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Background
Established connections in networks should be reliable to transmit flow from a source 
node to a destination node especially in delay sensitive networks. Determination of the 
best connection is one of the most important problems to avoid traffic congestion in 
networks. So, the arrival probability is used to evaluate the reliability of an established 
connection and it has been considered as an optimality index of the stochastic short-
est path length (Bertsekas and Tsitsiklis 1991; Fan et al. 2005; Kulkarni 1986). The sto-
chastic shortest path problem (SSP) is defined in a network with stochastic parameters. 
Liu (2010) produced the SSP where arc lengths were assumed to be uncertain vari-
ables. Pattanamekar et al. (2003) considered the individual travel time variance and the 
mean travel time forecasting error. Also, Hutson and Shier (2009) and Rasteiro and 
Anjo (2004) supposed two criteria, mean and variance of path length. Fan et al. (2005) 
assumed that each link to be congested or uncongested, with known conditional prob-
abilities for link travel times. Wu et al. (2004) modeled a stochastic and time-dependent 
network with discrete probability distributed arc weights. The considered model in this 
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paper is a directed acyclic stochastic network with known discrete distribution prob-
abilities of leaving or waiting in nodes.

Our criterion to evaluation of the connections from the source node toward the des-
tination node in the network is presented as the arrival probability, which is obtained by 
the established discrete time Markov chain (DTMC) in the network. Liu (2010) applied 
models according to the decision criteria and converted them into deterministic pro-
gramming problems. Hutson and Shier (2009) and Rasteiro and Anjo (2004) determined 
the path with maximum expected value of a utility function. Fan et al. (2005) proposed 
a procedure for dynamic routing policies. Nie and Fan (2006) formulated the stochas-
tic on-time arrival problem with dynamic programming, and Fan et  al. (2005) mini-
mized the expected travel time. In this paper, the maximum arrival probability from a 
given source node to a given destination node is computed according to known dis-
crete distribution probabilities of leaving or waiting in nodes, and a DTMC stochastic 
process is used to model the problem rather than dynamic programming or stochastic 
programming.

Kulkarni (1986) developed a method based on a continuous time Markov chain 
(CTMC) to compute the distribution function of the shortest path length. Azaron and 
Modarres (2005) applied Kulkarni’s method to queuing networks. Thomas and White 
(2007) modeled the problem of constructing a minimum expected total cost route as a 
Markov decision process. They wanted to respond to dissipated congestion over time 
according to some known probability distribution. From the static viewpoint, our stud-
ied model is related to the dynamic time-evolving networks recently studied by Shang 
(2015a, b), however problems addressed are from a different field.

The stochastic topology of networks motivated us to consider the arrival probability 
from the source node toward the destination node. So, the arcs of the network could 
be congested probably, that it is commonly happen in communication and transpor-
tation networks where the connecting arcs of some nodes are unable to transmit flow. 
The stochastic topology of the network causes several unstable connections between 
nodes; however, the physical topology of the network determines possible and impos-
sible connections between pairs of nodes. The leaving distribution probability from one 
node toward another node is known as the probability that their connected arc to be 
uncongested. A DTMC with an absorbing state is established and the transition matrix 
is obtained. Two conditions at any state of the established DTMC are assumed: depart-
ing from the current state to a new state when a larger labeled node is visited in the 
original network, or waiting in the current state with expecting better conditions. Then, 
the probability of arrival the destination node from the source node is computed as the 
multi-step transition probability from the initial state to the absorbing state in DTMC.

The proposed method applies DTMC and a genetic algorithm is produced to obtain an 
acceptable solution, that it applies small locally created state spaces instead of the origi-
nal large state space. The computed arrival probability describes the overall situation of 
the network to transmit flow from the source toward the destination; while, the previous 
works focused on a specific path Liu (2010), Hutson and Shier (2009), Rasteiro and Anjo 
(2004).

The remain of the paper is organized as follows. Section  “The stochastic topol-
ogy of the network” consists of some preliminary definitions and assumptions for the 
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considered model of the stochastic network. The established DTMC and computational 
method for the arrival probability is presented in “The established discrete time Markov 
chain” section. In “A genetic algorithm to find the arrival probability” section, a genetic 
algorithm is presented to approximate the arrival probability. In section  “Numerical 
results”, some implementations of the proposed method on the networks with large size 
of nodes and arcs are provided.

The stochastic topology of the network
Directed acyclic networks are considered for various applications, some of typical exam-
ples are related in the following: citation networks in information sciences, phyloge-
netic networks in biology, data structures in computer science and engineering, acyclic 
graphs in pure mathematics, random graphs and Bayesian networks in statistics, and 
etc. (for more details see Ahuja et al. 1993; Karrer and Newman 2009). Recently, Shang 
(2014) considered group consensus problems in generic linear multi-agent systems 
with directed information flow under directed fixed interaction topology and randomly 
switching, where the underlying networks are governed by a continuous-time Markov 
process.

Let network G = (N ,A), with node set N and arc set A, be a directed acyclic network. 
Then, we can label nodes in a topological order such that for any (i, j) ∈ A, i < j (Ahuja 
et  al. 1993). The physical topology for any (i, j) ∈ A shows the connection of nodes 
i, j ∈ N . Actually, the physical topology shows the possibility of communication between 
nodes in the network. To model the stochastic topology of a network think about the 
transportation networks, where there are some physical connections between nodes but 
we cannot traverse anymore toward the destination node because of probable conges-
tion. Network G has a stochastic topology if there are some facilities in the network but 
it is not possible to use them continuously. So, the existence of any arc (i, j) ∈ A does not 
mean there is a stable communication between nodes i, j ∈ N  all the time (it could be 
probably congested). For any node i, it is supposed that the uniform distribution prob-
abilities of leaving arcs (i, j) to be uncongested are known.

Now, consider the situation that flow arrives in a node but cannot leave because of 
the stochastic topology (some arcs are congested), then waits for better conditions. 
There are two options for wait situations: first, waiting in a particular node with expect-
ing some facilities to release from the current situation, which is called option 1, sec-
ond, traversing some arcs those do not lead to visit a new node, which is called option 
2. The stochastic variable of arc (i, j) according to a stochastic topology is shown by xij . 
If xij = 1, it is possible to traverse arc (i,  j) and otherwise xij = 0. The probability that 
arc (i,  j) to be uncongested is qij = Pr[xij = 1]. Then, the wait probability in node i, is 
qii = 1−

∑

{j:(i,j)∈A} qij.
Figure 1 shows the example network with its topological ordered nodes and it is the 

initial physical topology of the network. The numbers on arcs show the leaving prob-
abilities qij. Node 1 is the source node and node 5 is the destination node. It is not possi-
ble to traverse arc (1, 4) because it does not exist in the physical topology of the example 
network. However, the arcs in the physical topology could be congested according to the 
known distribution probabilities.
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The established discrete time Markov chain
Kulkarni (1986), Azaron and Modarres (2005) considered an acyclic directed network. 
They produced a CTMC and in each transition from one state to another possibly more 
than one node can be added. Then, they computed the length of the shortest path with 
exponentially distributed arc length. We propose a DTMC with discrete distributed 
probabilities, such that in each transition only one node can be added, and the wait 
states are more extended. The discrete time stochastic process {Xr , r = 1, 2, 3, ...} is called 
Markov chain, if it satisfies the following Markov property (see Ross 2006 and Thomas 
and White 2007)

Any state Sl of the established DTMC determines the traversed nodes of the original 
network. For the example network (Fig. 1) the created states Si, are shown in Table 1. The 
conditional probability of next state depends on the current state and independent of the 
previous states. Let S = {Si, i = 1, 2, 3, ...}, the initial state S1 = {1} of DTMC contains 
the single source node and the absorbing state S|S| = {1, 2, ..., |N |} contains all nodes of 
the network and it is not possible to depart; so, S is a finite state space (it is not possible 
departing from S|S|).

For the example network, the absorbing state S8 = {1, 2, 3, 4, 5} contains all nodes 
of the network; and the instance state S4 of the state space S (Table 1) contains nodes 
{1, 2, 3} and all connected components of the example network, those are constructed by 
nodes 1, 2 and 3, see Fig. 2.

The final state contains the destination node of the network, where DTMC does not 
progress anymore (Assumption 1). The states of the established DTMC contain the 

Pr[Xr+1 = Sl |Xr = Sk ,Xr−1 = Sm, ...,X1 = Sn] = Pr[Xr+1 = Sl |Xr = Sk ] = pkl .

Fig. 1  The example network with 5 nodes and 7 arcs

Table 1  The state space of the example network

State space Current nodes

S1 {1}

S2 {1, 2}

S3 {1, 3}

S4 {1, 2, 3}

S5 {1, 2, 4}

S6 {1, 3, 4}

S7 {1, 2, 3, 4}

S8 {1, 2, 3, 4, 5}
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traversed nodes of the network, those are reached from some nodes in a previous state 
(Assumption 2). It is not allowed to return from the last traversed node, however it 
is possible to wait in the current state. Clearly, a new state is revealed if a leaving arc 
(i, j) ∈ A is traversed such that the current node i is contained in the current state and 
the new node j is contained in the new state (Assumption 3). As previously said, the wait 
states are one of option 1 or option 2. So, following assumptions describe construction 
of the state space of the established DTMC: 

1.	� By arriving the destination node, the process can traverse neither any node nor any 
arc (i.e. the absorbing state)

2.	� The new state is created, if a new node is added to the current state nodes
3.	� According to the current state, it is allowed to reach only one node during transi-

tion to a new state.

Finally, by Assumptions 1, 2 and 3 all possibilities of transmission flow from the source 
node toward the destination node in the network are examined dynamically. The state 
space diagram of the established DTMC for the example network is constructed as 
Fig. 3; the values on arcs show the wait and the transition probabilities.

The transition and the wait probabilities

The transition probabilities pkl satisfy the following conditions

• • 0 ≤ pkl ≤ 1 for k = 1, 2, ..., |S| and l = 1, 2, ..., |S|

• •
∑

l pkl = 1, for k = 1, 2, ..., |S|.

Fig. 2  Constructed connected components of state S4
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Fig. 3  The state space diagram of the established DTMC
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The transition probabilities are elements of matrix P|S|×|S|, where pkl is kth row and lth 
column of matrix P, and it is called the transition matrix or Markov matrix (Ibe 2009). 
The transition matrix of the established DTMC in the network is obtained by follow-
ing theorems. The transition probabilities (except to the absorbing state) are obtained by 
Theorem 1.

Theorem 1  If pkl is kl element of matrix P, that k �= l, l < |S| and Sk = {v0 = 1, ..., vm} is 
the current state, then the transition probability from state Sk to state Sl is computed as follow

If l < k then pkl = 0, otherwise if l > k then

Evw denotes the event which arc (v,  w) is traversed during transition from Sk to Sl and 
� = {(v,w) ∈ A : v ∈ Sk\{vm},w ∈ Sl\Sk , |Sl\Sk | = 1}.

Proof  Since, it is not allowed to traverse from one state to the previous states (Assump-
tion 2), then necessarily pkl = 0, for l < k. Otherwise, suppose l > k, during transi-
tion from the current state Sk to the new state Sl, it should be reached just one node 
other than the nodes of the current state, so |Sl\Sk | = 1, v ∈ Sk, and w ∈ Sl\Sk are held by 
Assumptions 2 and 3. Two components of pkl formula should be computed.

In the last node vm of the current state Sk, it is possible to wait in vm with probability 
qvmvm. Notice, it is not possible to wait in the other nodes v ∈ Sk\{vm} because it should 
be leaved to construct the current state, however it is not necessary for node vm with 
the largest label (leaving vm leads to a new node, and therefore results in a new state). If 
w ∈ Sl\Sk, then one or all of events Evw (i.e. traversing a connecting arc between a node 
of the current state and another node of the new state) can happen for (v,w) ∈ �, and the 
arrival probability of node w ∈ Sl from the current state Sk is equal to Pr[

⋃

(v,w)∈� Evw] . 
The collection probability should be computed because of deferent representations of 
the new state (for example see Fig. 2). Then, the nodes of the current state v ∈ Sk\{vm} 
(while waiting in vm) should be prevented from reaching other nodes u /∈ Sk and u �= w 
(Assumption 3), so arcs (v,u) are not allowed to traverse and they are excluded simulta-

neously, thus it is equal to 
∏

(v,w)∈� (1−
∑

(v,u) ∈ A
u �= w,u /∈ Sk

qvu)). The other possibility in 

node vm that is leaving it toward the new node w ∈ Sl\Sk with probability qvmw. � �

For example, in the established DTMC of the example network, the transition prob-
ability p47 is computed by the constructed components as shown in Fig.  4; and it is  
Pr(E14 ∪ E24)× (1− q15)(1− q25)× q33 + q34, where Pr(E14 ∪ E24) = q14 + q24 − q14q24,  
however q14 = q15 = q25 = 0 as shown in Fig. 1, then p47 = q33 × q24 + q34. It is pos-
sible to wait in node 3 but not other nodes of the current state S4 = {1, 2, 3}; where, by 
traversing arc (2, 4) or (3, 4) the new state S7 = {1, 2, 3, 4} is revealed.

pkl = Pr





�

(v,w)∈�

Evw



×















�

(v,w)∈�















1−
�

(v,u) ∈ A
u �= w,u /∈ Sk

qvu





























× qvmvm + qvmw .



Page 7 of 14Shirdel and Abdolhosseinzadeh ﻿SpringerPlus  (2016) 5:675 

Theorem 2 describes the transition probabilities to the absorbing state S|S|, and they 
are the last column of the transition matrix P.

Theorem 2  To compute the transition probability from state Sk = {v0 = 1, ..., vm} to the 
absorbing state S|S| for k = 1, 2, ..., |S| − 1 , which is k|S| th element of matrix P, suppose 
vn ∈ S|S| is the given destination node of the network then

Evvn denotes the event that arc (v, vn) ∈ A of the network is traversed during the transition 
from Sk to S|S|.

Proof  To compute the transition probabilities pk|S|, for k = 1, 2, ..., |S| − 1 it should be 
noticed the final state is the absorbing state S|S| = {1, 2, 3, ..., |N |} containing all nodes 
of the network, and the stochastic process does not progress any more (Assumption 1). 
So, it is sufficient to consider leaving arcs (v, vn) from v ∈ Sk, the nodes of the current 
state, toward the destination node vn ∈ S|S|. Then, one or all of events Evvn (i.e. travers-
ing a connecting arc between a node of the current state and the destination node of the 
absorbing state) can happen and the transition probability from the current state Sk to 
the absorbing state S|S| is totally equal to Pr[

⋃

v∈Sk ,(v,vn)∈A
Evvn ]. The collection probabil-

ity should be computed because of deferent representations of the states (for example 
see Fig. 2). � �

For state S4, transition probability p48 is obtained by Pr(E15 ∪ E25 ∪ E35), however 
q15 = q25 = 0, then p48 = q35. The wait probabilities, those are the diagonal elements of 
the transition matrix P, are obtained by Theorem 3.

Theorem 3  Suppose Sk = {v0 = 1, ..., vm} is the current state, then the wait probability 
pkk is kth element of matrix P and it is 

Proof  The wait probabilities pkk are the complement probabilities of the transi-
tion probabilities from the current state Sk, for k = 1, 2, ..., |S| − 1, toward the all 

pk|S| = Pr





�

v∈Sk ,(v,vn)∈A

Evvn



.

pkk =

{

1−
∑|S|

j=k+1 pkj if k < |S|

1 if k = |S|.

Fig. 4  The constructed states during transition from S4 to S7
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departure states Sj, for j = k + 1, k + 2, ..., |S|. Then, we have pkk = 1−
∑|S|

j=k+1 pkj, for 
k = 1, 2, ..., |S| − 1, in other word, they are the diagonal elements of matrix P, those are 
computed for any row k = 1, 2, ..., |S| − 1 of the transition matrix (see Ibe 2009). The 
absorbing state S|S| does not have any departure state, so p|S||S| = 1 as the transition 
matrix P.� □

The arrival probability

The arrival probability determines the reliability of connections in the network, and it 
shows the probability that they are not congested during transmission flow from the 
source node to the destination node in the network. The arrival probability is defined 
as multi-step transition probability from the initial state S1 to the absorbing state 
S|S| in the established DTMC. According to Assumptions 1, 2 and 3, the state space 
of DTMC is directed and acyclic (otherwise return to the previous states is allowed). 
Out-degree of any state is at least one (without loop wait transition arcs considera-
tion), except the absorbing state S|S|, then for any state Sk, there is one\multi-step transi-
tion from the initial state to the absorbing state that traverses state Sk. Consequently, 
the absorbing state is accessible from the initial state after some finite transitions. Let 
pkl(r) = Pr[Xm+r = Sl |Xm = Sk ] denote the conditional probability that the process will 
be in state Sl after exactly r transitions, given that it is presently in state Sk. So, if matrix 
P(r) is the transition matrix after exactly r transitions, it can be shown that P(r) = Pr , 
and let pkl(r) be klth element in matrix Pr (see Ibe 2009). Thus, the arrival probability 
after exactly r transitions is p1|S|(r) = Pr[Xr = S|S||X0 = S1] and it is the 1|S|th element 
in the matrix Pr.

For the example network, we want to obtain the probability of the arrival node 5 from 
node 1. The arrival probability p18(r) is obtained as shown by solid line in Fig. 5 after 
seven transitions. For r sufficiently large, the probabilistic behavior of DTMC becomes 
independent of the starting state i.e. Pr[Xr = S|S||X0 = S1] = Pr[Xr = S|S|], that is the 
multi-step transition probability (Ibe 2009). For the example network, it is 0.9994.
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Fig. 5  The arrival probabilities
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A genetic algorithm to find the arrival probability
Although it has been shown Markov decision problems could be solved in polynomial 
time (Papadimitriouc and Tsitsiklis 1987), computations grow exponentially in practice 
(Littman et al. 1995). The proposed DTMC is very sensitive to the size of the networks 
(specially the size of the node set), and its constructed state space is grown exponen-
tially (see last column in Table 2). Then, a genetic algorithm is produced to obtain a near 
optimal solution. So, it is a polynomial time algorithm since it is done over the estab-
lished DTMC, which has polynomial computation complexity. However, the proposed 
genetic algorithm applies small locally created state spaces instead of the gigantic large 
state space.

The proposed genetic algorithm needs to obtain some initial feasible solutions, so the 
first step is to extract some sub-networks from the original network with local source 
nodes and destination nodes. Extracting the sub-networks is applied by all operators of 
the proposed genetic algorithm and it is presented as a basic operator. We need to define 
three types of operators as described by Sivanandam and Deepa (2008) and Dréo et al. 
(2006). The initial population operator extracts some sub-networks and their required 
complement components to establish connections between the original source and des-
tination nodes. Then, the crossover operator tries to obtain new populations from the 
current initial populations and to replace the worst ones with the best ones. To avoid 
probable local optimality, the mutation operator extends the search area of selecting 
local source and destination nodes. Therefore, the sub-networks inherit all characteris-
tics of the original network; they are directed, acyclic and all nodes are reachable from 
the local source node and the local destination node is reachable form all nodes. A con-
nection is a union of some sub-networks, those the local source node of one is the local 
destination node of another one and it can transmit flow from the original source node 
toward the original destination node.

Table 2  The implementation of the proposed genetic algorithm

Node  
number

Arc  
number

Transition  
component size

Almost 
value

Fitness  
probability

Arrival  
space size

State

20 5 0.9981 0.9771 127

10 26 5 9 1.0000 0.9977 130

29 5 0.9902 0.9249 253

82 15 0.9973 0.9973 126,593

20 98 15 13 0.9998 0.9998 200,593

105 15 0.9999 0.9947 122,385

208 22 0.9999 0.8492

30 216 22 13 1.0000 0.9623

228 22 1.0000 0.9488

363 40 1.0000 0.8927

40 372 60 11 1.0000 0.9754

386 60 1.0000 0.7571

609 87 1.0000 0.9719

50 614 87 11 1.0000 0.8559

630 75 1.0000 0.6983
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Extracting a sub‑network from the original network

Any sub-network from the original network needs a source node that sends flow faster 
than those nodes their labels are smaller and it should be the smallest index that could 
be departed from. Also, it needs a destination node which receives flow faster than those 
nodes their labels are grater and it should be the greatest index that could be arrived. So, 
consider the following situations:

• • If node i is a local source node for a sub-network, then the leaving probabilities are 
changed as below 

• • If node j is a local destination node for a sub-network, then the weights of arcs are 
changed as below 

By (1) and (2) we will be able to separate a component of the network; however, there 
maybe exist some nodes except the local source node with in-degree zero, or some 
nodes except the local destination node with out-degree zero, they could be determined 
from the changed arc weight matrix. The node set and the new arc weight matrix for a 
sub-network are generated as below:

Extracting sub‑network operator

1.	 For any node v satisfying (1) and (2) omit node v from the node set and row v and 
column v form the arc weight matrix.

2.	 While there exists any zero row k (column k) except the row and the column of the 
local destination node, omit node k from the current node set and row k and column 
k from the current arc weight matrix.

Therefore, the operator I guaranties existence of a local source node and a local des-
tination node, and the operator II guaranties connectivity. So, if the local destination 
node is unreachable from the local source node, then the final arc weight matrix will be 
an identity matrix of size (|N | − 1)× (|N | − 1), and the current local source and des-
tination nodes should be changed and the extracting operator is repeated. At the end 
of the extracting operator, for any node i there exists a path from the local source node 
to any node i of the extracted sub-network, as well as a path from any node i of the 
extracted network to the local destination node; otherwise, there is a contradiction with 
the original network characteristics. Except the first column and the last row, there are 
no zero columns or rows in the weight matrix of the sub-network (the wait probabilities 
are replaced with the zero diagonal elements of the matrix). For the example network, 
we suppose the constructed components of the sub-networks have at most three nodes.

(1)∀v < i, ∀w ∈ N :

{

qvv := qvv + qvw , qvw := 0
qww := qww + qwv , qwv := 0.

(2)∀v > j, ∀w ∈ N :

{

qvv := qvv + qvw , qvw := 0
qww := qww + qwv , qwv := 0.
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The initial population operator

To accomplish a connection between the original source and destination nodes, it is 
required to produce some complement components. Obviously, there should exist such 
components those could connect together, otherwise there is not feasible solution for 
the problem. The proposed genetic algorithm starts with some randomly created ini-
tial components; then, mid-components are obtained such that a connection between 
the original source node and the original destination node is established. For produc-
ing complement components, the local destination node of a sub-network and the local 
source node of another one are selected according to their labels, then a mid-compo-
nent is created with these successive local source and destination nodes; especially, the 
original source node and the original destination node are considered as components 
themselves.

The initial population operator

1.	 Choose a local source node and a local destination node randomly.
2.	 Extract the sub-network with local source and destination nodes (initial component).
3.	 Put the initial local source node as s0, and the initial local destination node as d0.
4.	 Create a mid-component between the original source node and s0: put s0 as the local 

destination node, then select randomly the local source node i for i < s0; if i �= s, 
then put s0 = i and repeat.

5.	 Create a mid-component between d0 and the original destination node: put d0 as the 
local source node, then select randomly the local destination node i for i > d0; if 
i �= d, then put d0 = i and repeat.

The connections are sorted according to their fitness values from the worst one to the 
best one. The fitness value shows the arrival probability from the original source node 
to the original destination node (see “The arrival probability” section). The initial pop-
ulation operator is ended when the number of the initial populations is satisfied. The 
implementation of the initial population operator on the extracted sub-networks of the 
example network creates connections as shown in Fig. 6.

The crossover operator

To produce new populations of the current populations and to improve the current opti-
mality, we define the crossover operator similar to the initial population operator, except 
that the local source and the destination are selected form the nodes belonging to sub-
networks. To produce distinct populations, the algorithm chooses one node from the set 

Fig. 6  The created connections of the extracted sub-networks
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π1 = {the nodes belonging to the initial population i}−{the nodes belonging to the initial

population j} and another node from the set π2 = {the nodes belonging to the  
initial population j} − {the nodes belonging to the initial population i}, i �= j , if none of 
them is empty; otherwise, one of the obtained initial populations is the sub-set of the 
other one and the algorithm extends the search area by the mutation operator.

The crossover operator

1.	 If none of sets π1 and π2 is empty then randomly choose one node belonging to  
π1 and one node belonging to π2, as the local source node and the local destination 
node, according to their labels.

2.	 Extract a sub-network and apply the initial population operator on the new extracted 
sub-networks.

The mutation operator

To avoid local optimality the mutation operator extends the search area to other parts of 
the network. So, if the current populations do not change during the crossover operator 
(one of sets π1 and π2 is empty), the mutation operator extends the search area of the 
local source and destination nodes detection, and it tries to change the current popula-
tions and improves the arrival probability.

The mutation operator

1.	 Select two nodes randomly belonging to N − ({initial population i}
⋃

{initial population j}) as the local source node and the local destination node.
2.	 Extract a sub-network and apply the initial population operator on the new extracted 

sub-networks.

Fitness function

The selection operator through the algorithm is a ranked selection operator. Connec-
tions are sorted from the worst one to the best one, then the proposed genetic algorithm 
replaces the worst one with the new connections of the improved fitness values. After 
the multi-step transition probabilities of the all components contained in any population 
were computed, a path is constructed between the original source node and the original 
destination node through the local destination nodes of the initial population. Then, by 
the similar process to the original network, the arrival probability is computed for the 
path and it is recorded as the fitness value of the population. In any iteration, the above 
process is repeated for the optimal populations with the maximum arrival probabilities. 
Out-put of the proposed genetic algorithm for the example network is shown by dash 
line in Fig. 5. The obtained arrival probability is 0.9975 and it is given after 7 transitions, 
with 5 initial populations and its fitness value is 1.0000.

Numerical results
Some implementations of the proposed method on large networks are presented in this 
section (see Table  2). The networks are acyclic directed networks and there is a path 
from each node to the destination node. The leaving and waiting probabilities of nodes 
are random numbers produced by the uniform distribution probability. Then, the arrival 
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probability is computed for the established DTMC. All of the experiments are coded in 
MATLAB R2008a and they are performed on Dell Latitude E5500 (Intel(R) Core(TM) 2 
Duo CPU 2.53 GHz, 1 GB memory).

Any increment in the number of nodes and arcs of the network increases the state 
space size, consequently. So, the transition matrix and its related computations need 
gigantic amount of memory (see last column of Table 2) such that it is not easy to find 
the exact solution. For networks with 10 nodes, the size of the state space is about hun-
dreds, for networks with 20 nodes it is about thousands, and for networks with 30 nodes 
it is about millions, and so on. Third column of Table 2 shows required nodes to create 
the sub-networks and the arrival probabilities are obtained with transition numbers.

The implementations of the proposed genetic algorithm according to the arc num-
bers are shown in Fig. 7. Results show the numbers of the components containing in the 
constructed sub-networks and the numbers of transitions, both are two most important 
parameters to obtain the arrival probability by the proposed genetic algorithm.

Conclusion
We considered an established discrete time Markov chain stochastic process over directed 
acyclic networks. The arrival probability from a given source node to a given destination 
node was computed according to the probability of transition from the initial state to the 
absorbing state by multi-step transition probability in DTMC. A genetic algorithm was pro-
posed for large networks, where the state space of the established DTMC grew as rapidly as 
exponentially. However, the proposed genetic algorithm applied small locally created state 
spaces instead of the gigantic large state space. Numerical results showed efficiency of the 
proposed method to obtain the multi-step transition probability that the destination node 
is accessible for the first time. Extension of described model on the continuous time vary-
ing networks, and using the discrete nature of the proposed model to apply meta-heuris-
tic methods and reducing the computations can be considered as future works guidelines. 
Also, the shortest path problem with recourse where some local decisions are made during 
routing process and they could be evaluated by the proposed method.

Arc number
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Fig. 7  The out-put of the genetic algorithm according to arc number
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