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Background
In recent years, Burr type X (BX) distribution was introduced by Burr (1942) and it has 
received much attention in the literatures. The BX distribution has played an important 
role in reliability study, modeling the life time of random phenomena, health, agriculture 
and biology. Consider the two parameter Burr type X with cumulative distribution func-
tion (CDF),

where θ , � are the shape and scale parameters, respectively. Then the probability density 
function (PDF) is

The kth moment for the BX distribution is defined as in Surles and Padgett (2005)
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Abstract 

We develop a new continuous distribution called the beta-Burr type X distribution that 
extends the Burr type X distribution. The properties provide a comprehensive math-
ematical treatment of this distribution. Further more, various structural properties of 
the new distribution are derived, that includes moment generating function and the 
rth moment thus generalizing some results in the literature. We also obtain expressions 
for the density, moment generating function and rth moment of the order statistics. 
We consider the maximum likelihood estimation to estimate the parameters. Addition-
ally, the asymptotic confidence intervals for the parameters are derived from the Fisher 
information matrix. Finally, simulation study is carried at under varying sample size to 
assess the performance of this model. Illustration the real dataset indicates that this 
new distribution can serve as a good alternative model to model positive real data in 
many areas.
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The two parameter BX has several types of distribution like Rayleigh (R) when (θ = 1) 
and Burr type X distribution with one parameter (BX1) when (� = 1). BX1 has been 
studied by some authors, for example: Ahmad Sartawi and Abu-Salih (1991),   Jaheen 
(1995),   Jaheen (1996),   Ahmad et  al. (1997),   Raqab (1998) and Surles and Padgett 
(1998). Surles and Padgett (2001) proposed and observed that Eq. (1) could be used quite 
effectively in modeling strength data as well as modeling general life time data. Raqab 
and Kundu (2006) studied the relationship of Burr type X with Weibull, Gamma, Gen-
eralized Exponential and Exponentiated Weibull distributions.  Lio et al. (2014) studied 
the control charts for monitoring Burr X, and in the same year (Smith et al. 2015) stud-
ied the higher order inference for stress–strength reliability with independent Burr X.

In this article we extend the Burr type X distribution with two parameters introduced 
by Surles and Padgett (2001) by proposing the beta Burrtype X (BBX) distribution which 
contains some special sub models and it seems to be more flexible as an alternative 
model to use in a variety of life time problems.

The extension of this Burr type X distribution with two parameters is through the 
beta-G generator defined by  Eugene et al. (2002). We investigate and explore the prop-
erties of this new distribution. Eugene et al. (2002) proposed a new technique for build-
ing a new distribution from G(x). It is known as the beta generalized class of distribution 
and it has two shape parameters in the generator. If G is the cumulative function of any 
random variable, the beta generalized distribution is define by

where α, β are the extra shape parameters for the G distribution.
The beta function is

where   0 < x < 1, α > 0, β > 0 and

The CDF for beta distribution is

Another function for beta distribution is the Incomplete beta function and is defined as:

where by

(3)G(x,α,β) = 1

B(α,β)

∫ F(x)

0
tα−1(1− t)β−1dt 0 < α,β < ∞,

g(x,α,β) = 1

B(α,β)
xα−1(1− x)β−1,

B(α,β) = Ŵ(α)Ŵ(β)

Ŵ(α + β)
.

G(x,α,β) = 1

B(α,β)

∫ x

0
tα−1(1− t)β−1dt.

G(x,α,β) = Ix(α,β) =
B(x,α,β)

B(α,β)
,

B(x,α,β) =
∫ x

0
tα−1(1− t)β−1dt.
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Paranaíba et al. (2011) have introduced beta Burr type XII (BBXII) distribution which 
has five parameters (4 shape and one scale), which is different model to BBX. The BBXII 
has sub-models such is beta Weibull, beta Log-Logistic, beta Pareto type II, and expo-
nentiated Burr type XII it is different from BBX as we see later.

This kind of class has received considerable attention in recent years. After the work 
by Eugene et  al. (2002) many authors follow the same idea by taking a different G(x) 
such as  Nadarajah and Gupta (2004), Nadarajah and Kotz (2004, 2006),  Akinsete et al. 
(2008), Silva et al. (2010),  Pescim et al. (2010), Cordeiro et al. (2011, 2013),  Lemonte 
(2014), Domma and Condino (2013), Merovci and Sharma (2014), and   Jafari et  al. 
(2014), among others. The rest of this paper is organized as follows: in “Beta Burr X” 
section, we introduce the PDF and CDF of beta Burr type X, the plot of the PDF and 
hazard function followed by finding the limit of Hazard function. In “Some properties 
of the BBX distribution” section, we discuss some important properties of the BBX. The 
estimation parameters by using maximum likelihood estimation (MLEs) of the unknown 
parameters are derived in “Parameter estimation” section. We have provided the sim-
ulation study in “Simulation study” section. The application of the model on real data 
set are provided in “Application” section. Finally, “Conclusion” section ends with some 
conclusions.

Beta Burr X
In this section, we introduce the BBX and discuss its important properties. Suppose that 
F(x) is the cumulative distribution function of a random variable X. The CDF for a gen-
eralized class of distribution for the random variable of X, according to  Eugene et al. 
(2002), can be generated by applying the inverse CDF for a beta distribution.

PDF, CDF, hazard function, plots, and limit

For any continuous baseline, the cumulative distribution function for the beta-G distri-
bution G(x) is given as:

where α and β are additional shape parameters.
The probability density function is given by g(x) = G

′
(x) meaning that

The probability density function f (x) = F
′
(x) has been studied by many authors assum-

ing various type of CDF of F(x). Now let suppose the F(x) is the CDF of Burr X distribu-
tion as given in Eq. (1). The g(x) for the new beta Burr type X distribution from (1) and 
(4) is

G(x,α,β) = 1

B(α,β)

∫ F(x)

0
tα−1(1− t)β−1dt 0 < α,β < ∞,

(4)g(x,α,β) = 1

B(α,β)

(

F(x)
)α−1(

1− F(x)
)β−1

f (x).

(5)
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.
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where x > 0,α > 0,β > 0, �, θ > 0 that can be reduced to

If X is a random variable with PDF (6) ,then X ∼ BBX(α,β , �, θ).
The CDF for BBX is

The hazard rate function is defined as the ratio of the density function to its survival 
function, so the hazard rate function of the two-parameter BBX distribution is given by

With hF (x) > 0 and 
∫∞
0 hF (x)dx = ∞ ,

Figures 1 and 2 illustrate some of possible shapes of the density and hazard functions 
for selected parameter values. The density and hazard functions can take many forms 
depending on the selected different values of parameter. The hazard function can be an 
increased form or bathtub shape depending on the values of parameter. The BBX distri-
bution as we can see is more flexible than Burr type X distribution with two parameters. 
We can see that by the additional parameters of shape (α,β), it allows for higher degrees 
of flexibility. The new model has been very useful in many partial situation like modeling 
positive real data set.

The limit of beta-Burr type X density function when x → 0 is 0, and x → ∞ is 0. We 
can show this by taking the limit of BBX density in Eq. (6) as follows.

because

(6)g(x,α,β , �, θ) = 2θ�2xe−(�x)2

B(α,β)

[

1− e−(�x)2
]θα−1

{

1−
[

1− e−(�x)2
]θ
}β−1

.

(7)

G(x) = IF(x)(α,β) =
1

B(α,β)

∫ F(x)

0
wα−1

(

1− w
)β−1

dw.

G(x) = I[
1−e−(�x)2

]θ (α,β) = 1

B(α,β)

∫

[

1−e−(�x)2
]θ

0
wα−1

(

1− w
)β−1

dw.

hF (x,α,β , �, θ) =
g(x)

1− G(x)
.

(8)
hF (x) =

2θ�2xe−(�x)2
[

1− e−(�x)2
]θα−1

B(α,β)

{

1− I[
1−e−(�x)2

]θ (α,β)

}

{

1−
[

1− e−(�x)2
]θ
}β−1

x > 0

lim
x→0

g(x) = lim
x→0

2θ�2xe−(�x)2

B(α,β)
lim
x→0

[

1− e−(�x)2
]θα

lim
x→0

{

1−
[

1− e−(�x)2
]θ
}β−1

= 0,

lim
x→0

2θ�2xe−(�x)2

B(α,β)
= 0.
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Likewise, as x → ∞, we immediately can see that by replacing the limit x → 0 with 
x → ∞, the above limit expression becomes zero.

lim
x→∞

2θ�2xe−(�x)2

B(α,β)
= 0.

Fig. 1  Plot of the BBX density function for some parameter values. (1) For different values of θ with α = 1, 
β = 2.5, and � = 1. (2) For different values of β with α = 1, θ = 2.5, and � = 1. (3) For different values of α,β , � 
and θ

Fig. 2  Plot of the BBX hazard function for some parameter values. a For different values of α with 
β = 1, θ = 0.025, and � = 1. b For different values of β with α = 1, θ = 2, and � = 2
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Some properties of the BBX distribution
We use the appropriate transformation to ease the steps of attaining the properties of 
BBX distribution starting from the equation of the CDF (7). First, if |w| < 1 and β > 0 is 
real non-integer, we have the series representation

We provide two simple expansions of CDF for BBX depending on the parameters (β or 
α ) as real integer or non integer. We obtain expansions for G(x) in terms of an infinite of 
finite weighted sums of CDF of BX distributions. So, by using the expansion of (9) and 
β > 0 real non-integer, we can write G(x) for BBX as

For positive non-integer β the expansion of (11) reveals the property that the CDF 
of the BBX distribution can be expressed as an infinite weighted sum of CDFs of BX 
distributions,

where

By using the binomial expansion in (3), if β > 0 is an integer, the CDF for BBX can be 
written as

The benefit of the Eq. (12) is that we can plot the graph of G(x) with different param-
eter. Equations (10) and (12) are new formula of the CDF of BBX. When both β and 
α = n− β + 1 are integers,from the Wolfram Functions Site (http://functions.wolfram.
com/GammaBetaErf/BetaRegularized/03/01/) it says that for integer α

(9)(1− w)β−1 =
∞
∑

j=0

(−1)jŴ(β)

Ŵ(β − j)j! w
j .

(10)

G(x) = 1

B(α,β)

∞
∑

j=0

(−1)jŴ(β)

Ŵ(β − j)j!

∫

[

1−e−(�x)2
]θ

0
wα+j−1dw

= 1

B(α,β)

∞
∑

j=0

(−1)jŴ(β)

{

[

1− e−(�x)2
]θ
}α+j

Ŵ(β − j)j!(α + j)

(11)G(x) = Ŵ(β)

B(α,β)

∞
∑

j=0

(−1)jF�,θ(α+j)(x)

Ŵ(β − j)j!(α + j)
.

G(x) =
∞
∑

j=0

wkF�,θ(α+j)(x),

wk = Ŵ(β)(−1)j

B(α,β)Ŵ(β − j)j!(α + j)
.

(12)G(x) = 1

B(α,β)

β−1
∑

j=0

(

β − 1

j

)

(−1)j

α + j

[

1− e−(�x)2
]θ(α+j)

.

http://functions.wolfram.com/GammaBetaErf/BetaRegularized/03/01/
http://functions.wolfram.com/GammaBetaErf/BetaRegularized/03/01/
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and for the integer β

Therefore if α is an integer

and for β > 0 integer we have an alternative form for (11) given by

The following results help in the generation of observations from the BBX distribution. 
If V is a random variable following beta distribution with parameters α and β, then

follows BBX distribution with parameters α,β , � and θ.

Quantile function, skewness and kurtosis

The quantile function QF is denoted by Q(p) = F−1(p), so, we can compute the quantile 
function by inversing (7)

where I−1
p (α,β) is the inverse of incomplete beta function and from Wolfarm website 

(http://functions.wolfram.com/06.23.06.0004.01),

Iy(α,β) = 1− (1− y)β

Ŵ(β)

α−1
∑

j=0

Ŵ(β + j)

j! yj ,

Iy(α,β) =
yα

Ŵ(α)

β−1
∑

j=0

Ŵ(α + j)

j! (1− y)j .

(13)G(x) = 1−

{

1−
(

1− e−(�x)2
)θ

}β

Ŵ(β)

α−1
∑

j=0

Ŵ(β + j)

j!
[

1− e−(�x)2
]θ j

,

(14)G(x) =

{

1−
[

1− e−(�x)2
]θ
}α

Ŵ(α)

β−1
∑

j=0

Ŵ(α + j)

j!

{

1−
[

1− e−(�x)2
]θ
}j

.

X = F−1(V ) =

[

−log(1− V
1
θ )

]
1
2

�
,

x = Q(p) = F−1(p) = 1

�

(

−log

{

1−
[

I−1
p (α,β)

]
1
θ

})

1
2

,

I−1
p (α,β) = w + (β − 1)

(α + 1)
w2 + (β − 1)(α2 + 3αβ − α + 5β − 4)

2(α + 1)2(α + 1)
w3

+ (β − 1)[α4 + (6β − 1)α3 + (β + 2)(8β − 5)α2]
3(α + 1)3(α + 2)(α + 1)

w4

+ (β − 1)[(33β2 − 30β + 4)α + β(31α − 47)+ 18]
3(α + 1)3(α + 2)(α + 1)

w4 +O
(

P
5
α

)

,

http://functions.wolfram.com/06.23.06.0004.01
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where w = [αpB(α,β)]1/α for α > 0 and 0 < p < 1. From the quantile measure we can 
find the skewness and kurtosis. Classical kurtosis is known to have shortcomings. Due to 
this, we used the Bowley Skewness (Kenney and Keeping 1954) based on quartiles and is 
one of the earliest skewness measure, defined by

The Moors kurtosis (Moors 1988) based on octile of the BBX distribution and can be 
calculated by using the formula given below

These measures are less sensitive to outliers and we can find it without moment (Figs. 3, 4). 

Sub models

The BBX has many special sub models by fixing some parameters as the follows:

• • When α = β = 1 the BBX in Eq. (6) reduce to Burr type X with two parameters.
• • When α = β = 1, � = 1 the BBX in Eq. (6) reduce to Burr type X distribution with 

one parameter.
• • When α = β = 1, θ = 1 the BBX in Eq. (6) reduce to Rayleigh distribution.

Moment and the moment generating function

In this section we find the moment and moment generating function (mgf) for BBX. 
Some of the most important properties of the distributions can be studied from the 
moments such as tendency, dispersion, skewness and kurtosis. The definition of rth 
moment of the BBX distribution is

SK = Q(3/4)+ Q(1/4)− 2Q(1/2)

Q(3/4)− Q(1/4)
.

Mu = Q(1/8)+ Q(3/8)+ Q(7/8)− Q(5/8)

Q(3/4)− Q(1/4)
.

E(Xr) =
∫ ∞

0
xrg(x)dx,

Fig. 3  Bowley skewness of the BBX distribution as a function with different values of α, and β with � = 2 and 
θ = 4
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from (6) we have

Since 0 <

[

1− e−(�x)2
]θ

< 1 for x > 0, then by using the binomial series expansion 
{

1−
[

1− e−(�x)2
]θ
}β−1

 given by

We want to find

E(Xr) =
∫ ∞

0
xr

2θ�2xe−(�x)2

B(α,β)

[

1− e−(�x)2
]θα−1

{

1−
[

1− e−(�x)2
]θ
}β−1

dx

= 2θ�2

B(α,β)

∫ ∞

0
xr+1e−(�x)2

[

1− e−(�x)2
]θα−1

{

1−
[

1− e−(�x)2
]θ
}β−1

dx.

(1− w)β−1 =
∞
∑

j=0

(−1)jŴ(β)

Ŵ(β − j)j! w
j
,

E(Xr) = 2θ�2

B(α,β)

∫ ∞

0

xr+1e−(�x)2
[

1− e−(�x)2
]θα−1

∞
∑

j=0

(−1)jŴ(β)

Ŵ(β − j)j!
[

1− e−(�x)2
]θ j

dx

= 2θ�2

B(α,β)

∫ ∞

0

xr+1e−(�x)2
∞
∑

j=0

(−1)jŴ(β)

Ŵ(β − j)j!
[

1− e−(�x)2
]θα+θ j−1

dx

= 2θ�2

B(α,β)

∫ ∞

0

xr+1e−(�x)2
∞
∑

j=0

(−1)jŴ(β)

Ŵ(β − j)j!
[

1− e−(�x)2
]θ(α+j)−1

dx

= 2θ�2

B(α,β)

∫ ∞

0

xr+1e−(�x)2
∞
∑

j,i=0

(−1)j+i Ŵ(β)Ŵ(θ(α + j))

Ŵ(β − j)Ŵ(θ(α + j)− i)i!j!
[

e−(�x)2
]i
dx

= 2θ�2

B(α,β)

∞
∑

j,i=0

(−1)j+i
∞
∑

j,i=0

(−1)j+i Ŵ(β)Ŵ(θ(α + j))

Ŵ(β − j)Ŵ(θ(α + j)− i)i!j!

∫ ∞

0

xr+1
[

e−(�x)2
]i+1

dx

= 2θ�2

B(α,β)

∞
∑

j,i=0

(−1)j+i Ŵ(β)Ŵ(θ(α + j))

Ŵ(β − j)Ŵ(θ(α + j)− i)i!j!

∫ ∞

0

xr+1
[

e−(i+1)(�x)2
]

dx

= 2θ�2

B(α,β)

∞
∑

j,i=0

(−1)j+i Ŵ(β)Ŵ(θ(α + j))

Ŵ(β − j)Ŵ(θ(α + j)− i)i!j!

∫ ∞

0

xr+1e−(i+1)(�x)2dx.

Fig. 4  Moors kurtosis of the BBX distribution as a function with different values of α, and β with � = 2 and 
θ = 4
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Let

so

so the E(Xr) is

This is the general formula for the rth moment of the BBX distribution.
If β > 0 is an integer, by applying the binomial expansion, we get

Also if α > 0 is an integer then by applying binomial expansion, Eq. (16) is

If β = α = 1 from Eq. (15)

This is the rth moment for Burr type X distribution which is given by Surles and Padgett 
(2005) with parameter α, and �

Order statistics

Let X1,X2, . . . ,Xn be a random sample of size n from X ∼ BBX(α,β , �, θ). We want to 
find the ith order stiatistics for the density function fi:n(x) for i = 1, 2, . . . , n. It is well 
known that

∫ ∞

0
xr+1e−(i+1)(�x)2dx.

y = (i + 1)(�x)2 ⇒ x = y1/2

�(i + 1)1/2
⇒ dx = y−1/2

2�(i + 1)1/2
dy

∫ ∞

0
xr+1e−(i+1)(�x)2dx =

∫ ∞

0

y
r
2+

1
2

�r+1(i + 1)
r
2+

1
2

e−y y−1/2

2�(i + 1)1/2
dy

= 1

2�r+2(i + 1)
r
2+1

∫ ∞

0
y
r
2 e−ydy

=
Ŵ( r2 + 1)

2�r+2(i + 1)
r
2+1

,

(15)µ(r) = E(Xr) =
θŴ( r2 + 1)

�rB(α,β)

∞
∑

j,i=0

(−1)j+iŴ(β)Ŵ(θ(α + j))

Ŵ(β − j)Ŵ(θ(α + j)− i)i!j!(i + 1)
r
2+1

.

(16)E(Xr) =
θŴ( r2 + 1)

�rB(α,β)

β−1
∑

j=0

(

β − 1

j

) ∞
∑

i=0

(−1)j+iŴ(θ(α + j))

Ŵ(θ(α + j)− i)i!(i + 1)
r
2+1

.

(17)E(Xr) =
θŴ( r2 + 1)

�rB(α,β)

β−1
∑

j=0

(

β − 1

j

) (θ(α+j)−1
∑

i=0

(

(θ(α + j)− 1

i

)

(−1)j+i

(i + 1)
r
2+1

.

(18)E(Xr) =
θŴ( r2 + 1)

�r

θ−1
∑

i=0

(

θ − 1

i

)

(−1)i

(i + 1)
r
2+1

.

fi:n(x) =
f (x)

B(i, n− i + 1)

(

F(x)
)i−1(

1− F(x)
)n−i

.
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By using binomial expansion we get

From the Eqs. (6) and (10) respectively, we have

By using the equation

for k > 0, we can write the PDF for order statistics as

and

fi,l(x) is the PDF for BBX with new parameters (α(i + l)+
∑i+l−1

j=0 mj ,β , �, θ). Equation 
(20) is very important as we can find several mathematical properties for BBX order sta-
tistics like (mgf , factorial moment, ordinary moment and inverse). Thus from fi:n(x) we 
can find the Sth moment of Xi:n.

For β > 0, real non-integer then

and for β > 0 is an integer,

fi:n(x) =
n−i
∑

l=0

(−1)l
(n−i

l

)

f (x)

B(i, n− i + 1)

(

F(x)
)i+l−1

.

fi:n(x) =
n−i
�

l=0

(−1)l
�n−i

l

�

(Ŵ(β))i+l−12θ�2xe−(�x)2

B(i, n− i + 1)B(α,β)

�

1− e−(�x)2
�θα(i+l)−1

�

1−
�

1− e−(�x)2
�θ
�β−1

∗











∞
�

j=0

(−1)j
�

1− e−(�x)2
�θ j

Ŵ(β − j)j!(α + j)











i+l−1

.

(19)

( ∞
∑

i=0

αi

)k

=
∞
∑

m1=0

· · ·
∞
∑

mk=0

αm1 · · ·αmk
,

(20)

fi:n(x) =
n−i
∑

l=0

∞
∑

m1=0

· · ·
∞
∑

mi+l−1=0

γi,l fi,l(x),

fi,l(x) =
2θ�2xe−(�x)2

{

[

1− e−(�x)2
]θ
}α(i+l)+θ

∑i+l−1
j=0 mj−1

B(α(i + l)+
∑i+l−1

j=0 mj ,β)

∗
{

1−
[

1− e−(�x)2
]θ
}β−1

,

γi,l =
(−1)

l+
∑i+l−1

j=1 mj
(n−i

l

)

(Ŵ(β))i+l−1B(α(i + l)+
∑i+l−1

j=0 mj ,β)

B(α,β)i+l−1B(i, n− i + 1)
∏i+l−1

j=1 Ŵ(β −mj)mj(α +mj)
,

E(Xs
i:n) =

n−i
∑

l=0

∞
∑

m1=0

· · ·
∞
∑

mi+l−1=0

γi,lE(X
s
i:l),

E(Xs
i:n) =

n−i
∑

l=0

β−1
∑

m1=0

· · ·
β−1
∑

mi+l−1=0

γi,lE(X
s
i:l),
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where the moments E(Xs
i:l) come from the general expansions of (15) and (16) for the 

moments of the BBX distribution with parameters (α(i + l)+
∑i+l−1

j=0 mj ,β , �, θ).

Parameter estimation
The most widely used method for the estimation of parameters of distribution is the 
maximum likelihood estimation method (MLE) and the moment method. We employ 
the maximum likelihood estimation method MLE to estimate the unknown parameter 
of BBX distribution.

Let X1,X2, . . . ,Xn be a random sample of size n from BBX (α,β , �, θ) distribution. The 
likelihood function is given by

The log-likelihood function for the vector of parameters � = (α,β , �, θ)T is expressed as

By taking partial derivatives of log-likelihood in (22) with respect to α,β , �, and θ and 
equating the derivatives to zero we get.

The expected value of the unit score vector vanishes leading to the following equations

(21)

L(α,β , �, θ = 2nθn�2nxne−
∑n

i=1(�xi)
2
[Ŵ(α + β)]n

[Ŵ(α)]n(Ŵ(β))n

n
∏

i=1

[

1− e−(�xi]
2
](αθ−1)

∗
n
∏

i=1

{

1−
[

1− e−(�xi)
2
]θ
}β−1

.

(22)

l = l(�) = n[log 2+ log θ + 2 log �+ log x + log Ŵ(α + β)− log Ŵ(α)

− log Ŵ(β)] −
n

∑

i=1

(�xi)
2 + (αθ − 1)

n
∑

i=1

log
[

1− e−(�xi)
2
]

+ (β − 1)

n
∑

i=1

log

[

1−
(

1− e−(�xi)
2
)θ

]

.

∂l

∂α
= n�(α + β)− n�(α)+ θ

n
∑

i=1

log
[

1− e−(�xi)
2
]

= 0.

∂l

∂β
= n�(α + β)− n�(β)+

n
∑

i=1

log

{

1−
[

1− e−(�xi)
2
]θ
}

= 0.

∂l

∂�
= 2n

�
− 2�

n
∑

i=1

(xi)
2 + (αθ − 1)

n
∑

i=1

2�(xi)
2e−(�xi)

2

1− e−(�xi)2

− (β − 1)

n
∑

i=1

2θ�(xi)
2
[

1− e−(�xi)
2
](θ−1)

e−(�xi)
2

{

1−
[

1− e−(�xi)2
]θ
} = 0.

∂l

∂θ
= n

θ
+ θ

n
∑

i=1

log
[

1− e−(�xi)
2
]

− (β − 1)

n
∑

i=1

[

1− e−(�xi)
2
]θ

log
[

1− e−(�xi)
2
]

{

1−
[

1− e−(�xi)2
]θ
} = 0.
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It is impossible to solve Eqs. 23–25 algebraically to obtain the MLEs for α,β , �, and θ. We 
can use software to obtain the MLE’s numerically like NR (Newton–Raphson), Limited-
Memory quasi-Newton code for Bound-constrained optimization (L-BFGS-B), BFGS 
(Broyden–Fletcher–Goldfarb–Shanno), SANN (Simulated-Annealing) and, BHHH 
(Berndt–Hall–Hall–Hausman). In the literature, there are authors who have developed 
new alternative of neural network for the parameter estimates of Burr family distribu-
tions see  Abbasi et al. (2010),  Zoraghi et al. (2012)

For interval estimation and test hypotheses on the parameter, we obtain the observed 
information matrix 4 × 4 where

whose elements are given in “Appendix”. Under conditions that are fulfilled for param-
eters in the interior of the parameter space, the asymptotic distribution of 

√
n(φ̂ − φ) 

is multivariate normal N4(0, J (φ)
−1). The asymptotic N4(0, J (φ̂)

−1) distribution 
can be used to construct approximate confidence intervals and confidence regions 
for the parameters. Here, J ˆ(φ) is the total observed information matrix evaluated 
at φ̂. The asymptotic 100(1− η)% confidence intervals for α,β , � and θ are given by 

α̂ ± zη/2 ×
√

var(α̂), β̂ ± zη/2 ×
√

var(β̂), �̂± zη/2 ×
√

var(�̂) and θ̂ ± zη/2 ×
√

var(θ̂ ) 
respectively, where var(.) is the diagonal element of N4(0, J (φ̂)

−1) corresponding to each 
parameter and zη/2 is the quantile 100(1− η)% of the standard normal distribution. The 
likelihood ratio (LR) statistic is useful for testing goodness of fit of the BBX distribu-
tion and for comparing this distribution with some of its special sub models like Burr 
X one parameter, Burr X two parameter, Rayleigh, and Exponential. We can compute 
the maximum values of the unrestricted and restricted log-likelihoods to construct LR 
statistics for testing some sub-models of the BBX distribution. For example, we may use 
the LR statistic to check if the fit using the BBX distribution is statistically “superior” to 
a fit using the Burr X distribution for a given data set. In any case, hypothesis tests of 
the type H◦ : φ = φ◦ versus H1 : φ �= φ◦ can be performed using LR statistics. In this 
case, the LR statistic for testing H◦ versus H1 is ω = 2[L(φ̂)− L(φ̂◦)] where the φ̂ and φ̂◦ 
are the MLEs under H1 and H◦ respectively. The statistics ω is asymptotically (n → ∞) 

(23)E

{

n
∑

i=1

log
[

1− e−(�xi)
2
]

}

= n�(α)− n�(α + β)

θ
.

(24)E

{

n
∑

i=1

log

[

1−
(

1− e−(�xi)
2
)θ

]

}

= n�(β)− n�(α + β).

(25)E











n
�

i=1

�

1− e−(�xi)
2
�θ

log
�

1− e−(�xi)
2
�

�

1−
�

1− e−(�xi)2
�θ
�











= n(1− θ [�(α)−�(α + β)])
θ(β − 1)

.

J = J (φ), φ = (α,β , �, θ)T .

J (φ) = −







Lαα Lαβ Lα� Lαθ
· Lββ Lβ� Lβθ
· · L�� L�θ
· · · Lθθ






,
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distributed as χ2
k  where k is the dimension of the subset � of interest. The LR test rejects 

H◦ if the ω > ζη where ζη denote the upper 100η% point of the χ2
k  distribution.

Simulation study
We consider Monte Carlo simulation studies to asses the performance of the MLEs of 
α,β , � and θ. We carry out using the software R simulation by generating different n 
observation from BBX distribution. The parameters are estimated by maximum likeli-
hood method. We considered different sample size n = 100, 500, 1000 and 1500 and 
the number of repetition is 5000. The true parameters value as α = 0.5,β = 0.2, � = 0.5 
and θ = 8. Table 1 listed the bias and root mean squared error (RMSE) of the estimate 
parameters. We observed that, when we increase n the bias for α̂, �̂, β̂ and θ̂ are very 
small or close to zero also the RMSE be very small (Fig. 5).

Application
In this section, we use a real data set to illustrate that the beta-Burr X distribution is a 
better model than Burr type X, Burr type X one parameter, Generalized Exponential, 
and Rayleigh distributions. The description of the data are as follows:

This data set consists of 63 observations of the strengths of 1.5 cm glass fibers, origi-
nally obtained by workers at the UK National Physical Laboratory. Unfortunately, the 
units of measurement are not given in the paper. The data are: 0.55, 0.74, 0.77, 0.81, 0.84, 
0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 
1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 
1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 
1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. These data have also been analyzed 
by Smith and Naylor (1987)

Table 1  Bias and  root mean squared error on  Monte Carlo simulation when  α = 0.5, 
β = 0.2, � = 0.5 and θ = 8

n Parameter Bias RMSE

100 α̂ 3.34 × 10−2 4.73 × 10−4

β̂ −7.47 × 10−3 1.05 × 10−4

�̂ −1.93 × 10−3 2.73 × 10−5

θ̂ 2.09 × 10−4 2.95 × 10−6

500 α̂ 1.13 × 10−2 1.60 × 10−4

β̂ −6.52 × 10−4 9.23 × 10−5

�̂ −3.84 × 10−3 5.43 × 10−5

θ̂ −8.10 × 10−7 1.13 × 10−8

1000 α̂ −1.63 × 10−2 2.31 × 10−4

β̂ −9.48 × 10−3 1.34 × 10−4

�̂ −2.12 × 10−4 3.01 × 10−6

θ̂ 4.65 × 10−7 6.57 × 10−9

1500 α̂ −1.24 × 10−8 1.76 × 10−10

β̂ 5.42 × 10−8 7.66 × 10−10

�̂ 6.58 × 10−5 9.31 × 10−6

θ̂ −1.13 × 10−9 1.60 × 10−11 
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In order to compare all the distribution models, we consider criteria like log likelihood 
(LL), Akaike Information Criterion (AIC), Consistent Akaike Information Criterion 
(CAIC) and Bayesian information criterion (BIC) for the data set. The better distribu-
tion corresponds to smaller LL, AIC, AICC and BIC values. The distribution of the data 
is skewed to the left (skewness = –0.95 and kurtosis = 1.01). This suggest that the BBX 
distribution is very good in modeling left skewed data.

The 95 % confidence interval for α̂, β̂ , �̂ and θ̂ are [−0.005175, 0.841059], [−200.0489, 
358.5764], [0.180912, 0.826159] and [0.690502, 14.140148] respectively.

The LR test statistic to test the hypotheses H0 : a = b = 1 versus H1 : a �= 1 ∨ b �= 1. 
For this data set ω = 18.671 > 5.991 = χ2

2;0.05, so we reject the null hypothesis.
Table 2 shows MLEs for each one of the two fitted distributions for data set and the 

values of LL, AIC, CAIC and BIC values. The values in the Table 2, indicate that the beta 
Burr X is a strong competitor to other distributions used here for fitting the data set. A 
density plot compares the fitted densities of the models with the empirical histogram of 
the observed data. The fitted density for the beta Burr X model is closer to the histogram 
than the fits of the other sub models.

Fig. 5  Beta Burr type X and its sub models for the strengths of 1.5 cm glass fibers

Table 2  The ML estimates, log-likelihood, AIC, CAIC and BIC for data set

Model ML estim. LL AIC CAIC BIC

Beta Burr type X α̂ = −0.7249 16.0016 40.003 40.691 48.578

β̂ = 13.3691

�̂ = 0.28056 

θ̂ = 7.81788 

Burr type X �̂ = 0.9869 23.9287 51.8575 52.0575 56.1437

θ̂ = 5.4860 

Burr type X one parameter �̂ = 5.7249 23.9584 49.9167 49.9823 56.0599

G Exponential θ̂ = 2.6115 31.3834 66.7669 66.9669 71.0532

�̂ = 31.3489 

Rayleigh θ̂ = 0.6490 49.7909 101.5818 101.6474 103.7249
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Conclusion
In this paper, we proposed a new distribution which generalizes the Burr type X distri-
bution. We named is beta Burr type X and it has a special sub models. The CDF, PDF, 
hazard function and limit of PDF are derived. Additionally, some of the mathematical 
and statistical properties like quantile function, skewness, kurtosis, rth moment and 
order statistic are also provided. The model parameters are estimated by using maxi-
mum likelihood estimation and we derived the observed information matrix. Simulation 
study is carried at under varying sample size to assess the performance of this model. 
Finally, application of a real data set by using the goodness of fit is illustrated. This new 
distribution provides a better fit than its sub models and it is very good model for left 
skewed data.
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Appendix
The elements of the 4 × 4 unit expected information matrix are given by:
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