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Background
The CIGS thin film hetero-junction solar cell based on the chalcopyrite p-type absorber 
layer Cu(In1-xGax)Se2 is a promising option in industrial productivity due to its lower 
manufacturing cost and higher efficiency (Rampino et  al. 2015; Powalla and Dimmler 
2001; Minemoto et al. 2003). Although the CIGS solar cell is recorded as a highly effi-
cient (~21.7 %) thin film solar cell (Jackson et al. 2015) either there must still need to 
enhance efficiency and reduce cost for mass productivity. The inline co-evaporated 
CIGS absorber (Lindahl et al. 2013) has band gap range from 1.04 (CIS) to 1.67 eV (CGS) 
depending on x (from 0 to 1) (Tverjanovich et al. 2006; Gloeckler and Sites 2005; Gabor 
et al. 1996). The mismatch effect of CIGS layer (Lee et al. 2011) with adjacent CdS buffer 
layer and Mo back contact is avoided and the absorber band gap is adjusted with its cor-
responding electron affinity. Furthermore, the doping concentration of different layers is 
also an important factor to maximize the efficiency and minimize the fabrication cost of 
any solar cell (Haque and Galib 2013). The influence of the CIGS absorber band gap and 
the doping concentration of each layer on the performance of the solar cell have been 
investigated in this study. The radio frequency (RF) sputtered ZnO (deposition of Al 
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doped ZnO and intrinsic ZnO) with its wider band gap of 3.3 eV and the chemical bath 
deposited (CBD) CdS with its direct band gap of 2.42 eV have been used as the window 
and the buffer layer respectively (Lindahl et al. 2013; Jung et al. 2010). All the efficiency 
measurements and comparisons are done under a solar spectrum AM1.5G for which the 
solar irradiance on earth is 0.1 W/cm2 (Haque et al. 2013). The shadowing factor used in 
the simulation is of 5 %.

Research methodology
Device modeling

ADEPT/F 2.1 (Gray et al. 2015), a one dimensional (1D) online research tool is used to 
analyze the device parameters as well as electrical characteristics of hetero-structured 
semiconductor devices including single, multi-junction and thin film solar cells. It con-
tributes to the numerical solution of the Poisson’s equation and the continuity equation 
for holes and electrons. The simulator has been used to extract the diagrams such as 
electric field distribution, current-voltage characteristics, and energy band diagram. 
From the simulation, it becomes more feasible to calculate the fill factor (FF) and the 
efficiency. The CIGS model consisting of n-ZnO/n-CdS/p-CIGS layers fabricated on Mo 
coated soda-lime glass has been proposed for the simulation study. The structural view 
of Cu(In1−xGax)Se2 thin film solar cell used for conducting the simulation is shown sche-
matically in Fig. 1.

Methodological analysis

The simulation was conducted by formulating the parameters with their correspond-
ing values used in Tables 1 and 2. Afterwards, the highest efficiency for this structure 
has been calculated by determining the optimum band gap of the absorber layer and 

Fig. 1  Schematic diagram of Cu (In1-xGax)Se2 thin film solar cell (The dimensions are not scaled)
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making variation of the thickness and doping concentration of each layer. The sim-
ulations have been conducted through varying only the particular parameter and by 
keeping other parameters as default. The material and electrical properties of each 
layer have been elicited from some reliable sources of numerical simulations and 
experimental works (Gloeckler et  al. 2003; Chelvanathan et  al. 2010; Bouloufa et  al. 
2007; Schlenker et al. 2007; Balboul et al. 2008; Hossain et al. 2011; Repins et al. 2009; 
Gloeckler et al. 2005; Jackson et al. 2007). As mentioned earlier, the band gap of CIGS 
layer along with its electron affinity is varied according to the change in “x” content 
(Gorji et  al. 2012). The absorption files used by the simulator define the absorption 
coefficient due to different wavelengths. These files and the values of the parameters 
corresponding to mid-gap defect states are extracted from (Gloeckler et al. 2003) for 
the constituent layers. 

The values of energy band gap and electron affinity are varied due to the change in Ga/
(In+Ga) ratios. The Table 3 shows the variation in band gap along with electron affinity 

Table 1  The default values of device parameters

Parameters N-ZnO N-CdS P-CIGS

Thickness (µm) 0.2 0.05 3

Dielectric constant 7.8 8.28 13.6

Refractive index 2 3.16 3.67

Band gap (eV) 3.3 2.42 1.15

Electron affinity (eV) 4.6 4.4 4.5

Electron mobility (cm2/Vs) 160 350 100

Hole mobility (cm2/Vs) 40 50 25

Conduction band effective density of states (cm−3) 2.2 × 1018 1.7 × 1019 2 × 1018

Valence band effective density of states (cm−3) 1.8 × 1019 2.4 × 1018 1.6 × 1019

Donor concentration (cm−3) 1 × 1018 1 × 1018 0

Acceptor concentration (cm−3) 0 0 2 × 1016

Electron lifetime (s) 5 × 10−8 2 × 10−8 1 × 10−8

Hole lifetime (s) 5 × 10−9 6 × 10−8 5 × 10−8

Absorption file zno.a cds.a cigs.a

Table 2  Contact parameters for device simulation

Parameters Front contact Back contact

Reflectance 0.1 0.8

Recombination velocity for holes 107 107

Recombination velocity for electrons 107 107

Table 3  Band gap and electron affinity of Cu(In1−xGax)Se2 alloy composition

Ga/(In + Ga) ratio, x Band gap, Eg Electron affinity, χe

0.0 1.04 4.61

0.3 1.20 4.25

0.7 1.40 3.93

1.0 1.67 3.41
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of Cu(In1−xGax)Se2 layer with respect to the variation in “x” (Song et al. 2004; Klein et al. 
1996; Dejene 2009; Johnson 2004; Li et al. 2009; Minemoto et al. 2001; Gloeckler and 
Sites 2005; Černivec et al. 2007) which can successively be plotted through curve fitting 
as shown in Fig. 2. 

The mathematical Eqs. (1) and (2) were derived through fitting the curve by using the 
values put in Table 3.

It can be remarked that the band gap increases and the electron affinity decreases with 
the raising of “x”. Initially, the effect of absorber layer band gap was observed to deter-
mine the optimum result. Then, the energy band profile with optimum band gap and the 
efficiency graph due to the variation in energy gap were plotted. Afterwards, the dop-
ing concentration of each layer was varied and the optimal level of doping was deter-
mined by analyzing the corresponding efficiencies. Finally, the efficiency was calculated 
by using the optimized values and hence the highest performance was obtained.

Results and discussion
Simulation outcome with default values

The simulation was conducted successively with the default data used in Tables 1 and 2 
which results in the light J-V characteristics curve. The open circuit voltage was obtained 
as 0.639 V, while the short circuit current was 36.41 mA/cm2. Then the fill factor (FF) 
and the efficiency were calculated as 78.38 and 18.23 % respectively. Figure 3 shows the 
J-V characteristic curve.

(1)Eg = 1.04 + 0.391x + 0.262x2

(2)χe = 4.61− 1.162x + 0.034x2

Fig. 2  Variation in band gap and electron affinity due to the change in Ga content
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Effect of absorber layer band gap on cell efficiency

The Cu(In1−xGax)Se2 layer energy band gap was varied from 1.04 to 1.69 eV and keep-
ing the other parameters as default the corresponding efficiencies were calculated. 
However, the efficiency increases with the wider band gap and after certain level the effi-
ciency decreases in spite of increasing the band gap. Furthermore, the lattice mismatch 
effect is an important issue to be noted in this case. The CIGS cell suffers from lattice 
mismatch effect for the Ga/(In + Ga) ratio above 0.35 (Song and Campbell 2013). The 
Table 4 shows the variation in band gap, electron affinity, and cell performance due to 
the change in Ga fraction. In a good agreement with simulation result, the optimal band 
gap of the CIGS absorber was chosen as 1.21 eV while the electron affinity was calcu-
lated as 4.21 eV. Because the band gap greater than 1.21 eV causes reducing the absorp-
tion within the layer and hence decreasing the short-circuit current. On the other side, 
the open circuit voltage increases linearly with the band gap variation.

Determining the absorber band gap as 1.21 eV the energy band diagram for the entire 
solar cell structure was obtained as shown in Fig. 4.

Fig. 3  J-V characteristic curve for default values

Table 4  Performance variation due to absorber band gap

X Eg (eV) χe (eV) Jsc (mA/cm2) Voc (V) FF (%) η (%)

0 1.04 4.61 36.43 0.529 76.70 14.79

0.2 1.13 4.38 36.22 0.622 77.68 17.49

0.35 1.21 4.21 36.06 0.705 76.44 19.45

0.55 1.33 3.98 35.84 0.828 66.60 19.77

0.7 1.44 3.81 35.69 0.940 55.90 18.43

1 1.69 3.48 35.45 1.183 32.16 13.49
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Effect of doping concentration on cell efficiency

The ZnO window layer doping concentration was varied from 1 × 1017 to 1 × 1019 cm−3 and 
the corresponding efficiencies were calculated to obtain the optimal doping level by compar-
ing the outcomes. Hence, the optimal doping density was dictated as 1 × 1018 cm−3.

The doping density of CdS buffer on n-p junction (constituted between the buffer and 
the absorber) highly affects the output current. Analyzing the effects of drift velocity and 
holes recombination rate (Lee et  al. 2009), the optimum doping concentration of CdS 
buffer layer was obtained as 5 × 1018 cm−3.

The determined higher doping level of the absorber, 1 × 1019 cm−3, is satisfactory for 
the electron affinity of the CIGS absorber, 4.21 eV.

Optimized result

As discussed earlier, the absorber layer optimal band gap of 1.21  eV and the optimized 
doping concentration of all layers are determined through device simulation which in turn 
provides the highest performance. In Fig. 5a, describes the doping concentrations of differ-
ent layers of designed CIGS solar cell, Fig. 5b shows the spatially resolved current, Fig. 5c 
denotes the electric field corresponding to the thickness of the layers and finally Fig. 5d 
represents the J-V characteristic curve from which the optimum efficiency has been calcu-
lated. The simulation result presents the J-V characteristic curve with short-circuit current 
density of 33.09 mA/cm2 and open circuit voltage of 0.856 V. Finally, the maximum effi-
ciency of CIGS thin film was calculated from the simulation outcomes as 24.27 %.

Conclusions
The numerical simulation of CIGS hetero-structure thin film solar cell was conducted by 
the ADEPT/F 2.1 one-dimensional online simulator. From various reliable sources the 
default values for simulation were collected and tabulated to obtain the default outcome. 
The mathematical equations of energy band gap and electron affinity for CIGS absorber as 

Fig. 4  Energy band diagram of CIGS thin film
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a function of “x” were developed by plotting some known results. At different Ga fraction 
the absorber band gap and electron affinity were calculated. The simulation of the cell with 
the Cu(In0.65Ga0.35)Se2 absorber layer results in higher efficiency rather than other com-
positions. Afterwards, the doping concentrations of the component layers were optimized 
in terms with drift velocity of the majority carrier and recombination rate of the minority 
carrier. At last, the cell performance was investigated by simulating with optimized values.
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