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Introduction and main result
The complex oscillation theory of meromorphic solutions of differential equations is an 
important topic in complex analysis. Some results can be found in Yi and Yang (2003), 
where Nevanlinna theory is an effective research tool. Recently, many results on mero-
morphic solutions of difference equations have been rapidly obtained. In this note, we 
are interested in the properties of entire solutions of difference and differential-differ-
ence equations.

Before proceeding, we spare the reader for a moment and assume some familiarity 
with the basics of Nevanlinna theory of meromorphic functions in C such as the first 
and second main theorems, and the usual notations such as the characteristic function 
T(r,  f), the proximity function m(r,  f) and the counting function N(r,  f). S(r,  f) denotes 
any quantity satisfying S(r, f ) = o(T (r, f )) as r → ∞, except possibly on a set of finite 
logarithmic measure—not necessarily the same at each occurrence. Let a, f be meromor-
phic functions on C. a is said to be a small function of f whenever T (r, a) = S(r, f ). S(f) 
denotes the family of all the small functions of f. �(f ) denotes the exponent of conver-
gence of zeros of f, σ(f ) denotes the order of f. A differential polynomial of f means that 
it is a polynomial in f and its derivatives with coefficients that are small functions of f. A 
differential-difference polynomial of f means that it is a polynomial in f, its derivatives 
and its shifts f (z + c) with coefficients that are small functions of f.

For a meromorphic function f and a set S ∈ C, we define

Ef (S) =
⋃

a∈S
{z|f (z)− a = 0, counting multiplicities}.
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We say that f and g share a set S counting multiplicities (CM), provided that 
Ef (S) = Eg (S).

Recently, there has been a renewed interest in studying meromorphic solutions of 
differential-difference equations, see Peng and Chen (2013), Yang and Laine (2010) and 
Zhang and Liao (2011). Xu et al. (2015) considered a general differential-difference equa-
tion to obtain the following theorem.

Theorem A  Consider the nonlinear differential-difference equation

where p1, p2 are two nonzero polynomials, q, a are two nonzero entire functions of finite 
order, q1 , q2 are two nonconstant polynomials, n ≥ 2 is an integer. Suppose that an entire 
function f satisfies any one of the following two conditions:

(1)  �(f ) < σ(f ) = ∞,  σ2(f ) < ∞;
(2)  �2(f ) < σ2(f ) < ∞.
	 Then f can not be an entire solution of (1).

After studying Theorem A, we ask whether the conclusion still holds if the condition 
σ2(f ) < ∞ is omitted in (1). In the paper, we consider the problem and give an affirma-
tive answer.

Theorem 1  Suppose that an entire function f satisfies the following condition:

Then f can not be an entire solution of (1).
Liu (2009) used the idea of shared set (see Lü and Xu 2008) and studied the uniqueness 

problem of entire function f(z) shares a set with its difference shift f (z + c) as follows.

Theorem B  Let f be a transcendental entire function of finite order, c is nonzero com-
plex number, and let a(z) ∈ S(f ) be a non-vanishing periodic entire function with period 
c. If f(z) and f(z+c) share the set {a(z),−a(z)} CM, then f(z) must take one of the following 
conclusions:

(1)  f (z) ≡ f (z + c)

(2)  f (z)+ f (z + c) ≡ 0

(3)  f (z) = 1
2 (h1(z)+ h2(z)), where h1(z+c)

h1(z)
= e−γ, h2(z+c)

h2(z)
= e−γ, 

h1(z)h2(z) = a2(z)(1− e−2γ ) and γ is a polynomial.

Note that the form of conclusion (3) is not similar to (1) and (2). So, it is necessary to 
further study the problem. In the paper, we consider Theorem B again. Due to the differ-
ent method of proof we employ, we obtain the following result.

(1)q(z)f n(z)+ a(z)f (k)(z + 1) = p1(z)e
q1(z) + p2(z)e

q2(z)

�(f ) < σ(f ) = ∞.
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Theorem 2  Under the conditions of Theorem B, then

(I)   f (z) ≡ f (z + 2c);
(II)  f (z)+ f (z + 2c) ≡ 0.

Examples   Below, we provide two examples to show that the cases (I) and (II) occur.

(a) Let f (z) = ez and c = 2π i. Then for any a(z) ∈ S(f ), we notice that f(z) and 
f (z + c) share {a(z),−a(z)} and we can easily see that f (z) = f (z + 2c). This example 
satisfies (I) of Theorem 2.
(b) Let f (z) = cos z and c = π

2 . Then for any a =
√
2
2 , we notice that f(z) and f (z + c) 

share {a(z),−a(z)}. Furthermore, we can easily obtain f (z)+ f (z + 2c) = 0. This 
example satisfies case (II) of Theorem 2.

Tang and Liao (2007) considered the entire solutions of a differential equation. Liu and 
Cao (2013) considered a q-difference analogue of the above differential equation. Liu 
and Yang (2013) further generalized the result of Tang and Liao (2007) from differential 
equations to difference equations. They deduced the entire solutions of generalization of 
Fermat type equation and obtain below result.

Theorem C  Let P, Q be two nonzero polynomial. If the difference equation

admits a transcendental entire solution of finite order, then P(z) ≡ ±1 and Q(z) reduces to 
a constant q. Thus f (z) = √

qsin(Az + B), where B is a constant and A = (4π + 1) \ 2c, 
where k is an integer.

At the end of the paper, by considering a different proof of Theorem C, we generalize 
Theorem C from polynomial P to small function P as follows.

Theorem 3  Under the conditions of Theorem C and suppose that P(z) is nonzero small 
entire function of f, then the conclusions of Theorem C still hold.

Some lemmas
In this section, we state some results that we employ in our proofs.

Lemma 1  (Halburd and Korhonen 2006, Theorem 2.1) Let f be a meromorphic function 
with a finite order, and let c be complex number, δ < 1. Then

where S(r, f ) = o(T (r, f )) for all r outside of a possible exceptional set E with finite loga-
rithmic measure.

(2)f (z)2 + P(z)2f (z + c)2 = Q(z)

m

(

r,
f (z + c)

f (z)

)

= o

(

T (r, f )

rδ

)

= S(r, f ),
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Lemma 2  (Yang and Laine 2010, Theorem 2.3) Let f be a transcendental entire function, 
Q(z) is the canonical product of f constructed by the zeros of f. Then σ(Q) = �(Q) = �(f ).

The Hadamard theorem of entire functions of infinite order with σ2(f ) < ∞ has been 
proved in Jank and Volkmann (1985). In the following proof, we need to remove the con-
dition σ2(f ) < ∞. Similar to the proof of the Hadamard theorem, we prove the following 
result.

Lemma 3  Let f be an entire function of infinite order with �(f ) < ∞. Then f can be rep-
resented as

where Q(z) is the canonical product of f constructed by the zeros of f, g(z) is a transcenden-
tal entire function such that

Proof  Let

Then F(z) is entire with a Picard exceptional value 0, and hence F(z) = eg(z), where g(z) is 
an entire function.

Since Q(z) is the canonical product of f constructed by the zeros of f, then �(f ) = �(Q). 
By Lemma 2, we have σ(Q) = �(Q) = �(f ) < ∞.

Note that σ(Q) < σ(f ) = ∞, we have σ(eg ) = max{σ(Q), σ(f )} = σ(f ) = ∞. �

Proof of Theorem 1
Suppose that f is an entire solution of Eq. (1) and satisfying �(f ) < σ(f ). By Theorem A, 
it is suffice to prove Theorem 1 for the case σ2(f ) = ∞.

By Lemma 3, we can set

where Q is an entire function, g is a transcendental entire function such that

From the condition �(f ) < ∞, we have σ(Q) < ∞, σ2(Q) = 0. So 
σ2(f ) = max{σ2(eg ), σ2(Q}) = σ2(e

g ) = σ(g) = ∞.
Substituting f (z) = Q(z)eg(z) into (1) we obtain that

where H(z) is a differential polynomial in Q(z + 1) and g(z + 1).
Set G(z) = g(z + 1)− ng(z), then (3) becomes

f (z) = Q(z)eg(z),

�(Q) = �(f ) = σ(Q), σ(f ) = σ(eg ) = ∞.

F(z) =
f (z)

Q(z)
.

f (z) = Q(z)eg(z),

�(Q) = �(f ) = σ(Q), σ(f ) = σ(eg ) = ∞.

(3)q(z)Qn(z)eng(z) + a(z)H(z)eg(z+1) = p1(z)e
q1(z) + p2(z)e

q2(z),

q(z)Qn(z)+ a(z)H(z)eG(z+1) = e−ng(z)(p1(z)e
q1(z) + p2(z)e

q2(z))
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which implies

Let A1 = q(z)Qn(z),A2 = a(z)H(z),A3 = p1(z)e
q1(z) + p2(z)e

q2(z). It is easy to see that 
A1 and A3 are of finite order. So A1 and A3 are two small functions of e−ng, which means 
that

Obviously, T (r, g) = S(r, e−ng ). Note that H is a differential polynomial in Q(z + 1) and 
g(z + 1), so T (r,A2) = S(r, e−ng ). Rewrite (4) as

Next we show that A3 �= 0. Suppose A3 = 0, then (1) becomes

which implies that nT (r, f ) ≤ T (r, f )+ S(r, f ), a contradiction. Thus, A3 �= 0.
Suppose that A1 �= 0. By using the second main theorem and (5), we have

which is a contradiction. So A1 = 0, which implies Q(z) = 0, a contradiction.
Thus, we finish the proof of Theorem 1.

Proof of Theorem 2
Since f(z) is an entire function of finite order and f(z), f (z + c) share the set {a(z),−a(z)},  
then,

where α is a polynomial. Since a is a periodic entire function with period c, we infer by 
Lemma 1 that

and

From (6)–(8), we obtain

(4)q(z)Qn(z)+ a(z)H(z)eG(z+1) − e−ng(z)(p1(z)e
q1(z) + p2(z)e

q2(z)) = 0.

T (r,A1) = T (r,A3) = S(r, e−ng ).

(5)A2e
G(z+1) = A3e

−ng(z) − A1.

q(z)f n(z) = −a(z)f (k)(z + 1),

T (r, e−ng ) ≤ N (r, e−ng )+ N

(

r,
1

e−ng

)

+ N

(

r,
1

e−ng − A1
A3

)

+ S
(

r, e−ng
)

≤ N

(

r,
1

A2

)

+ S(r, e−ng )

= S(r, e−ng ),

(6)
(f (z + c)− a(z))(f (z + c)+ a(z))

(f (z)− a(z))(f (z)+ a(z))
= eα ,

(7)m

(

r,
f (z + c)− a(z)

f (z)− a(z)

)

= S(r, f )

(8)m

(

r,
f (z + c)+ a(z)

f (z)+ a(z)

)

= S(r, f ).

(9)T (r, eα) = m(r, eα) = S(r, f ).
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Let F(z) = f 2(z), then (6) can be rewritten as

which implies

Dividing (10) with eα, we get

that is, all zeros of F(z + c) are the zeros of F(z)− a2(z)(1− e−α(z)). Since F(z) just has 
multiple zeros, we have F(z)− a2(z)(1− e−α(z)) just has multiple zeros.

Rewrite (10) as

which implies

So F(z)− a2(z)(1− eα(z−c)) has multiple zeros.
From (9)–(12), it follows that F(z), F(z)− a2(z)(1− e−α(z)) and 

F(z)− a2(z)(1− eα(z−c)) just have multiple zeros.
Suppose that the three functions 0, a2(z)(1− e−α(z)) and a2(z)(1− eα(z−c)) are dis-

tinct from each other.
By using the second main theorem, we obtain

a contradiction.
Then two of the above three functions must be equal.

(i)  �  If a2(z)(1− e−α(z)) = 0, then eα(z) = 1, which implies f (z) ≡ f (z + c) or 
f (z)+ f (z + c) ≡ 0. Furthermore, it leads to the case (I).

(ii)   �If a2(z)(1− eα(z−c)) = 0, then eα(z−c) = 1, which implies eα(z) = 1, we get the 
same conclusion of (i).

(iii) � If a2(z)(1− e−α(z)) = a2(z)(1− eα(z−c)), then 

which implies that 1 = eα(z)+α(z+c). Then, a calculation leads to α is a constant and e2α = 1.  
So, eα = ±1.

If eα = 1, then we get the same conclusion of (i) and (ii).
If eα = −1, then 

F(z + c)− a2(z) = (F(z)− a2(z))eα ,

(10)F(z + c) = eα(F(z)− a2(z))+ a2(z).

(11)
1

eα
F(z + c) = F(z)− a2(z)(1− e−α(z)),

eαF(z) = F(z + c)− a2(z)(1− eα(z)),

(12)eα(z−c)F(z − c) = F(z)− a2(z − c)(1− eα(z−c)) = F(z)− a2(z)(1− eα(z−c)).

2T (r, F)

≤ N

(

r,
1

F

)

+ N

(

r,
1

F − a2(z)(1− e−α(z))

)

+ N

(

r,
1

F − a2(z)(1− eα(z−c))

)

+ S(r, F)

≤
1

2
N

(

r,
1

F

)

+
1

2
N

(

r,
1

F − a2(z)(1− e−α(z))

)

+
1

2
N

(

r,
1

F − a2(z)(1− eα(z−c))

)

+ S(r, F) ≤
3

2
T (r, F)+ S(r, F),

1− e−α(z+c) = 1− eα(z),
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 Furthermore, 

which implies f 2(z) = f 2(z + 2c). We obtain f (z) ≡ f (z + 2c) or f (z)+ f (z + 2c) ≡ 0, 
which is (I) or (II).

Thus, we finish the proof of Theorem 2.

Proof of Theorem 3
Suppose that f is a transcendental entire solution of finite order of (2). Set

then (2) can be rewritten as G(z)+H(z) = Q(z), which implies

Thus all the zeros of H(z) are the zeros of G(z)− Q(z). Since H just has multiple zeros, 
G − Q just has multiple zeros.

From (13), we have H(z − c) = G(z)P2(z − c). Then

Note that G(z − c) = f 2(z − c) just has multiple zeros. Then, it follows from the above 
equation that G(z)− Q(z−c)

P2(z−c)
 just has multiple zeros.

From (13)–(15), we obtain G, G(z)− Q(z), G(z)− Q(z−c)
P2(z−c)

 just have multiple zeros.
Suppose that the three functions 0, Q(z), Q(z−c)

P2(z−c)
 are distinct from each other. Then, by 

using the second main theorem, we obtain

a contradiction. Then two of the above three functions must be equal.
Since Q(z) �= 0,P(z) �= 0, we have Q(z) = Q(z−c)

P2(z−c)
, which implies

Because Q(z) is a nonzero polynomial, we have P2(z) ≡ 1 and Q(z) reduces to a con-
stant. Furthermore, by Liu et al. (2012, Theorem 1.1), we obtain the desired result.

Thus, we finish the proof of Theorem 3.

f 2(z + c)− a2(z) = −f 2(z)+ a2(z).

f 2(z + 2c)− a2(z) = f 2(z + 2c)− a2(z + c) = −f 2(z + c)+ a2(z + c)

= −f 2(z + c)+ a2(z) = f 2(z)− a2(z),

(13)G(z) = f 2(z), H(z) = P2(z)f 2(z + c),

(14)G(z)− Q(z) = −H(z).

(15)

−G(z − c) = H(z − c)− Q(z − c) = G(z)P2(z − c)− Q(z − c)

= P2(z − c)

[

G(z)−
Q(z − c)

P2(z − c)

]

.

2T (r,G) ≤ N (r,
1

G
)+ N

�

r,
1

G − Q(z)

�

+ N



r,
1

G − Q(z−c)
P2(z−c)



+ S(r,G)

≤
1

2
N

�

r,
1

G

�

+
1

2
N

�

r,
1

G − Q(z)

�

+
1

2
N



r,
1

G − Q(z−c)
P2(z−c)



+ S(r,G)

≤
3

2
T (r,G)+ S(r,G),

P2(z)Q(z + c) = Q(z).
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Conclusions
This paper provides three results. Firstly, we consider the existence of the solutions of a 
nonlinear differential-difference equation under a general condition. Secondly, we prove 
a uniqueness theorem of entire function f(z) shares a set with its difference shift f (z + c) . 
At last, we obtain the entire function solutions of a general Fermat type equation. The 
above three results were obtained by the different proofs, which can be used later.
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