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Background
The Pareto distribution has become important in maritime surveillance radar sig-
nal processing, since it has been validated as an intensity model for X-band clutter 
returns. Beginning with the work of Balleri et al. (2007), the Pareto model was fitted to 
data obtained by the Canadian IPIX radar, while situated at a test site located on Lake 
Ontario, in Grimsby Canada, with the radar located at a height of 20 m. This radar oper-
ated at a frequency of 8.9–9.4 GHz, with a pulse repetition frequency of 1000 Hz and 
compressed pulse length of 0.06 μs, resulting in a range resolution of 9 m. It operated in 
horizontal transmit and receive (HH), vertical transmit and receive (VV) as well as in the 
cross polarisation case of vertical transmit and horizontal receive (VH). It was reported 
that the Pareto fit improved on that of the Weibull, K and Log-Normal in all cases exam-
ined, especially in the HH polarised case.

A second validation of the Pareto model for sea clutter is given in  Farshchian and 
Posner (2010), who describe and analyse sea clutter returns obtained during a United 
States’ Naval Research Laboratory (NRL)-led trial in 1994, located in Kuai, Hawaii. 
The radar operated at a frequency of 9.5–10 GHz with a pulse repetition frequency of 
2000 Hz, 2.5 μs compressed pulse length and 0.375 m range resolution. It operated in 
both HH and VV polarisations; however, the radar used was not dual polarised and so 
these were collected separately. The radar was at a height of 23  m above sea level, so 
that the grazing angle was 0.22° and the radar range was 5.74 km for VV and 6.11 km 
for HH-polarisation. The data analysed in Farshchian and Posner (2010) focused on the 
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up wind direction, which is generally the most spiky. The wind speed was roughly 9 m/s 
and the largest wave height was roughly 3 m, so that the sea state was approximately 4. 
The results of the trial was conclusive evidence that at a low grazing angle, the Pareto 
model outperformed the Weibull, Log-Normal and K-Distributions. Additionally, the 
model was compared to mixtures of Weibull and K, and shown to outperform Weibull 
mixtures, while having comparable performance to a K-mixture model. Given the latter 
is a three to four parameter model, the performance of the two parameter Pareto model 
was determined to be excellent.

A third validation for the Pareto model has been provided by Defence Science and 
Technology Group (DSTG) in Australia, based upon data from their Ingara radar. Ingara 
is an experimental fully polarimetric airborne multi-mode X-band imaging radar devel-
oped by DSTG (Stacy and Burgess 1994), which was deployed in a Raytheon Beech 
1900C aircraft during a number of trials. A trial was conducted in 2004, in the South-
ern Ocean near Port Lincoln in South Australia (Stacy et al. 2005). The radar operated 
with a frequency of 10.1 GHz, with a pulse length of 20 μs, pulse repetition frequency 
of 300 Hz and LFM transmitted bandwidth of 200 MHz. This permitted a range resolu-
tion of 0.75 m. Ingara operated in a circular spotlight mode, surveying the same patch of 
ocean at all azimuth angles (0°–360°), and over the range of grazing angles 10°–45°. Sea 
states varied from 2 to 5, while wind speeds varied from 6.1 to 13.2 m/s. The data gath-
ered in this trial was analysed in blocks composed of 1024 range compressed samples of 
roughly 920 pulses over 5° azimuth angle increments. The Pareto fit to the Ingara clut-
ter has been reported initially in Weinberg (2011a), then further analysed in Rosenberg 
and Bocquet (2013). The inclusion of receiver thermal noise in the Ingara data, together 
with a Pareto clutter model, has also been reported in Rosenberg and Bocquet (2015). 
The conclusions from these investigations was that the Pareto distribution also fitted 
medium to high grazing angle clutter, obtained from an airborne surveillance radar.

These three independent studies confirmed the validity of the Pareto model for X-band 
maritime surveillance radar clutter, regardless of the radar platform and independent of 
the grazing angle. Consequently much effort has been invested in the development of non-
coherent detection under a Pareto clutter model assumption (Weinberg 2013a, 2015).

The Pareto distribution also fits into the currently accepted framework for clutter 
models in the complex domain, since it arises as the intensity model of a compound 
Gaussian distribution with inverse Gamma texture (Weinberg 2011b). As a result of this, 
coherent radar detection schemes have been analysed extensively, based upon this clut-
ter model assumption (Sangston et al. 2012; Shang and Song 2011; Weinberg 2013b, c).

Although the Pareto model has presented radar researchers with a simpler alternative 
to the Weibull and K-distributions, there is still merit in applying the original detection 
schemes designed for target detection in Gaussian clutter, or in Exponentially distrib-
uted intensity clutter, since in some cases X-band clutter is reasonably approximated by 
these processes. The validity of such an approximation has been analysed in Weinberg 
(2012), who investigated the Exponential approximation of a Pareto distribution with 
Stein’s Method. It was shown that relative to DSTG’s Ingara radar clutter, in the case of 
VV-polarisation, the Exponential approximation was valid. This coincided with Pareto 
fits to the data which resulted in large shape parameters. Stein’s Method was used to 
construct explicit bounds to quantify this observation.
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The current paper is concerned with understanding the validity of the Pareto–Expo-
nential approximation, through an analysis of the Kullback–Leibler divergence. This 
will be shown to not only provide a simpler estimate of the distributional difference, 
but also will indicate how an optimal Exponential distribution can be selected for any 
given Pareto model. Numerical comparisons are used to demonstrate the validity of the 
approach.

Pareto and Exponential distributions
Before proceeding with the analysis of the Kullback–Leibler divergence, a brief overview 
of the relevant distributions is undertaken. A useful reference which contains details of 
these distributions is Beaumont (1980). A random variable X has a Pareto distribution 
with shape and scale parameters α > 0 and β > 0 respectively if its probability density 
function is

and its cumulative distribution function

where t ≥ 0 and P denotes probability. Similarly, a random variable Y with shape param-
eter � > 0 has an Exponential distribution if its density is given by

and cumulative distribution function

also for t ≥ 0. One of the fundamental differences between these distributions is the 
existence of moments. For the Pareto distribution, the existence of moments depends 
on the magnitude of its shape parameter, while for the Exponential distribution such 
moments always exist (Beaumont 1980). The problem of interest is to understand when 
(4) is a reasonable approximation for (2). Since, on the basis of empirical studies such as 
Weinberg (2011a), this will happen as the Pareto shape parameter increases, it will be 
assumed that α ≫ 1 throughout without loss of generality.

The Exponential distribution arises as a limit of the Pareto as the latter’s shape param-
eter increases. This can be seen through a reparameterisation of β =

α(1+oα(1))
�

 where 
oα(1) → 0 as α → ∞. Applying this to the complementary distribution function of X 
yields

(1)fX (t) =
αβα

(t + β)α+1

(2)FX (t) = P(X ≤ t) = 1−

(
β

t + β

)α

,

(3)fY (t) = �e−�t

(4)FY (t) = P(Y ≤ t) = 1− e−�t

(5)

lim
α→∞

P(X > t) = lim
α→∞

(
1+

t

β

)−α

= lim
α→∞

(
1+

�t

α(1+ oα(1))

)−α

= e−�t = P(Y > t),
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from which it can be concluded that the distribution function of X limits to that of Y as 
the Pareto shape parameter increases without bound.

The limit (5) can be quantified by establishing bounds on the distributional differences. 
Towards this aim, Stein’s Method (Barbour and Chen 2005) can be used to measure the 
rate of convergence of (2) to a limiting distribution of the form (4). This method starts 
with a differential equation characterising the Exponential distribution, and bounds on 
this are then used to measure the rate of convergence. In particular, it is shown in Wein-
berg (2012) that the two distributions above satisfy the inequality

which shows that the rate of convergence is controlled by the Pareto shape parameter. It 
is clear that as α increases, the bounds in (6) decrease to zero, implying the Exponential 
approximation to the Pareto model is valid for large shape parameters.

The problem with the Stein approach is that the bounds do not suggest a suitable way 
in which, for a given Pareto model, an appropriate approximating Exponential distribu-
tion can be specified. This can be rectified with an application of the Kullback–Leibler 
divergence as an alternative to analysing distributional approximations.

Information theory
Information theory is concerned with the study of entropy as a measure of uncertainty, 
and was introduced into the engineering community by Shannon (1948), and has had a 
profound effect on the understanding and optimisation of data networks (Arndt 2004). 
In particular, the Kullback–Leibler divergence, introduced in Kullback and Leibler 
(1951), has found application in signal processing analysis and statistical model fitting 
(Hulle 2005; Seghouane 2006; Youssef et al. 2016; Wenling and Yingmin 2016).

The Kullback–Leibler divergence is a measure of the information lost when one distri-
bution is approximated by another. Hence, for two random variables X and Y with densi-
ties fX and fY , the information lost when Y is used to approximate X is defined to be

where it has been assumed that these two random variables have support the nonnega-
tive real line. It can be shown that (7) is the difference between the cross entropy of X 
and Y, and the entropy of X (Arndt 2004). Since (7) measures the information lost in the 
approximation of X by Y, it can be used to assess the convergence of these distributions.

It can be shown that DKL(X ||Y ) ≥ 0, a result known as Gibb’s Inequality, which fol-
lows from Jensen’s Inequality (Arndt 2004). It is clear that if the two random variables X 
and Y coincide then DKL(X ||Y ) = 0. The converse of this can also be demonstrated to be 
true. However, it is clear from (7) that the Kullback–Leibler divergence is not symmetric, 
nor satisfies a triangle inequality. Consequently it is not a metric but is a pseudo-metric. 
Its value in assessing convergence in distribution follows from the Pinsker–Csiszár Ine-
quality (Pinsker 1964; Csiszár 1967; Kullback 1967). Suppose for the two random vari-
ables X and Y their distribution functions are FX (t) and FY (t) respectively, with support 
the nonnegative real line. Then this inequality states that

(6)−(1− e−�)
1

α − 1
≤ FX (t)− FY (t) ≤

3

α
,

(7)DKL(X ||Y ) :=

∫ ∞

0
fX (t) log

(
fX (t)

fY (t)

)
dt,
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where the norm on the left hand side of (8) is the supremum norm over the domain of 
the distribution functions. Clearly if the Kullback–Leibler divergence is close to zero, the 
supremum norm inherits this and thus implies the random variables X and Y are close in 
distribution.

Also based upon (8), if a sequence of random variables Xn is such that 
limn→∞ DKL(Xn||Y ) = 0, for some random variable Y, then the limiting distribution of 
Xn and Y coincide, which can be justified with an application of Lebesgue’s Dominated 
Convergence Theorem.

These results justify using the Kullback–Leibler divergence to measure distributional 
approximations. It is worth noting that although the triangle inequality is not achievable 
with this divergence, it is possible to construct a measure which is symmetric. This can 
be produced by defining the distance

which has been utilised in Seghouane (2006). However, as will be shown in the next sec-
tion, it is sufficient to apply (7) to the problem under investigation.

Kullback–Leibler divergence
This section calculates the Kullback–Leibler divergence (7) for the two statistical models 
of interest. With an application of (1) and (3), observe that

from which it follows by applying logarithms to (10) and substituting the result into (7) 
that

where E is the statistical mean with respect to the distribution of X, and the fact that the 
density of X integrates to unity has been applied.

The mean of X can be shown to be

with the proviso that α > 1, while the mean of log(X + β) is given by

By applying a transformation u = log(t + β), followed by integration by parts, it can be 
shown that (13) reduces to

(8)�FX − FY �∞ = sup
t≥0

|FX (t)− FY (t)| ≤
√
2DKL(X ||Y ),

(9)D̃KL(X ||Y ) = DKL(X ||Y )+ DKL(Y ||X),

(10)
fX (t)

fY (t)
=

αβα

�
e�t(t + β)−α−1,

(11)DKL(X ||Y ) = log

(
αβα

�

)
+ �E(X)− (α + 1)E(log(X + β)),

(12)E(X) =
β

α − 1
,

(13)E(log(X + β)) =

∫ ∞

0
log(t + β)

αβα

(t + β)α+1
dt.
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An application of (12) and (14)–(11) demonstrates that the Kullback–Leibler divergence 
reduces to

Figures 1 and 2 plot the Kullback–Leibler divergence (15) as a function of �, for a series 
of Pareto shape and scale parameters. Each figure shows curves for a specified β, with 
α ∈ {5, 10, 15, 20, 25, 30}. Figure 1 is for the case where β = 0.1 (left subplot) and β = 0.5 
(right subplot). Figure 2 is for β = 0.95 (left subplot) and β = 10 (right subplot). These fig-
ures show a common structure to the Kullback–Leibler divergence. In particular, for each 
α and β there exists a � which minimises (15). It is also interesting to observe the effect β 
has on the Kullback–Leibler divergence. For a target upper bound of approximately 10−3 
on the Kullback–Leibler divergence, it is clear from Fig. 1 (left subplot) that for α ≈ 30, 
one must select � ≈ 300. For the case of β = 0.5, Fig. 1 (right subplot) suggests that α ≈ 30 
and � ≈ 50. For the case of β = 0.95, Fig. 2 (left subplot) suggests that α ≈ 30 and � ≈ 30 . 
Finally, as shown in the right subplot of Fig. 2, for β = 10 we require α ≈ 30 and � ≈ 3.

(14)E(log(X + β)) = log(β)+
1

α
.

(15)DKL(X ||Y ) = log

(
α

�β

)
+

�β

α − 1
−

(
α + 1

α

)
.
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To understand this mathematically, differentiating (15) with respect to � yields

which is zero when � = α−1
β

, where it is necessary to assume α > 1. Applying a second 
differentiation to (16) shows that this is a point where a minimum occurs. This explains 
the phenomenon observed in these plots.

In order to investigate these results further, Figs. 3 and 4 plot a series of Pareto distri-
butions, together with the optimal Exponential approximation. Here optimal is used in 
the sense that the Kullback–Leibler divergence is minimised with an appropriate selec-
tion of Exponential distribution shape parameter. Figure 3 (left subplot) is for the case 
where the Pareto scale parameter is β = 0.1, with shape parameter varying from 5, 15 to 
30. It can be observed that as the Pareto shape parameter increases, the optimal Expo-
nential distribution is a better fit. This is consistent with the results illustrated in Fig. 1. 
Figure 3 (right subplot) is for the case where β = 0.5, Fig. 4 (left subplot) corresponds to 
β = 0.95 and Fig. 4 (right subplot) is for β = 10. Observe in all figures that for α = 5, the 
approximation is poor, while for α = 15 the approximation has improved significantly. 
When α = 30 it is very difficult to see a difference between the two distributions.

(16)
∂DKL(X ||Y )

∂�
= −

1
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,
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Returning to the analysis of the minimum achievable divergence, by applying � = α−1
β

 
to (15), it can be shown that the minimum divergence is

Since for any x > 0 we have the bound log(1+ x) ≤ x, an application of this to (17) 
yields the upper bound

An application of (18)–(8) results in

One can compare the upper bound provided by (19) to that obtained via Stein’s Method, 
given by the upper bound 3

α
 in (6). With an application of some simple analysis one 

can show that the upper bound based upon (19) improves on that from (6) whenever 
α2 − 9

7α > 0. This occurs when α > 9
7, and since in most cases α > 2, as shown in Wein-

berg (2011a), it follows that the upper bound attained by the Kullback–Leibler diver-
gence is smaller than that obtained with Stein’s Method.

To illustrate the differences between the upper bounds, Fig. 5 (left subplot) plots the 
two upper bounds as a function of α. It can be observed that the upper bound (19) is bet-
ter than that based upon (6).

Using a similar analysis it can be shown that the Stein lower bound, namely − 1
α−1, 

tends to be closer to zero than that obtained by the Kullback–Leibler divergence, as illus-
trated in the right subplot of Fig. 5.

Conclusions
The Kullback–Leibler divergence was used to assess the discrepancy between the Pareto 
and Exponential distributions, in order to better understand the validity of the Exponen-
tial approximation of the Pareto model. It was shown that for any given Pareto model an 

(17)DKL(X ||Y )min = log

(
1+

1

α − 1

)
−

1

α
.

(18)DKL(X ||Y )min ≤
1

α(α − 1)
.
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optimal Exponential approximation exists. This approximation was shown to improve as 
the Pareto shape parameter increased, for any fixed Pareto scale parameter. This means 
that in cases where in X-band maritime surveillance radar the Pareto shape parameter 
exceeds 30, it is acceptable to apply detection schemes based upon an Exponential clut-
ter model assumption.
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