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Background
With increasing measurement accuracy, single-frequency receivers can serve as primary 
sensors for relative navigation and positioning in outdoor environments. For this tech-
nique, reliable integer ambiguity resolution is required (Tiberius 1998; Zhou et al. 2010; 
Chen et al. 2015). Incorrect ambiguities can cause position errors of several meters and 
failed ambiguity resolution reduces function (Parkins 2011). Since the observations from 
a single epoch do not contain sufficient information to perform reliable ambiguity reso-
lution for single frequency application, the phase and code data from several epochs is 
required (Hwang and Brown 1990; Jin 1997; Tiberius 1998; Chang et al. 2004). Data pro-
cessing methods with multi-epoch observations are well documented (Chang and Paige 
2003a; Mohiuddin and Psiaki 2007; Giorgi et al. 2010; Buist 2013; Shi et al. 2013; Wang 
and Lai 2015). These methods assume that the same visible satellites can be observed 
during at least two consecutive epochs and that the measurements from common satel-
lites and consecutive epochs can be used to achieve ambiguity resolution, a reasonable 
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assumption for most applications given good satellite visibility. However, limited satel-
lite visibility due to the loss of lock may frequently occur due to natural or man-made 
obstructions such as trees, buildings, bridges, or mountains and this impedes accurate 
real-time kinematic relative navigation. Additionally, the number of measurement equa-
tions may be different for different epochs, leading to different dimensions of the dou-
ble difference (DD) ambiguities vector. As a consequence, the continuity of the recursive 
algorithm decreases in schemes that rely on measurements from common satellites of 
consecutive epochs. Additionally, the information may not be utilized sufficiently, which 
may prolong its initialization time. To avoid information loss and accelerate initializa-
tion, we have developed a new recursive estimator which integrates almost all the avail-
able observations for ambiguity resolution. The proposed algorithm can tolerate satellite 
setting and rising in difficult environments and supports initialization in motion. This is 
beneficial for some special dynamic applications, which are unable to stop and switch 
to standby for ambiguity initialization or re-initialization. To achieve reliable ambigu-
ity resolution under poor satellite visibility, we exploited two schemes to strengthen the 
mathematical model. Firstly, we extended the ambiguity vector by utilizing the partial 
ambiguity relevance of previous and current observations, and performed a better least 
squares adjustment. When satellite visibility is limited, it is more reliable to estimate the 
extended ambiguity vector, since previous observations of invisible satellites may still 
strengthen the current estimation. Secondly, we designed the algorithm to be efficient, 
allowing integration of other information to further strengthen the model, such as the 
integration of the predicted baseline of velocity measurements. We tested the proposed 
algorithm with actual experiments in urban environments and found improved reliabil-
ity and availability for kinematic relative positioning.

The recursive mathematical model
For GPS single frequency relative positioning applications, the LAMBDA method is 
efficient and optimal (Teunissen 1995, 1999; Verhagen 2004). In this method, continu-
ous carrier phases through enough epochs must be observed to obtain an accurate float 
solution. The code measurement gives an approximation of the true range between the 
receiver and the satellite and it would be beneficial to improve the accuracy of the float 
solution using both the code and the carrier phase measurements. When processing 
these code measurements with a least squares method, both functional and stochastic 
models need to be carefully defined (Rizos 1997; Teunissen and Kleusberg 1998). Many 
realistic modeling approaches are well documented in the literatures (Langley 1997; 
Tiberius and Kenselaar 2000; Wang et al. 2002; Li et al. 2008; Luo 2013). For simplicity, 
we developed our algorithm based on the standard GNSS baseline model.

To distinguish the observations of different time points, we utilized the subscript k to 
the kth time step, which is referred to as the kth epoch. We assume that the proposed 
method starts at epoch k, when the number of common GPS visible satellites mk exceeds 
or is equal to 4 and all the lines of sight (LOS) of two antennas to visible satellites have 
been calculated successfully for both the base station and rover station. The double-dif-
ference (DD) baseline model that combines both the code and carrier phase measure-
ments can be written as:
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where y is the given GNSS data vector, µ is the noise vector with its variance–covariance 
(v–c) matrix given by the positive definite matrix Qy, a and b are the integer ambiguity 
vector and the real-valued baseline vector of order mk − 1 and 3 respectively, and A and 
B are the given design matrices that link the data vector to the unknown parameters. By 
applying Cholesky factorization, we decompose the variance–covariance matrix Qyk into

Then we calculate the inverse matrix of lower triangular matrix Lk:

Multiplying (1) by (3) from the left, we obtain

We then define the following notations:

Equation (4) can then be written as

Note that the transformed noise vector follows a standard normal distribution. Then 
let the QR factorization of B̄k be

where Qk is an orthogonal matrix and usually is the product of Householder transforma-
tions or Givens rotation matrices (Chang and Paige 2003b), and Rk is a 3 × 3 nonsingular 
upper triangular matrix. Since we assume that mk ≥ 4 so that B̄k almost always has full 
column rank, we can partition

Note that Uk has the same number of rows as Rk. After the multiplication on the left of 
(6) by (8), the following equations can be obtained:

Now Eq. (9) can be separated into two parts, and the first one is related to the ambigu-
ity vector and the baseline vector:

The second part is only related to the ambiguity vector:

(1)

yk = Akak + Bkbk + µk ,µk ∼ N
(

0,Qyk

)

ak ∈ Z
mk−1

,bk ∈ R
3
, yk ∈ R

2(mk−1)
,µk ∈ R

2(mk−1)

Ak ∈ R
2(mk−1)×(mk−1)

,Bk ∈ R
2(mk−1)×3

,Qyk ∈ R
2(mk−1)×2(mk−1)

(2)Qyk = Lk(Lk)
T

(3)Xk = (Lk)
−1

(4)Xkyk= XkAkak + XkBkbk + Xkµk

(5)ȳk ≡ Xkyk , Āk ≡ XkAk , B̄k ≡ XkBk , µ̄ ≡ Xkµk

(6)ȳk = Ākak + B̄kbk + µ̄k , µ̄k ∼ N
(

0, Imk−1

)

, ak ∈ Zmk−1

(7)QT
k

(

B̄k

)

=
[

Rk

0

]

, QT
k ∈ R(2mk−2)×(2mk−2)

, B̄k ∈ R(2mk−2)×3
, Rk ∈ R3×3

(8)QT
k =

[

Uk

Vk

]

, Uk ∈ R3×(2mk−2)
, Vk ∈ R(2mk−5)×(2mk−2)

(9)

[

Uk ȳk
Vk ȳk

]

=
[

UkĀk

VkĀk

]

ak +
[

Rk

0

]

· bk +
[

Uk µ̄k

Vk µ̄k

]

(10)Uk ȳk = UkĀkak + Rkbk +Uk µ̄k
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The transformed noise vector follows the same distribution because orthogonal trans-
formation does not change the statistical properties of white noise (Chang and Paige 
2003b; Chen and Qin 2012):

For epoch k we obtain Vk ȳk ∈ R(2mk−5)×1 and VkĀk ∈ R(2mk−5)×(mk−1). Note that the 
columns of VkĀk are equal to the order of the ambiguity vector, and less than or equal 
to the rows of VkĀk, with the assumption that mk ≥ 4. Next we perform the following 
orthogonal transformation:

where Tk is orthogonal and Sk is nonsingular upper triangular. The orthogonal transfor-
mation can be implemented by a sequence of Householder transformations and the zero 
matrix vanishes for mk = 4. Next we divide the orthogonal matrix Tk into two parts as 
follows:

Multiplying (11) by (14) from the left gives

Thus, we can rewrite the top part of (15) as

where ŵk ≡ Jk
(

Vk ȳk
)

, µ̂k ≡ Jk(Vk µ̄k). Due to the statistical properties of (12), the trans-
formed noise vector still follows the same distribution:

By solving the upper triangular system (16), the float solution of ambiguity vector at 
epoch k can be estimated as

Obviously we have

Thus, the variance–covariance matrix Qâk
 can be written as:

(11)Vk ȳk = VkĀkak + Vk µ̄k

(12)

Uk µ̄k ∼ N (0, I3)

Vk µ̄k ∼ N
(

0, I(2mk−5)

)

(13)

T
T
k

(

VkĀk

)

=
[

Sk

0

]

, Tk ∈ R
(2mk−5)×(2mk−5)

, VkĀk ∈ R
(2mk−5)×(mk−1)

,

Sk ∈ R
(mk−1)×(mk−1)

(14)TT
k =

[

Jk
Kk

]

, Jk ∈ R(mk−1)×(2mk−5)
, Kk ∈ R(mk−4)×(2mk−5)

(15)

[

Jk
(

Vk ȳk
)

Kk

(

Vk ȳk
)

]

=
[

Sk
0

]

ak +
[

Jk(Vk µ̄k)

Kk(Vk µ̄k)

]

(16)ŵk = Skak + µ̂k , Sk ∈ R(mk−1)×(mk−1)
, ak ∈ Rmk−1

(17)µ̂k ∼ N
(

0, Imk−1

)

(18)âk = S−1

k ŵk

(19)Sk
(

âk − ak
)

= µ̂k
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With (18) and (20), the double difference integer ambiguities can be estimated with the 
well-known LAMBDA method. Once this has been done successfully, the carrier phase 
data will act as very precise pseudorange data, allowing accurate baseline solution. The 
conditional least-squares solution can be written as

In general, the reliability of ambiguity resolution is described by the probability of cor-
rect integer ambiguity estimation or the so-called ambiguity success rate. For the ILS 
estimator of the unconstrained GNSS baseline model, Teunissen (1999) showed that 
PADOP can be used as an approximation to the ILS success rate, i.e.,

with n is the dimension of ambiguity vector and the cumulative normal distribution is

The ADOP, or Ambiguity Dilution of Precision, is given by 
∣

∣Q
â

∣

∣

1
2n, which is a diagnos-

tic that captures the main characteristics of ambiguity precision (Teunissen and Odijk 
1997). When the ambiguities are completely decorrelated, the ADOP equals the geo-
metric mean of the standard deviations of the ambiguities, hence it can be considered as 
a measure of the average ambiguity precision (Verhagen et al. 2013).The success rate of 
ambiguity resolution is determined by the strength of the underlying GNSS model; the 
stronger the model, the higher the success rate (Verhagen 2005; Teunissen 2010; Buist 
2013; Chen and Li 2014). In order to improve the strength of the single frequency model, 
the float solution should be estimated with data from more epochs.

Next, we will deduce the recursive least squares approach based on the baseline model 
(1) of epoch k + 1. The problems of satellite setting and rising are treated with the per-
mutation matrix. This treatment has been well documented in Tiberius (1998) and 
Chang and Paige (2003b). Here, we employ similar processing in the recursive model, 
which works very well in our single-frequency case.

At epoch k + 1, despite the differences between the baseline vector bk+1 and bk, we 
can obtain the following equation using the same processing approach:

If the tracking is continued without loss of lock for each satellite, the ambiguity vector 
will remain at current estimation. However, satellite rising/setting often occurs when the 
satellite is in motion due to obstructions. If we assume that tracking is continued for the 
reference satellite, we can compare the ambiguities of epoch k and partition the ambigu-
ity vector ak+1 into two parts by reordering the elements of the ambiguity vector:

(20)Qâk
=

(

STk Sk

)−1

(21)b̂k(ak) = R−1

k

(

Uk ȳk −UkĀkak
)

(22)Ps,ILS ≈ PADOP =
(

2Φ

(

1

2ADOP

)

− 1

)n

(23)Φ(x) =
∫ x

−∞

1√
2π

e−
v2

2 dv

(24)Vk+1ȳk+1 = Vk+1Āk+1ak+1 + Vk+1µ̄k+1
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where the elements of aremk+1
 correspond to the non-reference satellites which are visible 

at epoch k and remain at epoch k + 1, and those of anewk+1
 correspond to the non-reference 

satellites which appear between epochs k and k + 1. To perform the rearrangement of 
ambiguities, we construct a permutation matrix Gk+1 =

[

Grem
k+1

Gnew
k+1

]

 such that

where Grem
k+1

 reorders the ambiguity elements of ak+1 to obtain aremk+1
 and Gnew

k+1
 reorders 

the ambiguity elements of ak+1 to obtain anewk+1
. Note that the permutation matrix is 

orthogonal as

Using (26) and (27), the following equations can be obtained:

Applying (28) to (24) gives

At this point, we have an equivalent form of (24), which shares common ambiguities 
with (16), for example, aremk+1

. To integrate (29) into (16) based on the common ambigui-
ties, we use another permutation matrix �k+1 =

[

�
his
k+1

�
rem
k+1

]

 such that

where �his
k+1

 reorders the ambiguity elements of ak to obtain ahisk+1
 and �rem

k+1
 reorders the 

ambiguity elements of ak to obtain aremk+1
. Here the elements of ahisk+1

 correspond to the DD 
integer ambiguity of non-reference satellites that are not visible before epoch k + 1. In 
other words, it includes all the ‘historical’ DD integer ambiguities. Essentially, although 
some satellites may be invisible during the current epoch, their mathematical equations 
at previous epoch can be integrated into the current model, since the partial ambiguities 
remain. By using similar transformations as performed in (27) and (28), the upper trian-
gular system (16) can be written as

(25)
ak+1 =

[

a
rem

k+1

a
new

k+1

]

(26)Gk+1ak+1 =





�

G
rem

k+1

�T
ak+1

�

G
new

k+1

�T
ak+1



 =

�

a
rem

k+1

a
new

k+1

�

(27)I = Gk+1G
T
k+1

(28)

Vk+1Āk+1ak+1 = Vk+1Āk+1Gk+1G
T

k+1ak+1

=
�

Vk+1Āk+1G
rem

k+1
Vk+1Āk+1G

new

k+1

�





�

G
rem

k+1

�T
ak+1

�

G
new

k+1

�T
ak+1





=
�

Vk+1Āk+1G
rem

k+1
Vk+1Āk+1G

new

k+1

�

�

a
rem

k+1

a
new

k+1

�

(29)Vk+1ȳk+1 =
[

Vk+1Āk+1G
rem

k+1
Vk+1Āk+1G

new

k+1

]

[

a
rem

k+1

a
new

k+1

]

+ Vk+1µ̄k+1

(30)�
T

k+1ak =





�

�
his

k+1

�T

ak
�

�
rem

k+1

�T
ak



 =

�

a
his

k+1

a
rem

k+1

�
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Then stacking (31) on top of (29) gives

This is similar to (13), and we can transform the coefficient matrix of the ambiguity 
vector to upper triangular form with the following orthogonal transformation:

where P
k+1

 is orthogonal and Sk+1 is nonsingular upper triangular with the same num-
ber of rows as the ambiguity vector. Note that this ‘new’ ambiguity vector is dimen-
sion-extended and incorporates both the historical and the current DD ambiguities as 
follows:

Multiplying (32) by the orthogonal matrix PT

k+1
 from the left, we obtain

To perform the recursive estimation, we can partition PT
k+1

=
[

CT
k+1

DT
k+1

]T so that 
the number of rows of Ck+1 is equal to the order of aEk+1

. Thus, we obtain the following 
upper triangular system:

where ŵk+1 = Ck+1

[

ŵk

Vk+1Āk+1

]

 and µ̂k+1 = Ck+1

[

µ̂k

Vk+1µ̄k+1

]

. Note that Eq.  (36) is 

in similar form as (16) and recursive estimation can be achieved by solving the upper 
triangular system as

(31)

ŵk = Skak + µ̂k

= Sk�k+1�
T

k+1ak + µ̂k

=

[

Sk�
his

k+1
Sk�

rem

k+1

]

[

a
his

k+1

a
rem

k+1

]

+ µ̂k

(32)

�

ŵk

Vk+1ȳk+1

�

=

�

Sk�
his

k+1
Sk�

rem

k+1
0

0 Vk+1Āk+1G
rem

k+1
Vk+1Āk+1G

new

k+1

�







a
his

k+1

a
rem

k+1

a
new

k+1






+

�

µ̂k

Vk+1µ̄k+1

�

(33)PT

k+1

[

Sk�
his
k+1

Sk�
rem
k+1

0

0 Vk+1Āk+1G
(1)
k+1

Vk+1Āk+1G
(2)
k+1

]

=
[

Sk+1

0

]

(34)a
E

k+1
=

�

a
his

k+1

a
k+1

�

=







a
his

k+1

a
rem

k+1

a
new

k+1







(35)PT
k+1

[

ŵk

Vk+1Āk+1

]

=
[

Sk+1

0

]

aEk+1
+ PT

k+1

[

µ̂k

Vk+1µ̄k+1

]

(36)ŵk+1 = Sk+1a
E
k+1 + µ̂k+1

(37)âEk+1
=

(

Sk+1

)−1
ŵk+1

(38)QâEk+1

=
(

STk+1Sk+1

)−1
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In this recursive estimator, the ambiguity vector is extended by allowing satellite rising 
and setting. Once the extended ambiguity vector aEk+1

 is resolved, we can extract the cur-
rent ambiguity vector ak+1 and calculate the current conditional baseline vector in the 
same way as (21):

The recursive process can always be achieved if mk+1 ≥ 4 and if aremk+1
 is not empty. 

To more clearly demonstrate the rearrangement of the ambiguities, we have presented a 
case in Table 1 which shows how the extended ambiguity vector changes as satellite set-
ting/rising occurs. The notation PRNepoch denotes the DD integer ambiguity of the non-
reference satellite PRN to the reference satellite with its ‘birth moment’ denoted with 
the superscript ‘epoch’. Table 1 shows that satellite setting cannot change the number of 
ambiguities.

Global and local success rates
For simplicity, the following notations are utilized for the design matrix of (32):

Thus the variance–covariance matrix of aEk+1
 can be written as

Based on (22), the success rate of the extended ambiguity vector can be estimated. 
Since aEk+1

 contains all the ambiguity elements, we refer to it as the ‘global success rate’, 
written as PG. We need to calculate the conditional baseline vector with ak+1, see (39). 
To do this, one can partition QâEk+1

 as (41) or directly calculate the v-c matrix of the 

(39)b̂k+1

(

ak+1

)

= R−1

k+1

(

Uk+1ȳk+1 −Uk+1Āk+1ak+1

)

(40)Wk+1 ≡
[

Sk�
his
k+1

Sk�
rem
k+1

0

0 Vk+1Āk+1G
rem
k+1

Vk+1Āk+1G
new
k+1

]

≡
[

Hhis Hcur
]

(41)

Q
â
E

k+1

=
(

W
T
k+1Wk+1

)−1

=
[

(

H
his
)T

H
his

(

H
his
)T

H
cur

(Hcur)THhis (Hcur)THcur

]−1

=
[

Q
â
his

k+1

Q
â
his

k+1
â
k+1

Q
â
k+1

â
his

k+1

Qâ
k+1

]

Table 1  A case for satellite setting/rising and the rearrangement of ambiguity vector

From GPS L1 data at a rate of 1 Hz and start epoch k = 47,009

Epoch Ref. sat Non-reference 
satellite list

a
his

k
a
rem

k
a
new

k

k 6 2/9/5/17/12/23 2k/9k/5k/17k/12k/23k

k + 1 ~ k + 3 6 2/9/5/12/23 17k 2k/9k/5k/12k/23k

k + 4 ~ k + 7 6 2/9/5/12 17k/23k 2k/9k/5k/12k

k + 8 6 2/9/5/12/17 17k/23k 2k/9k/5k/12k 17k+8

k + 9 ~k + 13 6 2/9/5/12/17 17k/23k 2k/9k/5k/12k/17k+8

k + 14 6 2/9/5/12/17/23 17k/23k 2k/9k/5k/12k/17k+8 23k+14

k + 15 ~k + 23 6 2/9/5/12/17/23 17k/23k 2k/9k/5k/12k/17k+8/23k+14

k + 24 ~k + 28 6 2/9/5/12/23 17k/23k/17k+8 2k/9k/5k/12k/23k+14

k + 29 6 2/9/5/23 17k/23k/17k+8/12k 2k/9k/5k/23k+14
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partial float ambiguity vector âk+1 by applying the well-known partitioned matrix inver-
sion lemma:

The success rate given by Qâk+1
 is referred to as the ‘local success rate’, and is denoted as 

PL. If PL is much higher than PG, only the current ambiguity vector can be estimated with 
âk+1 and Qâk+1

, regardless of ahisk+1
. However, PL may be sensitive to the number of the vis-

ible satellites and will dramatically drop when the number of visible satellites decreases. 
To illustrate this, Fig. 1 shows the trends of PL and PG with the number of visible satellites. 
At the initial stage of the kinematic test, obstructions in the urban environment reduce 
the number of visible satellites to four. This number gradually rises to seven. Different 
than PL, PG is almost always growing and finally approaches 1. Therefore, the ambiguity 
resolution for the extended ambiguity vector is preferred in actual applications.

The dimension of the extended ambiguity vector cannot be reduced by satellite setting. 
However, the dimension increases as the number of visible satellites increases. Thus, the 
progressive increase of ambiguities may increases the burden of computation. To deal 
with this problem during real-time application, a fast integer least-squares estimation is 
required for high-dimensional ambiguity resolution, which has been described previously 
(Chang et al. 2005; Zhou 2010; Jazaeri et al. 2012). Another simple approach is to limit the 
growth of the dimension of the historical DD ambiguity vector ahisk+1

. For instance, when it 

(42)Qâk+1
=

[

(

Hcur
)T

Hcur −
(

Hcur
)T

Hhis

(

(

Hhis
)T

Hhis

)−1
(

Hhis
)T

Hcur

]−1
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Fig. 1  Comparison of global success rate and local success rate for SVN fluctuation
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exceeds the preset threshold, we can remove the first ambiguity element of the upper tri-
angular system (36), thus reducing the total ambiguity dimension by 1. Here, the thresh-
old was set as 10 and little effect on the global success rate was found.

Ambiguity validation for ambiguity initialization
The final aim of initialization is to perform a rapid and successful ambiguity resolution 
for real-time application. Thus, the validation procedure is required for initialization. We 
used the ratio test, a commonly used validation procedure described in Verhagen (2004) 
and Teunissen and Verhagen (2009). In this method, the ratio of the squared norm of the 
ambiguity residuals in the metric of the covariance for the best and second best integer 
solution, as obtained from LAMBDA, is examined to perform a validation calculation:

where ⌣a
E

k+1 and ãEk+1
 denote the best and second best integer solution, respectively. The 

critical value is often accomplished using empirical results. Many software packages set 
this value as 3 (Leick 2004; Kroes 2006; Chen et al. 2015). Here, we employed the same 
value for the ambiguity validation, which worked adequately in our single-frequency 
case. Note that when the correct ambiguity candidate is resolved, the norm of the noise 
term of upper triangular system (36) is equal to the squared norm of the ambiguity 
residuals from LAMBDA, according to the following derivation:

Because the noise error term obeys a standard normal distribution with a mean of 
zero, the residual term of the correct candidate will maintain normality. The Kolmogo-
rov–Smirnov residual test (K–S test) can be used to compare a sample with a reference 
normal probability distribution. The K–S statistic quantifies the distance between the 
empirical distribution function of the sample and the cumulative distribution function 
of the reference distribution (Marsaglia et al. 2003). Here the null hypothesis for the K–S 
test is that µ̂k+1 has a normal distribution N (0, In) where n is the dimension of µ̂k+1. The 
alternative hypothesis is that µ̂k+1 does not have that distribution. If one cannot reject 
the null hypothesis, the integer ambiguity vector and the baseline vector may be correct 
(Chen and Qin 2012). The squared norm of the optimal ambiguity candidate residuals 
should be checked by a user-defined Chi square threshold as follows:
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− ãEk+1

)T
Q−1
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where α is the probability of rejecting the null hypothesis given that it is true. Once the 
test above is rejected, it indicates that the measurements may not fit the model of the null 
hypothesis. Possible explanations such as cycle slips and abnormal data or systematic error 
should be identified. A good overview of the commonly used quality control procedures 
and testing theory is presented in Teunissen and Kleusberg (1998) and Teunissen (2000).

Using the structure to improve the model strength with the baseline state 
prediction
Once the initialization is achieved by validation, all subsequent relative position estima-
tions can be done with the continuous tracking. However, the resolved ambiguity can-
not be used for the current baseline estimation if the corresponding satellite is invisible. 
We designed the algorithm to be efficient and to use the mathematical structure of the 
recursive estimation to allow the possible integration of other available measurements. 
For example, in order to improve the success rate under poor satellite visibility, we can 
integrate the resolved baseline of last epoch into the recursive model. When initialization 
is achieved, we obtain the first precise estimation of baseline and then predict its value 
for the next epoch based on the velocity information. For most GPS receivers, accurate 
position information is provided as well as 3D velocity. As is shown in Fig. 2, the baseline 
vector b is defined as a vector from reference antenna A to another antenna B, and the 
measurements of the velocity vectors of both antennas are given as vAk  and vBk  at epoch k.

Assume that the time span is very short and the accuracy of velocity measurements is 
sufficiently high, the baseline vector at epoch k + 1 can be predicted as follows:

where 
⌣

bk

(

⌣
ak

)

 is the fixed ambiguity vector at epoch k and wk ,k+1 is the measurement 
noise vector. The variance–covariance matrix can be obtained as
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⌣
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Fig. 2  Motion of the baseline
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So far, if we define pk+1 ≡ yk+1 − Bk+1b̃k+1, the following equation can be derived 
from (1)

The v–c matrix is written as

By applying the Cholesky factorization, we decompose the v-c matrix Qpk+1
 into

Multiplying (48) by inverse of Lpk+1
 from the left and combining it with (36) gives

We are still able to obtain the upper triangular system by applying the orthogonal 
transformation on both side of (51) in a similar method as used in (35). The approach 
above demonstrates the flexibility of the recursive model. There are many approaches 
that use velocity to predict the baseline, such as the state-space models and Kalman filter 
(Chang and Huang 2005; Wang and Lai 2015). In these approaches, the user motion can 
be modeled using one of many common dynamic models (random walk, constant veloc-
ity, 1st order GM, etc.) while the ambiguities can be modelled as random constants.

Results of kinematic experiment
The advantage of this proposed method is that the initialization phase can be achieved 
in motion, since only (11) is utilized to construct the recursive model, which is inde-
pendent of the baseline status. The success rate of integer ambiguity estimation is also 
insensitive to satellite setting. To test the actual performance of this extended ambiguity 
resolution technique with limited satellite visibility, two experiments were performed in 
urban environments. Both experiments used the receiver onboard the remote control 
car (telecar) as the rover, shuttling in the street by receiving remote control commands. 
The reference station was located at a crossroad. A JAVAD Alpha 2 GPS receiver was 
used, as shown in Fig. 3. Since the advanced multipath reduction techniques are utilized 
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Fig. 3  The JAVAD Alpha2 GPS receiver
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for both carrier phase and code measurements, almost all anomalies and satellite mul-
tipath were removed with Alpha 2. GPS antenna design can further reduce the effect of 
multipath. Here we used two Trimble® Zephyr™ 2 antennas that show excellent perfor-
mance in multipath mitigation, as shown in Fig. 4.

For the first experiment, we controlled the telecar moving towards the north. A bird’s 
eye view of the study area is given in Fig. 5. There are many trees and buildings on both 
sides of the street, especially in the middle segment. Figure 6 shows the resolved base-
line north/east/up components and the baseline length. The ambiguity validation was 
achieved at epoch 67, marked with the vertical line in Fig. 6. Before this epoch, we esti-
mated the baseline with the float ambiguity vector. After that, the recursive process con-
tinued and the optimal ambiguity vector of LAMBDA method was utilized to calculate 
the baseline. Although the proposed strengthening scheme was not exploited in this 
experiment, the resolved east, north and up baseline components and baseline length 
are consistent with the movement of the vehicle. Small fluctuations were found in the 
east and up components due to rough pavement and inaccurate control.

Figure 7 shows the global/local success rate and the number of visible satellites during 
the first experiment. As is shown, the global success rate was higher than the local suc-
cess rate and was not sensitive to the drop of the number of visible satellites, even when 
the number of satellites drops to five. However, unlike the global success rate, the local 

Fig. 4  The Trimble® Zephyr™ 2 antenna

Fig. 5  A bird’s eye view of the study area of the first experiment
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success rate is very sensitive to the number of visible satellites. When satellite setting 
occurs, the local success rate drops dramatically. After the rapid drop in success rate, the 
‘recovery’ of the local success rate is slow and difficult. This indicates that the estimation 
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of the extended ambiguity vector is more reliable. The lower panel of Fig. 7 shows that 
the dimension of the extended ambiguity vector increases progressively as satellite rising 
occurs. Recurrent setting and rising events of satellites will accelerate the growth of the 
dimension of the extended ambiguity vector. To reduce the necessary computation, the 
threshold is set as 10 which showed little effect on the global success rate.

In our second experiment, we investigated the actual performance of the proposed 
method in a more challenging environment. A bird’s eye view of the study area is pro-
vided in Fig. 8. The telecar moved towards the east, gradually approaching the reference 
station. Compared with the first experiment, there were more buildings and trees along 
the road. Once initialization was achieved, the proposed model-strengthening scheme 
was exploited during the subsequent epochs. The global/local success rate and the num-
ber of visible satellites are shown in Fig. 9, and the vertical line indicates the end of the 
initialization. The top panel of Fig.  9 shows that the local success rate increased dra-
matically when the predicted baseline equation was integrated into the recursive algo-
rithm, see (51). This modification made the model more ‘robust’ to satellite setting and 
the recovery from decline required only a few seconds. The middle panel of Fig. 9 shows 
the number of visible satellites. Compared with the first experiment, satellite setting and 
rising was more frequent and the number of visible satellites dropped to 4 many times. 
However, the global success rate remained close to 1, and was insensitive to the poor sat-
ellite visibility. Figure 10 shows the resolved baseline north/east/up components and the 
baseline length of the second experiment. There was no obvious failure of the baseline 
estimation, and the inclusion of this estimation in the model allows increased reliability 
of ambiguity resolution and improved continuity and availability.

Results of static experiment
Validation of corrected position data is not done or possible for the kinematic tests. 
Thus, we instead used a static test with two JAVAD Alpha 2 receivers to validate the 
ambiguity-fixed positions by comparison to a known ground-truth position. Data were 
collected at 1 Hz with a zero cut-off elevation angle for a total of 1408 epochs logged. To 
obtain a known ground-truth relative position, the distance between the centers of both 
antennas was measured and the baseline length was approximately 30.08 m. Both anten-
nas were placed on one side of a wide road near the south-north direction. The up com-
ponent of baseline was close to zero and the north component of baseline was close to 

Fig. 8  A bird’s eye view of the study area of the second kinematic experiment
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Fig. 9  The global/local success rate and the number of visible satellites of the second kinematic experiment
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the baseline length. The recursive estimation started with four visible satellites (the 3D 
positions are both fixed for the two antennas), and then the number of tracked satellites 
grew to seven over several epochs. Initialization was achieved at epoch 37. The results 
are presented in Figs. 11, 12, 13 and 14, with the data divided into two stages. The first 
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Fig. 11  The global/local success rate and the number of visible satellites of the static experiment (from 
epoch 1–60)
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includes epoch 1 to 60, including the initialization phase (Figs. 11, 12), and the second 
one includes epochs 61 to 1408 (Figs. 13, 14). Figures 11 and 13 show the global/local 
success rate and the number of visible satellites (the vertical line denotes that the ini-
tialization is achieved), and Figs. 12 and 14 show the baseline components and resolved 
baseline length. With the fixed ambiguities, the average value of north, east, and up 
measurements of the baseline vector were 30.0857, 0.2497, −0.0466 meters, with stand-
ard deviations of 0.0052, 0.0024, 0.0095 meters, respectively, indicating a sub-centimeter 
level relative position accuracy.

The average of the vertical baseline component was close to zero, but the precision 
was poorer than the horizontal baseline components because only satellites above the 
horizon are tracked. The resolved baseline length was very close to the measured value 
of 30.08 m and the resolved north component was much larger than the east compo-
nent, consistent with the baseline placement.Thus, the ambiguity-fixed relative position 
was validated with sub-centimeter level precision.

Conclusions
A recursive least squares estimator was presented for reliable GPS single frequency kin-
ematic relative positioning in difficult environments. The initialization can be achieved 
in motion, even if satellite setting and rising events occur frequently during this phase. 
In order to improve the success rate of ambiguity resolution, an ambiguity dimension 
expansion method was developed by integrating previous and available information into 
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the current ambiguity estimation equation. The recursive model can be further strength-
ened using the predicted baseline model or the state-space model. The success rates 
and relative positioning performance were measured in actual experiments in urban 
environments. The results reveal that reliable ambiguity estimation can be achieved in 
motion during initialization. The proposed algorithm also increases the continuity and 
availability level of relative positioning, even if the number of visible satellites frequently 
decreases to 4 during the observation.
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