do not satisfy the prop-
erty of being both x- and y-monotone, then they are non-extreme points and thus 
can be discarded.

The second effort for proving the correctness has been presented in “Algorithm design” 
section. Here it only proves that: in each sub regions, there exists monotonicity of the x 
and y coordinates for the extreme points of a convex hull.

Before proving the correctness of discarding interior points using SPA, the follow-
ing definitions are given. Note that the definitions of monotone polygon and monotone 
chain slightly differ from the corresponding versions presented in Chan (1996).

• • Simple polygon A closed region of the plane enclosed by a simple cycle of straight 
line segments. A polygon is simple if it contains no holes, i.e., its boundary consists 
of a single closed chain.

• • Monotone polygon “A simple polygon is monotone if there exist two extreme vertices 
in a preferred direction (such as Pymax, Pymin if the y direction is preferred) such that 
they are connected by two polygonal chains monotonic in this direction (Toussaint 
1984).”

• • A chain is monotone with respect to a straight line l where the vertices in the chain 
and their projections on l can appear in the same order. A chain or polygon that is 
monotone with respect to the y-axis is called y-monotone.

• • Convex polygon A simple polygon in which any two boundary points can be joined 
by a segment that lies completely within P .

• • The internal angle at each boundary point of a convex polygon is less than 180 
degrees. A convex polygon is monotone with respect to all directions (Preparata and 
Shamos 1985).

• • Convex hull in 2D The convex hull of a finite set of points S in the plane is the small-
est convex polygon P that encloses S .

According to the above definitions, the following relationship can be easily obtained: 
Convex hull in 2D ⊂ Convex polygon ⊂ Monotone polygon ⊂ Simple polygon, where the 
symbol ⊂ means “belongs to” or “is contained in”.

Lemma 1  A convex hull in 2D is monotone with respect to all directions.

Proof  It has been proved that a convex polygon is monotone with respect to all direc-
tions (Preparata and Shamos 1985). Therefore, as one type of convex polygon, a convex 
hull in 2D is also a monotone polygon with respect to all directions. � �
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Lemma 2  The polygonal chains obtained by dividing a 2D convex hull using the left-
most, bottommost, rightmost, and topmost extreme points are both x- and y-monotone.

Proof  Typically, four polygonal chains can be obtained by dividing a 2D convex hull 
using the above mentioned four extreme points. Here it only considers this general case 
for this proving. Let C1, C2, C3, and C4 denote the lower left, lower right, upper right, and 
upper left chains, respectively; see Fig. 6a.

Pmaxx

Pminx

Pmaxy

Pminy

Lower Left
Chain (C1)

Upper Left
Chain (C4)

Lower Right
Chain (C2)

Upper Right
Chain (C3)

Pmaxx

Pminx
Pminx

Pmaxx

x-axis

Pmaxy

Pminy

Pmaxy

Pminy

y-axis

a

b

c

Fig. 6  Demonstration of monotonicity. a Dividing of chains, b Proving of x-monotonicity, c Proving of 
y-monotonicity
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First, it will prove that the four polygonal chains are x-monotone. Recall that a con-
vex hull is monotone with respect to any directions such as x and y; see Lemma 1. In 
other words, a convex hull is both x-monotone and y-monotone. When the x direction 
is preferred, then according to the definition of monotone polygon described above, 
two extreme points with respect to the preferred x direction, i.e., the leftmost point 
(Pminx ) and rightmost point (Pmaxx), can be used to split the boundary of convex hull 
into two x-monotone chains (i.e., the lower and the upper) such that the x-coordinates 
of the points of a single polygonal chain are monotonically increasing or decreasing; see 
Fig. 6b. Obviously, the lower left chain (C1) and the lower right chain (C2) are part of the 
lower monotone polygonal chain, and thus are x-monotone. Similarly, because both the 
upper left chain (C3) and the upper right chain (C4) are derived from the upper mono-
tone polygonal chain, they are x-monotone.

Second, it will prove that the four polygonal chains are y-monotone. Similar to the first 
step of proving, by using two extreme points with respect to the preferred y direction 
(i.e., Pminy and Pmaxy), a convex hull can be also decomposed into two monotone polygo-
nal chains (i.e., the left and the right) such that the y-coordinates of the points of a single 
polygonal chain are monotonically increasing or decreasing; see Fig. 6c. The lower left 
(C1) and the upper left (C4) are part of the left monotone polygonal chain, and thus are 
y-monotone, while the lower right chain (C2) and the upper right chain (C3) are y-mono-
tone since they are part of the right monotone polygonal chain. � �

Remark  It has been proved that the ordered points in the chains derived from a convex 
polygon, i.e., C1, C2, C3, and C4, are monotonic to the x-axis and y-axis; see Lemma 2. 
In other words, the x- or y-coordinates of the points in a single polygonal chain always 
increase or decrease. This property has been listed in Table 1. In SPA, the detecting and 
discarding of interior points are performed according to the above property.

However, a polygonal chain consisting of an ordered list of points that are monotonic 
to the x-axis and y-axis cannot be guaranteed to form a convex polygon or even a convex 
hull. Furthermore, even if a polygon is both x- and y- monotone, it cannot be guaranteed 
to be a convex polygon; see counterexamples in Figs. 7c and 8c.

The above behavior also suggests that: NOT all interior points can be identified and 
then discarded using the SPA; some interior points that are capable of satisfying the 
property of being both x- and y- monotone still exist.

In summary, (1) in each sub region, those remaining points that do not satisfy the 
property of being both x- and y- monotone MUST be interior points, and thus can be 
discarded; (2) in each sub region, those remaining points that satisfy the property of 
being both x- and y- monotone CAN be extreme or interior points.

The finalization of computing convex hull

After performing the SPA, typically four chains can be easily formed by simply con-
nected the sorted points in each sub region, and then are used to form a simple polygon. 
The forming of the polygonal chains and simple polygon can obviously be achieved suc-
cessfully. After that, the use of Melkman’s algorithm (Melkman 1987) can guarantee the 
success of finalizing the calculation of convex hull.  
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Implementation details

In this section, more details about the implementation of the proposed algorithm will be 
described. The implementation has both the CPU side (host) and the GPU side (device) 

ba

dc
Fig. 7  A simple example of computing the convex hull of 1000 points distributed in a square. a Input point 
set. b Remaining points after first filtering. c Remaining points after second filtering. d Convex hull

a b

c d
Fig. 8  A simple example of computing the convex hull of 1000 points distributed in a circle. a Input point 
set. b Remaining points after first filtering. c Remaining points after second filtering. d Convex hull
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code. The code on the CPU side is developed to compute the convex hull of a simple 
polygon, which is relatively simple and easy to implement when compared to the code 
on the GPU side. Thus, implementation details are focused on the development of the 
GPU side code.

The implementation on the GPU side is developed by heavily taking advantage of the 
library Thrust for better efficiency and simplicity when using the data-parallel algorithm 
primitives. Currently, several GPU-accelerated libraries have been designed to provide 
data-parallel algorithm primitives such as parallel scan, parallel sort and parallel reduc-
tion. Such libraries include Thrust (Graham 1972; CUDPP 2015; CUB 2015). For that the 
library Thrust has been integrated in CUDA since version 4.0, it is very easy and con-
venient to use Thrust directly in CUDA. Hence, the library Thrust rather than the other 
two libraries are chosen to implement the proposed algorithms.

Performing the first round of discarding on the GPU

The first step of discarding the interior points locating inside the quadrilateral formed 
by four extreme points is to find those points with the min or max x/y coordinates. In 
sequential programming pattern, a loop over all input points needs to be carried out 
to find the min or max values. In parallel programming pattern, the finding of min or 
max values in a vector can be efficiently achieved by performing a parallel reduction. 
Thrust provides such common data-parallel primitive and several easy-to-use interface 
functions. two functions, i.e., thrust::min_element() and thrust::max_ele-
ment(), are used to efficiently find the min and max coordinates of all points in parallel; 
see lines 11–14 in Fig. 9.

To avoid the transformation between device memory and host memory, the memory 
addresses of the coordinates of extreme points and all input points that reside on the 
GPU are directly obtained using the function thrust::raw_pointer_cast(), and 
then pass as the launch arguments for the kernel kernelPreprocess; see lines 24–28 
in Fig. 9.

A CUDA kernel, kernelPreprocess, is specifically designed to determine in 
which region a point falls. Each thread is responsible for calculating the position of a 
point; and the results are stored in an array d_pos[n]. The method for determining the 
distribution of points is introduced in “Algorithm design” section. An integer is used as 
an indicator of the position. For example, if a point Pi locates inside the region R1, then 
the value d_pos[i] is set to 1; and the indicator value of an interior point is 0. All the 
points that are not in the region R0 are called exterior or remaining points. A simple 
example is presented in Fig. 10a.

Performing the second round of discarding on the GPU

The second round of discarding can be roughly divided into four steps: (1) perform four 
parallel partitioning for all points according to their positions, (2) sort the points in each 
region separately, (3) invoke a kernel for each region to discard the interior points using 
the method SPA, and (4) perform another parallel partitioning for all exterior points.

The first step, parallel partitioning, is carried out to gather those points in the same 
region together for subsequent procedure of sorting. After partitioning, the points that 
locate in the same region reside in a consecutive segment; see Fig.  10b. In this case, 



Page 13 of 26Mei ﻿SpringerPlus  (2016) 5:696 

parallel sorting can be performed for each segment of points. Noticeably, it is decided 
to partition and sort each segment of points in place to minimize the cost of memory 
space.

After parallel sorting, a kernel is designed for each region to discard the interior 
points using the method SPA. There is only one thread block within the kernel’s thread 
grid. Each thread in the only thread block is responsible for checking consecutive (m 
+ BLOCK_SIZE −  1)/BLOCK_SIZE points in the same region, where m is the num-
ber of points in a region for being checked, and BLOCK_SIZE represents the number of 

 1 // input : thrust::host_vector<float> x, y
 2 // output: thrust::host_vector<float> hull_x, hull_y
 3
 4 int n = x.size(); // Number of input points
 5
 6 thrust::device_vector<float> d_x = x; // Array for storing x on GPU
 7 thrust::device_vector<float> d_y = y; // Array for storing y on GPU
 8 thrust::device_vector<int> d_pos(n); // Indicators of distribution
 9
10 typedef thrust::device_vector<float>::iterator floatIter;
11 floatIter minx = thrust::min_element(d_x.begin(), d_x.end()); // min X
12 floatIter maxx = thrust::max_element(d_x.begin(), d_x.end()); // max X
13 floatIter miny = thrust::min_element(d_y.begin(), d_y.end()); // min Y
14 floatIter maxy = thrust::max_element(d_y.begin(), d_y.end()); // max Y
15
16 thrust::device_vector<float> d_extreme_x(4); // X of extreme points
17 thrust::device_vector<float> d_extreme_y(4); // Y of extreme points
18
19 d_extreme_x[0] = *minx; d_extreme_y[0] = d_y[minx - d_x.begin()];
20 d_extreme_x[1] = d_x[miny - d_y.begin()]; d_extreme_y[1] = *miny;
21 d_extreme_x[2] = *maxx; d_extreme_y[2] = d_y[maxx - d_x.begin()];
22 d_extreme_x[3] = d_x[maxy - d_y.begin()]; d_extreme_y[3] = *maxy;
23
24 float * d_extreme_x_ptr = thrust::raw_pointer_cast(&d_extreme_x[0]);
25 float * d_extreme_y_ptr = thrust::raw_pointer_cast(&d_extreme_y[0]);
26 float * d_x_ptr = thrust::raw_pointer_cast(&d_x[0]);
27 float * d_y_ptr = thrust::raw_pointer_cast(&d_y[0]);
28 int * d_pos_ptr = thrust::raw_pointer_cast(&d_pos[0]);
29
30 // Kernel for determining points' distribution
31 kernelPreprocess<<<(n + 1023) / 1024, 1024>>>(d_extreme_x_ptr, d_extreme_y_ptr,
32 d_x_ptr, d_y_ptr, d_pos_ptr, n);
33
34 // Create some zip_iterators
35 typedef thrust::device_vector<int>::iterator intIter;
36 typedef thrust::tuple<floatIter, floatIter, intIter> pointIterTuple;
37 typedef thrust::zip_iterator<pointIterTuple> pointIter;
38 pointIter P_first = thrust::make_zip_iterator(
39 make_tuple(d_x.begin(), d_y.begin(), d_pos.begin()));
40 pointIter P_last = thrust::make_zip_iterator(
41 make_tuple(d_x.end(), d_y.end(), d_pos.end()));
42
43 // Partition to gather points in the same region together
44 pointIter first_of_R0 = thrust::partition(P_first, P_last, is_interior);
45 pointIter first_of_R2 = thrust::partition(P_first, first_of_R0-1, is_region_1);
46 pointIter first_of_R3 = thrust::partition(first_of_R2, first_of_R0-1, is_region_2);
47 pointIter first_of_R4 = thrust::partition(first_of_R3, first_of_R0-1, is_region_3);
48
49 // Sort Partly in each region using sort_by_key()
50 // Region 1 : ascending X      Region 3 : descending X
51 // Region 2 : ascending Y      Region 4 : descending Y
52 thrust::sort_by_key(...); ...
53
54 // Kernels for 2nd round of discarding (SPA)
55 kernelCheck_R1<<<1, BLOCK_SIZE>>>(d_y_ptr, d_pos_ptr, ...); // Only Y
56 kernelCheck_R2<<<1, BLOCK_SIZE>>>(d_x_ptr, d_pos_ptr, ...); // Only X
57 kernelCheck_R3<<<1, BLOCK_SIZE>>>(d_y_ptr, d_pos_ptr, ...); // Only Y
58 kernelCheck_R4<<<1, BLOCK_SIZE>>>(d_x_ptr, d_pos_ptr, ...); // Only X
59
60 // Partition again and then Copy
61 pointIter P_valid = thrust::stable_partition(P_first, first_of_R0, is_interior());
62 n = P_valid - P_first; // Number of vertices of the output Simple Polygon
63 thrust::copy_n(thrust::get<0>(pos_R1), n, hull_x.begin());
64 thrust::copy_n(thrust::get<1>(pos_R1), n, hull_y.begin());

Fig. 9  The implementation of the proposed algorithm (CudaChain)
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threads in the only block. In this implementation, BLOCK_SIZE is set to 1024 according 
to the compute capability of the adopted GPU. After checking and discarding interior 
points using SPA, some previous exterior points have been determined as interior ones; 
and their corresponding indicator values are modified to 0; see Fig. 10c.

In this implementation, only one thread block is allocated in the discarding of interior 
points using the proposed method SPA due to the data dependency issue in the discard-
ing. When checking whether a point in a specific region such as the region R1, the y 
coordinate of the point being checked is compared to that of the current last point of the 
formed chain; see Fig. 2a. This means the checking for a point, e.g., Pi, depends on the 
checking of the previous point Pi−1. It also means the checking for a set of consecutive 
points can only be performed in a sequential pattern. However, it is able to first divide a 
large set of consecutive points into some smaller subsets of consecutive points, and then 
perform the checking in parallel for each subset of points separately. This solution is in 
the divide-and-conquer fashion, which is also adopted in the proposed algorithm. How-
ever, it is not able to determine the optimal size of a subset of points or the number of all 
subsets. Thus, it is decided to divide a large set of consecutive points into BLOCK_SIZE 
subsets, while each subset contains (m + BLOCK_SIZE - 1)/BLOCK_SIZE points; and 
then, the checking for all the BLOCK_SIZE subsets is carried out in parallel.

The final step is to re-partition and copy the coordinates of the exterior points 
in current stage for outputting. Noticeably, to preserve the relative order of the 
sorted points, the function thrust::stable_partition() rather than 
thrust::partition() is used to compact the exterior points; see lines 60–64 in 
Fig. 9. After the stable partitioning, the remaining exterior points are stored consecu-
tively and can be easily copied in parallel for being used on the host side (on the CPU); 
see Fig. 10d.

Results
The proposed convex hull algorithm has been tested against the Qhull library (Qhull 
2015) on various datasets of different sizes using two machines. The first machine fea-
tures an Intel i7-3610QM processor (2.30  GHz), 6  GB of memory and a NVIDIA 
GeForce GTX660M graphics card. The other machine has an Intel i5-3470 processor 
(3.20  GHz), 8GB of memory and a NVIDIA GeForce GT640 (GDDR5) graphics card. 
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Fig. 10  The second round of discarding interior points
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The graphics card GTX 660M has 2 GB of RAM and 384 cores; and the GT640 graph-
ics card has 1 GB of RAM and 384 cores. All the experimental tests have been evaluated 
using the CUDA toolkit version 5.5 on Window 7 Professional. Note that the complete 
source code, an input sample test data, and the corresponding output result are provided 
as the supplementary materials (see Additional files 1, 2, and 3).

Three groups of datasets have created for testing. The first group includes 8 sets of 
randomly distributed points in a square that are generated using the rbox component in 
Qhull. Similarly, the second group is composed of 8 sets of randomly distributed points 
in a circle. The third group consists of 10 point sets that are derived from 3D mesh mod-
els by projecting the vertices of each 3D model onto the XY plane. These mesh mod-
els presented in Fig. 11 are directly obtained from the Stanford 3D Scanning Repository 
(http://www.graphics.stanford.edu/data/3Dscanrep/) and the GIT Large Geometry 
Models Archive (http://www.cc.gatech.edu/projects/large_models/). Three application 
examples of computing the convex hulls for points derived from the mesh models Arma-
dillo, Angel, and Skeleton Hand are presented in Fig. 12.

Note that the running time presented in this work includes the overhead of transfer-
ring data between the host side (CPU) and the device side (GPU).

Efficiency on the GTX 660M

The running time on the GPU GTX 660M of three groups of testing data, i.e., the group 
of randomly distributed point sets in squares, the groups of point sets in circles, and the 
group of point sets derived from 3D models, is listed in Tables 2, 3 and 4, respectively. To 
evaluate the computation load between the GPU side and the CPU side of the algorithm 
CudaChain, the running time is evaluated separately for both of the two sides and calcu-
late the workload percentage of the CPU side; see Fig. 13.

Fig. 11  3D mesh models from Stanford 3D Scanning Repository and GIT large geometry models archive. 
From the left to the right, the models are: Armadillo, Angel, Skeleton Hand, Dragon, Happy Buddha, Turbine 
Blade, Vellum Manuscript, Asian Dragon, Thai Statue, and Lucy

http://www.graphics.stanford.edu/data/3Dscanrep/
http://www.cc.gatech.edu/projects/large_models/
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For all the three groups of experimental tests, the experimental results show that: 
for small size of testing data, the Qhull is faster than the proposed CudaChain, while 
CudaChain is much faster than Qhull for the large size of testing data. The speedups of 
CudaChain over Qhull become larger with the increasing of the data size. The speedup is 
about 3×–4× on average and 5×–6× in the best cases.

The workload percentage of the CPU side is much smaller than that on the GPU side; 
and it decreases for the group of randomly point sets when the data size increases. In 
addition, the workload percentage of the CPU side is usually less than 10 %, except for 
the test of the model Happy Buddha.

Furthermore, the workload of three main steps, i.e., the first discarding, the second dis-
carding, and the finalization of computing convex hull are evaluated for the third group 
of tests; see Table 5. The results indicate that: (1) the most computationally expensive 

Fig. 12  The calculating of convex hulls for the points derived from the models Armadillo, Angel, and Skel-
eton Hand
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step is the second one, while the computationally cheapest step is the third one; (2) when 
the size of input data becomes bigger, the workload percentage of the first step increases, 
and the workload percentage of the second step decreases.

Table 2  Comparison of  running time (/ms) for  point sets distributed in  squares on  GTX 
660M

Size Qhull CudaChain Speedup

Total GPU CPU CPU(%)

100k 27 42.5 39.6 2.9 6.82 0.64

200k 52 45.9 43.1 2.8 6.10 1.13

500k 124 65.6 61.4 4.2 6.40 1.89

1M 237 75.0 70.8 4.2 5.60 3.16

2M 426 129.1 123.2 5.9 4.57 3.30

5M 605 174.8 169.4 5.4 3.09 3.46

10M 1171 351.8 345.9 5.9 1.68 3.33

20M 2353 587.4 581.9 5.5 0.94 4.01

Table 3  Comparison of  running time (/ms) for  point sets distributed in  circles on  GTX 
660M

Size Qhull CudaChain Speedup

Total GPU CPU CPU(%)

100k 31 54.0 50.3 3.7 6.85 0.57

200k 62 65.5 61.2 4.3 6.56 0.95

500k 156 78.1 73.4 4.7 6.02 2.00

1M 225 95.0 90.2 4.8 5.05 2.37

2M 430 126.8 121.7 5.1 4.02 3.39

5M 982 193.0 187.5 5.5 2.85 5.09

10M 1897 317.9 311.5 6.4 2.01 5.97

20M 3811 543.6 536.6 7.0 1.29 7.01

Table 4  Comparison of running time (/ms) for point sets derived from 3D models on GTX 
660M

3D Model Size Qhull CudaChain Speedup

Total GPU CPU CPU(%)

Armadillo 172k 47 39.7 37.6 2.1 5.29 1.2

Angel 237k 51 41.6 38.7 2.9 6.97 1.2

Skeleton hand 327k 77 45.4 41.5 3.9 8.59 1.7

Dragon 437k 98 59.8 53.9 5.9 9.87 1.6

Happy Buddha 543k 123 68.7 59.6 9.1 13.25 1.8

Turbine blade 882k 202 73.9 67.5 6.4 8.66 2.7

Vellum manuscript 2M 392 90.6 86.9 3.7 4.08 4.3

Asian dragon 3M 492 101.7 97.9 3.8 3.74 4.8

Thai statue 5M 547 106.0 102.4 3.6 3.40 5.2

Lucy 14M 1481 245.2 240.9 4.3 1.75 6.0
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Efficiency on the GT 640

On the machine with the GPU GT640, the running time of three groups of testing data is 
listed in Tables 6, 7 and 8. Similar to those experimental results obtained on the machine 
with the GTX 660M, for small size of testing data, the Qhull is also faster than the algo-
rithm CudaChain, while CudaChain is much faster than Qhull for the large size of test-
ing data. The speedups of CudaChain over Qhull also become larger with the increasing 
of the data sizes; see Fig. 14. The speedup is about 3×–4× on average and 4×–5× in the 
best cases. Noticeably, for the largest model Lucy, the speedup is 5.2× on the GT 640, 
while it is 6× on the GTX 660M.

The experimental results obtained on the machine with the GT 640 also indicate that: 
the workload percentage of the CPU side is much smaller than that of the GPU side; 
and it decreases for the group of randomly point sets when the data size increases. The 
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Fig. 13  The efficiency of CudaChain on the GPU GTX 660M against CPU-based Qhull using the same data-
sets and the same machine. a Point sets distributed in squares; b Point sets distributed in circles; c Point sets 
derived from 3D models
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behaviors are the same as those on the GTX 660M. Furthermore, the workload percent-
age of the CPU side is usually also less than 10 %, except for the test of the model Happy 
Buddha.

Table 5  Workload of three main steps for point sets derived from 3D models on GTX 660M

(1) The first step is the first round of discarding on the GPU. The second step is the second round of discarding on the GPU. 
The third step is the finalization of computing the convex hull on the CPU. (2) The running time of the first step includes the 
overhead of transferring data from the host side to the device side; and the running time of the second step includes the 
overhead of transferring data from the device side back to the host side

3D Model Size Running time (/ms) Percentage of running time

First step Second step Third step Total First step Second step Third step

Armadillo 172k 4.3 33.3 2.1 39.7 10.83 83.88 5.29

Angel 237k 4.8 33.9 2.9 41.6 11.54 81.49 6.97

Skeleton hand 327k 4.9 36.6 3.9 45.4 10.79 80.62 8.59

Dragon 437k 6.6 47.3 5.9 59.8 11.04 79.10 9.87

Happy Buddha 543k 7.3 52.3 9.1 68.7 10.63 76.13 13.25

Turbine blade 882k 8.4 59.1 6.4 73.9 11.37 79.97 8.66

Vellum manuscript 2M 11.7 75.2 3.7 90.6 12.91 83.00 4.08

Asian Dragon 3M 16.4 81.5 3.8 101.7 16.13 80.14 3.74

Thai statue 5M 21.0 81.4 3.6 106.0 19.81 76.79 3.40

Lucy 14M 60.7 180.2 4.3 245.2 24.76 73.49 1.75

Table 6  Comparison of running time (/ms) for point sets distributed in squares on GT 640

Size Qhull CudaChain Speedup

Total GPU CPU CPU(%)

100k 15 25.5 24.2 1.3 5.10 0.59

200k 16 29.1 27.9 1.2 4.12 0.55

500k 47 40.4 38.4 2.0 4.95 1.16

1M 109 46.9 44.6 2.3 4.90 2.32

2M 202 83.5 81.2 2.3 2.75 2.42

5M 515 147.0 144.5 2.5 1.70 3.50

10M 1034 321.9 319.7 2.2 0.68 3.21

20M 2215 544.4 541.5 2.9 0.53 4.07

Table 7  Comparison of running time (/ms) for point sets distributed in circles on GT 640

Size Qhull CudaChain Speedup

Total GPU CPU CPU(%)

100k 16 25.9 24.4 1.5 5.8 0.62

200k 31 28.3 26.7 1.6 5.7 1.10

500k 62 33.3 31.7 1.6 4.8 1.86

1M 134 50.0 48.2 1.8 3.6 2.68

2M 258 74.6 72.6 2.0 2.7 3.46

5M 652 148.6 146.4 2.2 1.5 4.39

10M 1337 263.2 260.8 2.4 0.9 5.08

20M 2626 492.8 489.7 3.1 0.6 5.33
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Effectiveness of discarding interior points

 There are two rounds of discarding in the algorithm CudaChain. To evaluate the effec-
tiveness of the proposed preprocessing method SPA, the remaining points after each 
round of discarding are counted; and then the effectiveness of two rounds of discarding 
is accordingly compared. The results presented in Fig. 15 show that SPA can dramati-
cally reduce the number of remaining points and thus improve the overall efficiency of 
CudaChain. In addition, the effectiveness of discarding interior points by SPA becomes 
better with the increasing of the data size.

Discussion
Comparison

The algorithm CudaChain has been tested on two different machines with different 
GPUs. The efficiency performances of CudaChain on the two machines are almost the 
same. This result is due to the fact that the two GPUs, i.e., GTX 660M and GT 640, have 
the similar compute capability. However, the speedups of CudaChain over the imple-
mentation Qhull on two machines slightly differ. This behavior is lead by the different 
efficiency performance of CPU-based Qhull on the two machines.

One of the most important ideas behind our algorithm CudaChain is first to sort all 
points according to their x coordinates and then compute the convex hull of the sorted 
points in the Divide-and-Conquer fashion.

Both the sorting of points and the calculation of convex hull of sorted points are per-
formed in parallel by exploiting the massively computing capability of modern GPU.

There exist some of other similar parallel algorithms designed for calculating the con-
vex hulls of sorted points. In this subsection, we will theoretically analyze two classical 
ones of those parallel algorithms and compare with our algorithm.

Akl (1984) first presented an optimal parallel algorithm for sorting points in the plane, 
and then designed another optimal parallel algorithm for computing the convex hull of 
the sorted points in the plane. S. G. Akl also calculated the convex hull of sorted points 
in parallel by adopting the strategy of Divide-and-Conquer.

Table 8  Comparison of  running time (/ms) for  point sets derived from  3D models on  GT 
640

3D Model Size Qhull CudaChain Speed up

Total GPU CPU CPU (%)

Armadillo 172k 15 26.5 25.0 1.5 5.66 0.6

Angel 237k 16 28.0 26.4 1.6 5.71 0.6

Skeleton hand 327k 31 29.6 27.8 1.8 6.08 1.0

Dragon 437k 47 35.1 31.8 3.3 9.40 1.3

Happy Buddha 543k 62 42.1 37.4 4.7 11.16 1.5

Turbine blade 882k 78 46.3 42.8 3.5 7.56 1.7

Vellum manuscript 2M 218 78.5 75.4 3.1 3.95 2.8

Asian Dragon 3M 343 102.5 98.8 3.7 3.61 3.3

Thai statue 5M 468 105.5 101.9 3.6 3.41 4.4

Lucy 14M 1295 248.8 244.5 4.3 1.73 5.2
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To calculate the upper hull or the lower hull, S. G. Akl first divides the input planar 
points into two subsets (i.e., the left and the right) with approximately equal size using a 
median vertical line, and then found the unique edge intersecting the vertical line, where 
the unique edge is formed by connected one point from the left subset and the other 
point from the right subset. The above procedure is recursively carried out until no more 
unique edges can be found.

Compare S. G. Akl’s algorithm with our algorithm, in both algorithms it needs to sort 
the planar input points in parallel according to the x coordinates. The essential differ-
ence between those two algorithms is the process of computing the convex hull of sorted 
points.
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Fig. 14  The efficiency of CudaChain on the GPU GT 640 against CPU-based Qhull using the same datasets 
and the same machine. a Point sets distributed in squares; b Point sets distributed in circles; c Point sets 
derived from 3D models
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When computing the convex hull in S. G. Akl’s algorithm, the upper hull and the lower 
hull are separated calculated by finding the unique edges; and then the desired final con-
vex hull is the merging of the upper hull and the lower hull.

In our algorithm, we also divide the potential convex hull into the upper and the lower 
ones; but further we split both the upper and the lower into the left part and the right 
part, and thus obtain four parts / chains, i.e., the right upper, the left upper, the right 
lower, and the left lower.

For each part, e.g., the right upper, we first filter / remove non-extreme points accord-
ing to the sorted coordinates and then calculate the chain of the rest points. We do not 
directly find the chain of the upper hull or the lower hull, but first to remove some unde-
sired points. In contrast, in S. G. Akl’s algorithm, the chain of the upper hull or the lower 
hull is directly found, i.e., the finding of unique edges.
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Recently, Nakagawa et al. (2009) also developed a simple parallel algorithm for com-
puting the upper hull of n sorted points. They first split the input sorted points into sev-
eral subsets, then found the upper chain of each subset in parallel, and finally merged 
those upper chains using tangent edges to obtain the desired upper hull. They also 
employed a parallel algorithm to sort the planar input points before calculating the con-
vex hulls.

Apparently, the strategy of Divide-and-Conquer is also utilized in Nakagawa’s 
algorithm.

Nakagawa’s parallel algorithm is computationally straightforward, and easy to imple-
ment on the multicore processors architecture. In addition, Nakagawa et  al. (2009) 
demonstrated that their parallel algorithm can achieve acceptable speedups over the 
corresponding serial algorithm.

As mentioned above, in our algorithm, we do not directly obtain the upper hull or 
lower hull of the sorted points, but attempt to first remove some non-extreme points 
and then calculate the desired upper or lower hull / chain.

Similar idea is behind the Nakagawa’s parallel algorithm. They first divided the input 
sorted points into several subsets and then calculated the chain of each subset. In this 
procedure of calculating the chains, some non-extreme points are in fact checked and 
filtered. This is due to the fact that: if a point is not temporarily an extreme point of 
the “local” chain of the subset of points, then it is definitely not the extreme points of 
the “global” chain of all the points. Thus, in the parallel calculating of the “local” chains, 
some non-extreme points are implicitly determined and filtered.

In summary, all of our algorithm CudaChain, Akl’s algorithm (Akl 1984), and Naka-
gawa’s algorithm (Nakagawa et al. 2009) follow the Divide-and-Conquer paradigm. And 
these three algorithms are specifically designed to calculate the convex hulls of sorted 
points in parallel. The essential difference is the method of calculating the lower or the 
upper hull / chain.

Compared to other existing GPU-accelerated convex hull algorithms such as those 
implemented by parallelizing the QuickHull algorithm on the GPU (Srikanth et al. 2009; 
Srungarapu et  al. 2011; Tzeng and Owens 2012), the algorithm CudaChain seems to 
be a bit slower than them. For example, Srikanth et al. (2009) reported that: compared 
the sequential QuickHull implementation, their implementation can obtain the speed-
ups of about 10×–15×. It also has been introduced in Srungarapu et  al. (2011) that: 
their implementation can achieve a speedup of up to 14× over a standard sequential 
CPU implementation. Tzeng and Owens (2012) declared that: they developed a parallel 
Quickhull implementation that can achieve an order of magnitude speedup over (Qhull 
2015).

In summary, compared to those existing GPU-accelerated convex hull algorithms, 
CudaChain probably cannot achieve as high speedups as them, but is competitive in 
terms of the simplicity. More specifically, the main advantage of the algorithm Cuda-
Chain is that: it is very simple to implement and easy to use, which is mainly due to (1) 
the use of the library Thrust and (2) relatively less data dependencies. The data-parallel 
primitives such as parallel sorting and parallel reduction provided by Thrust are very 
efficient and easy to use; it is able to directly use these primitives in CUDA to realize the 
implementation without too many efforts. In addition, in CudaChain the only step that 
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has data dependency is the checking and discarding interior points using SPA. Other 
steps or procedures can be very well mapped to the massively parallel nature of the mod-
ern GPU. This feature of having less data dependencies also makes CudaChain simple 
and easy to implement in practical applications. It hopes that the presented algorithm 
CudaChain is an alternative choice in practical applications for the trade-off between its 
simplicity and efficiency performance.

Complexity and correctness

The time complexity in the worst case of the second round of discarding is O(nlogn) due 
to the sorting of points. Both the first round of discarding and the calculating of convex 
hull of a simple polygon run in O(n) . Thus, the worst case time complexity of the entire 
algorithm is O(nlogn) .

The space requirement of the algorithm CudaChain is also efficient. Only three arrays for 
storing all the input points’ coordinates and positions need to be allocated on the GPU. The 
parallel sorting, parallel reduction, and parallel partitioning completely operate on those 
three arrays in place without needing to explicitly allocate any additional global memory. 
In addition, to avoid the transformation from device memory and host memory and then 
back to device memory when invoking user-designed kernels, the memory addresses 
of those three arrays that resides on the GPU are directly obtained using the function 
thrust::raw_pointer_cast(), and then passed as the launch arguments for kernels.

The correctness of CudaChain can obviously be guaranteed. It is clear that: (1) in the 
calculating of convex hulls, any potential extreme points should not be discarded; and 
(2) any points that have been identified as interior ones can be discarded. As mentioned 
several times, there are two rounds of discarding in CudaChain. In the first round of 
discarding, those points locating in the quadrilateral formed by extreme points are defi-
nitely the interior ones and can be discarded. In the second round of discarding, It has 
been proved that the points detected as the interior using the proposed preprocessing 
method SPA is reasonable; see Fig. 3. Thus, this discarding can also be guaranteed to be 
correct. After two rounds of discarding, all the remaining points are used to calculate 
the expected convex hull.

In short, the proposed algorithm CudaChain can be guaranteed to be correct since (1) 
only those recognized interior points are removed and (2) all remaining points are pre-
served to avoid discarding any potential extreme points. More details on the proving of 
the correctness are presented in “Proof of correctness” section.

Limitation

The first shortcoming of the algorithm CudaChain is that: the efficiency of discarding 
interior points using SPA within a single thread block cannot be guaranteed to be the 
highest. Probably, to hide memory latency and improve the efficiency, it needs to allo-
cate several thread blocks in the discarding of interior points using the method SPA; and 
each thread is responsible for checking and discarding interior points for a small subset 
of consecutive points. However, the optimal number of consecutive points that assigned 
to be checked in each thread to generate the highest efficiency cannot be determined; 
this is due to the distribution of input points and the number of remaining points after 
the first round of discarding. It is probably to determine the optimal number of threads 
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for a specifically distributed set of remaining points; but it is unable to do this for general 
cases. Thus, it needs more experimental tests to determine the optimal number of points 
that are assigned to each thread.

Another limitation is that: when all the input points are initially extreme points, e.g., 
when all points exactly locate on a circle, two rounds of discarding interior points will be 
wasteful since there are no interior points that can be found and removed. All the input 
points will be kept and used to calculate the convex hull on the CPU using the Melk-
man’s algorithm (Melkman 1987). Hence, the overall execution in this case might be very 
slow.

Conclusion
In this paper, a novel sorting-based preprocessing approach (SPA) for discarding interior 
points and an alternative, GPU-accelerated algorithm, CudaChain, for calculating the 
convex hulls of planar point sets have been proposed. The correctness of the proposed 
algorithms have also been proved. The algorithm CudaChain is composed of two rounds 
of preprocessing procedures performed on the GPU and the finalization of calculating 
the expected convex hull on the CPU. The library Thrust has been utilized to realize 
the parallel sorting, reduction, and partitioning for better efficiency and simplicity. The 
proposed convex hull algorithm CudaChain has been tested against the Qhull library on 
various datasets of different sizes using two machines. Experimental results show that: 
(1) SPA can very effectively detect and discard the interior points; and (2) CudaChain 
achieves the speedups of 3×–4× on average and 5×–6× in the best cases. It hopes that 
the GPU-accelerated convex hull algorithm is an alternative choice in practical applica-
tions for the trade-off between its simplicity and efficiency.

When implementing the proposed algorithm, the library Thrust is heavily utilized. 
An efficient counterpart of Thrust, CUB (2015), has been developed recently. It was 
reported that CUB is faster than Thrust. It is expected to gain a significant increase in 
overall performance of the algorithm CudaChain by replacing Thrust with CUB. Future 
work should therefore include the implementation CudaChain using CUB and the eval-
uation of efficiency performance.
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