
A distributed query execution engine
of big attributed graphs
Omar Batarfi1, Radwa Elshawi2, Ayman Fayoumi1, Ahmed Barnawi1 and Sherif Sakr3,4*

Introduction
In this era, we are witness continuous expansion and integration of computation, net-
working, digital devices and data storage systems in a way that provided a rich platform
for the explosion in big data as well as the means by which big data are produced, stored,
processed and analyzed. In practice, there exist various modern big data applications
where data are intuitively and naturally modeled as big graphs including social networks,
spatial road networks, protein interaction networks, neural networks and the Internet of
Things (Faloutsos et al. 1999; Kleinberg et al. 1999). For example, Facebook reported
that, during the first quarter of 2015, it had an average of 1.44 billions monthly active

Abstract 

A graph is a popular data model that has become pervasively used for modeling
structural relationships between objects. In practice, in many real-world graphs, the
graph vertices and edges need to be associated with descriptive attributes. Such
type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as
an expressive language, with a centralized execution engine, for querying attributed
graphs. G-SPARQL supports various types of graph querying operations includ-
ing reachability, pattern matching and shortest path where any G-SPARQL query
may include value-based predicates on the descriptive information (attributes) of
the graph edges/vertices in addition to the structural predicates. In general, a main
limitation of centralized systems is that their vertical scalability is always restricted by
the physical limits of computer systems. This article describes the design, implementa-
tion in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and
adaptive parallel execution engine of G-SPARQL queries. In this engine, the topol-
ogy of the graph is distributed over the main memory of the underlying nodes while
the graph data are maintained in a relational store which is replicated on the disk of
each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL
queries which are pushed to the underlying relational stores while other parts of the
query plan, as necessary, are evaluated via indexless memory-based graph traversal
algorithms. Our experimental evaluation shows the efficiency and the scalability of
DG-SPARQL on querying massive attributed graph datasets in addition to its ability to
outperform the performance of Apache Giraph, a popular distributed graph processing
system, by orders of magnitudes.

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Batarfi et al. SpringerPlus (2016) 5:665
DOI 10.1186/s40064-016-2251-0

*Correspondence:
ssakr@cse.unsw.edu.au
4 King Saud bin Abdulaziz
University for Health
Sciences, Riyadh, Saudi
Arabia
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2251-0&domain=pdf

Page 2 of 26Batarfi et al. SpringerPlus (2016) 5:665

users.1 Therefore, it has become very crucial for several applications to have the ability of
efficiently store, query and analyze these big graphs (Sakr and Pardede 2011).

Attributed graph (Ehrig et al. 2004) is a variant graph data model where each node2 is
identified with a unique identifier and labeled with a string. Each edge in the attributed
graph is also identified with a unique identifier and labeled with a string. In addition,
each edge connects a source node to a destination node. In attributed graphs, each node
or an edge can be associated with a collection of key/value pairs that represent its
descriptive information or properties. Given a large attributed graph that includes bil-
lions of edges and nodes (e.g., bibliographic network, social network) with their descrip-
tive information, one of the fundamental challenges is on how to efficiently query and
analyze these big graphs.

In practice, querying datasets which are represented using any kind of data models
(e.g., Relational, XML, Graph) typically involves two main steps: query representation
and formulation using a query language (e.g., SQL for relational model, XPath for XML)
and efficient evaluation of the formulated queries using a querying execution engine.
Although SQL is a popular and standard query language for the relational model, it is
not adequate for graph querying purposes as it requires users to reason in terms of tables
and join operations between them instead of the intuitive reasoning of graph as a group
of vertices and edges that link them. Therefore, in the general context of the graph data
model, a number of graph querying languages has been proposed such as: PQL (Leser
2005), GraphQL (He and Singh 2008), SPARQL (Prud’hommeaux and Seaborne 2008)
and Cypher (2015). G-SPARQL (Sakr et al. 2012) has been proposed as an expressive lan-
guage with design focus on querying attributed graphs. The language supports the for-
mulation of various kinds of graph querying operations including reachability, shortest
path and pattern matching queries. In G-SPARQL, each query may include value-based
predicates on the attributes of the graph edges/vertices in addition to the structural
predicates. Sakr et al. (2014) presented a centralized execution engine for G-SPARQL
queries which identifies parts of the query plan (sub-plans) to be evaluated using the
underlying relational store via SQL queries while the evaluation of other sub-plans of the
main query plan are executed via indexless main memory-based graph traversal algo-
rithms. In general, one of the fundamental limitations of centralized systems is that their
performance is bounded by the computing resources which can be allocated to a single
machine. In addition, centralized systems can only be scaled vertically by adding more
computing resources to the underlying machines. However, the vertical scalability of
centralized systems is always restricted by the physical limits of computer systems. On
the other hand, a distributed system represents a set of autonomous nodes, each with
their computing resources (e.g., memory, disk), that cooperate to perform computations
and exchange data as messages via a network. In practice, one of the main advantages of
distributed data processing systems is that they can scale to nearly arbitrarily increas-
ing data sizes by effectively leveraging horizontal scalability where additional computer
resources (cooperating nodes) can be added easily.

1  http://venturebeat.com/2015/04/22/facebook-passes-1-44b-monthly-active-users-1-25b-mobile-users-and-936-mil-
lion-daily-users/.
2  Throughout the paper, we use the words node and vertex interchangeably.

http://venturebeat.com/2015/04/22/facebook-passes-1-44b-monthly-active-users-1-25b-mobile-users-and-936-million-daily-users/
http://venturebeat.com/2015/04/22/facebook-passes-1-44b-monthly-active-users-1-25b-mobile-users-and-936-million-daily-users/

Page 3 of 26Batarfi et al. SpringerPlus (2016) 5:665

With the increasing size of big graph datasets and the growing needs and popularity
of interactive querying systems over these graphs, it becomes crucial to manage large
graphs in distributed environments that can support query execution with low latency.
In this article, we present DG-SPARQL, short for Distributed G-SPARQL, a distributed
query execution engine which takes the evaluation of G-SPARQL queries to the next
level in terms of performance and scalability. In particular, DG-SPARQL is designed
for handling large and distributed attributed graphs and overcoming many of the chal-
lenges and limitations of centralized query engines. In DG-SPARQL, the topology of
the graph is distributed over the main memory of the underlying nodes while the graph
data are maintained in a relational store which is replicated on the disk of each of the
underlying nodes (Hammoud et al. 2015). Similar to the centralized implementation
of G-SPARQL, DG-SPARQL evaluates parts of the query plan via SQL queries which
are pushed to underlying RDBMS nodes while other parts of the query plan are evalu-
ated via indexless main memory-based graph traversal algorithms, as needed. However,
DG-SPARQL applies selectivity-based query processing that exploits the estimation of
predicate selectivities to parallelize and optimize the query evaluation process using the
divide-and-conquer strategy for generating the query plans. In particular, the number
of used RDBMS nodes for each query varies and is determined based on a defined cost
model. Thus, DG-SPARQL combines the advantages of the efficient data storage and
query execution features of relational stores, the efficiency of main memory graph tra-
versal operations in addition to the efficiency and scalability of distributed systems. The
main contributions of this article can be summarized as follows:

• • We present the design and implementation of DG-SPARQL, a full-fledged distrib-
uted and parallel G-SPARQL query execution engine of big attributed graphs. In
DG-SPARQL, the graph topology is loaded into the distributed main memory of
the computing cluster while the graph data is replicated on a relational store at each
node. In practice, providing scalable execution engines of expressive query languages
for big attributed graphs expands the effectiveness of analyzing and understanding
real world graphs and enriches the variance on the kinds of questions which could be
answered via graph querying systems.

• • DG-SPARQL adopts a rule-based query optimizer to split the query plan among
the main memory and relational components of the execution engines. In addition,
it adaptively selects different numbers of the underlying relational nodes, for each
query, for executing the SQL-based parts of the execution plan using selectivity esti-
mation techniques and a cost model.

• • We demonstrate the efficiency and scalability of DG-SPARQL via an extensive set of
experiments that use big synthetic and real graph datasets in addition to a compari-
son with Apache Giraph, a popular distributed graph processing system.

The remainder of this article is organized as follows. Background information about
attributed graphs and G-SPARQL query language are provided in “Background” sec-
tion. Details of the distributed hybrid representation of DG-SPARQL for the attributed
graphs are presented in “Distributed hybrid representation of the attributedgraphs”
section while the details of the distributed query execution engine are presented

Page 4 of 26Batarfi et al. SpringerPlus (2016) 5:665

in “Distributed query execution engine” section. The results of our performance evalua-
tion are presented in “Experimental evaluation” section. The related work on graph que-
rying systems is reviewed in “Related work” section before we finally conclude the article
in “Conclusion” section.

Background
Herewith, we introduce the main concepts that form the groundwork for our presented
system: attributed graph and the G-SPARQL query language.

Attributed graphs

In many real applications, it is of high practical value that the graph edges and nodes
get associated with descriptive information (attributes) in the form of key-value pairs.
This type of graphs are referred to as attributed graphs. Formally, an attributed graph is
denoted as (N ,E, Ln, Le, Fn, Fe,Ŵn,Ŵe) where:

• • N defines the set of graph nodes that represent the application objects.
• • E ⊆ N × N defines the set of edges joining two graph nodes and represent the struc-

tural relationships between the application objects.
• • Ln is the set of labels for the graph nodes.
• • Le is the set of labels for the graph edges.
• • Fn is a function N → Ln that associates labels with the graph nodes.
• • Fe is a function E → Le that associates labels with the graph edges.
• • Ŵn = {a1, a2, . . . , ax} is a set of x attributes that can be associated with any graph

node (n) ∈ N . In particular, each node n ∈ N can be associated with a vector of key/
value pairs [a1(v1), . . . , am(vm)] where aj(vj) represents the attribute value of node n
on attribute aj.

• • Ŵe = {b1, b2, . . . , by} is a set of y attributes that can be associated with any edge
(e) ∈ E. In particular, each edge e ∈ E can be associated with a vector of key/value
pairs [b1(e1), . . . , bn(eu)] where bk(ek) represents the attribute value of edge e on
attribute bk.

Figure 1 illustrates an example of a snippet of an attributed graph of a bibliographic
network where each node represents an object instance (e.g. article, author, scientific
journal, affiliation) and each edge represents a structural relationship (e.g. supervise,
friend_Of, author, affiliated_At, published_In) between two graph nodes. Additionally,
the various types of graph nodes are described with different attributes (e.g. type, key-
word, publisher, volume, country), denoted with solid rectangles, while another set of
attributes (e.g. title, order, year), denoted with dashed rectangles, are used to describe
their associated graph edges.

In the general context of large graphs, there are popular kinds of graph querying
operations including reachability queries that check the existence of a path between two
nodes in the large graph, shortest path queries that returns the path, if it exists, with the
smallest number of hops between any two nodes in the large graph and pattern matching
queries that look for the occurrence(s) of a pattern-based subgraph in the large graph.

Page 5 of 26Batarfi et al. SpringerPlus (2016) 5:665

In practice, in the context of large attributed graphs, it is common for many users to
have the need to formulate queries that involve more than one of these graph querying
operations. In addition, they commonly need to express filtering conditions (predicates)
on the associated descriptive information (attributes) of the graph edges/nodes. Using
the sample attributed graph of the bibliographic network illustrated in Fig. 1, samples of
such queries are:

1.	 (SQ1): Structural pattern matching query with filtering conditions on the values of
the attributes of the graph edges and nodes.

	 Search for the names of two authors, A and B, where A supervises B, both of A
and B are affiliated_At UNSW, the age of B is greater than 25, the title of A at
UNSW is ’Professor’ and B joined UNSW after 2010.

2.	 (SQ2): Structural reachability query with filtering conditions on the values of the
attributes of the graph edges and nodes.

	 Search for the names of two authors, A and B, who are connected with a path which
is less than or equal 4 steps (edges) where the age of A is greater than 25 and the age
of B is greater than 35.

3.	 (SQ3): Structural reachability query combined with structural pattern matching in
addition to filtering conditions on the values of the attributes of the graph edges and
nodes.

	 Search for the names of two authors, A and B, who are connected via a sequence of
edges (path) which is less than or equal 3 steps (edges) where the age of A is greater
than 25, the age of B is greater than 35, A is affiliated_At KAU with title of
Assistant Professor and Y joined UNSW after 2010.

Order: 2

John SmithAlice Bob

Article 1 Article 2

Algorithms
Journal

Database
Journal

KAU UNSW

supervisesuperviseFriend_Of

authorauthor
authorauthor

author

Published_In Published_In

affiliated_Ataffiliated_Ataffiliated_At affiliated_At

Publisher: Springer
ISBN: 123-456-678Publisher: ACM

Keyword: GraphKeyword: Relational
Type: Review

Country: Saudi Arabia Country: Australia
Established: 1949

Age:
42

Age:
28

Order: 1Order: 2
Order: 1

Order: 3

Year: 2014
Volume:15

Year: 2015
Volume:8
Number: 1

Tile:
Assistant
Professor

Tile: PhD Student
Joined: 2012

Tile: PhD Student
Joined: 2013

Tile:
Professor

Period: 2013-
2015

Fig. 1  A sample attributed graph for bibliographic network

Page 6 of 26Batarfi et al. SpringerPlus (2016) 5:665

4.	 (SQ4): Structural pattern matching query combined with structural reachability
query with filtering conditions on the attributes of the edges of the retrieved path by
the reachability query.

	 Search for the names of two authors, A and B, who are connected via a sequence of
edges (path) which is less than or equal 3 steps (edges) where the age of A is greater
than 25, the age of B is greater than 35 and no one of the authors in the connecting
path between A and B has the tile of PhD student.

G‑SPARQL query language

The first step on querying any kind of data is to formulate the user queries using an
adequate expressive query language. The SPARQL query language has been recognized
as the official W3C language for querying RDF graphs (Prud’hommeaux and Seaborne
2008). In general, there are some fundamental differences between the attributed graph
model and the RDF data model. For instance, the RDF data model uses graph edges to
model both of the attribute/value pairs of the graph vertices, similar to the way of mod-
eling the structural relationship with the other graph vertices. In addition, while the
attributed graph considers edges as a first class citizen that can be directly associated
with descriptive attributes, the RDF data model does not directly support associating
the graph edges by descriptive attributes. However, a reification mechanism can be used
to indirectly achieve this goal by relying on a nesting mechanism, auxiliary nodes. In
practice, this mechanism is commonly referred to as “The RDF Big Ugly” (Powers 2003)
as it can dramatically increase the graph size and consequently affects the query process-
ing time. In addition, this solution is much less intuitive when it comes to the user on
expressing his queries. Furthermore, some graph query operations which are of popular
interest in the domain of large attributed graphs (e.g., shortest path) are not often con-
sidered as the main attention within the context of the RDF data model.

G-SPARQL (Sakr et al. 2012) has been introduced as a concise extension of the
SPARQL query language which is mainly focusing on addressing the user requirements
for querying large attributed graphs. In principle, one of the main design decisions of
the G-SPARQL query language is to keep the required extensions, on SPARQL, for the
purpose of querying property graphs minimum. As a result, the space and complex-
ity of issuing a query using DG-SPARQL is very similar to the SPARQL language. An
additional advantage of this design decision is that the learning curve for G-SPARQL
should be minimum for any user who is familiar with the SPARQL language. In particu-
lar, G-SPARQL relies the fundamental graph matching facility of the SPARQL language.
however, it introduces language constructs for defining predicates on the values of the
attributes of the graph edges or nodes that are specified in the query pattern. G-SPARQL
also provide language constructs that support various and rich forms of querying graph
paths (sequence of edges) that facilitates the formulation of shortest path queries and
reachability queries between the graph nodes (e.g., graph edge traversals with filters on
the values of the edge attributes). Furthermore, G-SPARQL enables expressing filtering
predicates on the queried path patterns.

The grammar of the G-SPARQL language is illustrated in Fig. 2. For the full details on
the syntax and semantics of G-SPARQL, the readers are referred to Sakr et al. (2012). In

Page 7 of 26Batarfi et al. SpringerPlus (2016) 5:665

the following we show the G-SPARQL code examples that formulate the sample queries
on the attributed graph of “Attributed graphs” section. We start by illustrating the fol-
lowing G-SPARQL query syntax which formulates the semantics of the example query
(SQ1) in “Attributed graphs” section.

1 SELECT ?Name1 ?Name2
2 WHERE {?A @label ?Name1. ?B @label ?Name2.
3 ?A supervises ?B.
4 ?A ?E1(affiliated_At) UNSW.
5 ?B ?E2(affiliated_At) UNSW.
6 ?B @age ?age.
7 ?E1 @title "Professor".
8 ?E2 @joined ?Year
9 FILTER(?age >= 25).

10 FILTER(?Year > 2010)}

In this example, Line 3 formulates the structural supervise relationship between
the the two target authors. The query triples in Lines 4 and 5 ensure that both authors
are connected with a graph edge that represents the affiliated_At relationship with
UNSW. Lines 6 and 9 represent a filtering condition on the age attribute of the graph
node which represents the author B. Line 7 represents a boolean predicate on the title
attribute of the graph edge which represents the affiliated_At relationship of author
A. Lines 8 and 10 represent a filtering condition on the Year attribute of the graph edge
which represents the affiliated_At relationship of author B.

The formulation of the semantics of the example query (SQ2) in “Attributed graphs”
section is represented with the following G-SPARQL query syntax.

Fig. 2  The grammar of G-SPARQL language (Sakr et al. 2012)

Page 8 of 26Batarfi et al. SpringerPlus (2016) 5:665

1 SELECT ?Name1 ?Name2
2 WHERE {?A @label ?Name1. ?B @label ?Name2.
3 ?A ??P B.
4 ?A @age ?age1.
5 ?B @age ?age2.
6 FILTER(?age1 >= 25).
7 FILTER(?age2 >= 35).
8 FilterPath(Length(??E2, <= 4)).}

In this example, Line 3 formulates a structural reachability query between the the tar-
get author nodes. Line 8 represents a filter condition on the reachability query to filter
out any reachable paths with more than 4 steps (edges). Lines 4 and 6 represent a fil-
tering condition on the age attribute of the graph node which represents the author A
while lines 5 and 7 represent a filtering condition on the age attribute of the author B.

Finally, the following G-SPARQL query syntax formulates the semantics of the exam-
ple query (SQ3).

1 SELECT ?Name1 ?Name2
2 WHERE {?A @label ?Name1. ?B @label ?Name2.
3 ?A ??P B.
4 ?A ?E1(affiliated_At) KAU.
5 ?B ?E2(affiliated_At) UNSW.
6 ?E2 @joined ?Year
7 ?A @age ?age1.
8 ?B @age ?age2.
9 ?E1 @title "Assistant Professor".

10 FILTER(?age1 >= 25).
11 FILTER(?age2 >= 35).
12 FILTER(?Year > 2010)
13 FilterPath(Length(??E2, <= 3)).}

Line 3 formulates a structural reachability query between the the target author nodes
with a filter condition on the reachability query to filter out any reachable paths with
more than 3 steps (edges), Line 13. Line 4 represents a structural predicate the ensures
that author A is connected with affiliated_At relationship to KAU, with boolean
predicate on the title attribute of the graph edge, Line 9. Line 5 represents a struc-
tural predicate that ensures that author B is connected with the affiliated_At rela-
tionship to UNSW while Lines 6 and 12 formulate the filtering condition on the joined
attribute of the graph edge which represents the affiliated_At relationship. Lines
7 and 10 formulate a filtering condition on the age attribute of the graph node which
represents the author A while lines 8 and 11 represent a filtering condition on the age
attribute of the author B.

Distributed hybrid representation of the attributed graphs
In general, over several decades, relational model and relational database management
systems (RDBMSs) have been recognized as the most widely used technology for data-
intensive storage and querying applications. RDBMSs are well-known for their ability
to support very efficient query engines that make use of various efficient data indexing
mechanisms in addition to advanced query optimization techniques (e.g. join ordering,

Page 9 of 26Batarfi et al. SpringerPlus (2016) 5:665

cost-based query processing). Therefore, several techniques and systems have been
utilizing the efficiency of the relational model and RDBMSs for storing and query-
ing various more sophisticated data models including XML (Gou and Chirkova 2007;
Grust et al. 2004), RDF (Sakr and Al-Naymat 2009) and graphs (Sakr 2009; Sakr and Al-
Naymat 2010). On the other hand, relational databases have shown to be inefficient for
querying operations that involves recursive access or looping for significant numbers of
rows via performing various expensive join queries that may lead to considerably huge
intermediate results. Therefore, in the context of the graph model, performing traversal
operations over the vertices and edges of graph-structured data which are stored in rela-
tional database turns to be time-inefficient because of the extensive number of required
join operations plus the very expensive I/O disk access cost. Hence, it becomes more
efficient to utilize main memory-based techniques to perform graph querying opera-
tions that involves heavy traversals on the graph topology (i.e, nodes and edges).

In our approach, we follow the hybrid Disk/Memory mechanism for managing attrib-
uted graphs which is presented by Sakr et al. (2012). In this mechanism, the data of the
graph are maintained in a relational store while the topology of the graph is loaded into
the main memory via a native pointer-based data structure for the sake of performing
efficient graph traversal operations. In particular, a fully decomposed storage model
(DSM) (Abadi et al. 2007; Copeland et al. 1985) is employed to store the attributed graph
where each node and edge in the graph is assigned a unique identifier then the attrib-
uted graph is modeled using M + N 2-column tables and P 3-columns tables where M
represents the number of unique attributes of the graph nodes, N represents the number
of unique attributes of the graph edges and P is the number of unique relationships that
occur among the graph nodes. Each of the (M + N) 2-columns tables collects the values
for one attribute where it stores the node identifier (in the M tables) or the edge identi-
fier (in the N tables) on the first column while the second column (Value) maintains the
value of the associated attribute. The P 3-columns tables maintain the information of the
graph topology where each table collects the information of all graph edges that models
a specific relationship. Specifically, in these tables, each row describes the information of
a graph edge via 3 attributes: the edge identifier (eID), the identifier of the source node of
the edge (sID) and the identifier of the destination node (dID).

Figure 3 illustrates the relational representation for the sample attributed graph
of Fig. 1 using the described fully decomposed storage model. In this figure, the table
Node Label encodes all the graph nodes using their identifiers and labels. The 2-col-
umn tables with the white background {age, keyword, type, publisher, ISBN,
established, country} encodes the key/value pairs of the attribute information of
the graph nodes. The 3-column tables { supervise, friend_Of, author, affili-
ated_at, published_In} encodes the graph edges with the structural information
of connecting the graph nodes. The 2-column tables with the dark background {title,
order, joined, year, volume, number, period} encodes the attribute informa-
tion of the graph edges. Each of these encoding tables is indexed on its ID column with
the aim of enabling efficient merge join operations for retrieving attributes of the same
node/edge. Additionally, for each encoding table, a partitioned B-tree index (Value,
ID) is used with the aim of enabling efficient execution of the value-based predicates
on the attributes of the graph vertices or edges (Graefe 2003). For the graph topology, a

Page 10 of 26Batarfi et al. SpringerPlus (2016) 5:665

native pointer-based main memory encoding is used to represent the information of the
P tables which maintain the structural information of the graph edges. In practice, the P
tables encode the mandatory information for performing index-free traversal operations
on the graph topology [e.g., depth-first search (DFS) (Korf 1985) or breadth-first search
(BFS) (Zhou and Hansen 2006)].

In general, there are two main options for realizing scalability for data storage and
querying application in order to cope with increasing data size and applications work-
loads: (1) Vertical Scalability: This option is implemented via allocating a bigger machine
with more computing resources (e.g., CPU, Disk, Main Memory). (2) Horizontal Scal-
ability: This option is implemented by distributing/replicating the data across multi-
ple machines. In practice, the option of vertical scalability has the main limitation that
its scalability is always restricted by the physical limits of computer systems while the
option of horizontal scalability is both extensible and flexible as it facilitates the ability
to easily scale out by adding storage space or adding a new physical machine. Hammoud
et al. (2015) classified the data storage and query execution systems into four main para-
digms, illustrated in Fig. 4, which are described as follows:

• • Paradigm-I: Which represents the fully centralized option where the whole dataset
(D) is absolutely stored on a single node and the evaluation of the user query (Q) is
fully executed on the same node.

• • Paradigm-II: Where the dataset (D) is distributed into n partitions {d1, d2, . . . , dn}
which are stored at n nodes while the evaluation of the user query (Q) is parallelized
over the multiple partitions/nodes.

• • Paradigm-III: Similar to Paradigm-II, the dataset (D) is distributed into n partitions
{d1, d2, . . . , dn} which are stored at different nodes, however, in this paradigm, the
user query (Q) is decomposed into m sub-queries {q1, q2, . . . , qm} where the evalua-
tion of each sub-query qx is executed on one of the data partitions/nodes dy.

• • Paradigm-IV: In this paradigm, the dataset (D) is fully replicates at n nodes
{D1,D2, . . . ,Dn} while the user query (Q) is decomposed into m sub-queries

ID Value

1 Alice

2 John

3 Smith

4 Bob

5 KAU

6 UNSW

7 Article 1

8 Article 2

9 Database
Journal

10 Algorithms
Journal

ID Value

1 42

4 28

ID Value

7 Relational

8 Graph

ID Value

7 Review

ID Value

9 Springer

10 ACM

ID Value

9 123-456-678

ID Value

6 1949

ID Value

5 Saudi Arabia

6 Australia

eID sID dID

4 1 7

5 2 7

6 3 7

7 3 8

8 4 8

Node Label age keyword type publisher ISBN

countryestablished

author

eID sID dID

3 2 1

friend_Of

eID sID dID

13 7 10

14 8 9

published_IneID sID dID

9 1 5

10 2 6

11 3 6

12 4 6

affiliated_At

eID sID dID

1 3 2

2 3 4

supervise

ID Value

9 Assistant Professor

10 PhD Student

11 Professor

12 PhD Student

title

ID Value

10 2012

12 2013

Period

ID Value

2 2013-2015

Joined

ID Value

4 3

5 2

6 1

7 2

8 1

Order

ID Value

13 2015

14 2014

Year

ID Value

13 8

14 5

Volume
ID Value

13 1

Number

Fig. 3  DSM relational encoding of attributed graph of Fig. 1

Page 11 of 26Batarfi et al. SpringerPlus (2016) 5:665

{q1, q2, . . . , qm} where the evaluation of each sub-query qx is executed on one of the
data replicas/nodes Dy.

In principle, a main limitation on the centralized hybrid Disk/Memory representation,
Paradigm-I, which has been proposed by Sakr et al. (2012) is its assumption that the
graph topology may always fit to reside in the main memory of a single machine. Due to
the continuous growth on the size of the graph datasets, this assumption might not be
valid in many cases. In practice, currently, a single machine with a modern disk can still
fit to host any big graph dataset (i.e., a graph with billions of nodes and edges), however,
this may lead to severe thrashing to main memory and frequent accesses to disk. Con-
sequently, this will lead to inefficient performance for any graph querying operations
in addition to limited scalability. Therefore, managing big attributed graphs on a single
machine may be infeasible, especially when the machine’s memory is dwarfed by the size
of the graph topology (Hammoud et al. 2015). To overcome the limitations of central-
ized query engines, DG-SPARQL is designed as a distributed and scalable systems that
takes the evaluation of G-SPARQL query to the next level. In particular, DG-SPARQL
follows a variant strategy of Paradigm-IV where the attributed graph is encoded using
the fully decomposition model, illustrated in Fig. 3, and fully replicated in a disk-based
relational store across n nodes. In addition, the graph topology is partitioned across the
main memory of the n nodes and encoded using a pointer-based representation. In DG-
SPARQL, the user query (Q) is decomposed into m sub-queries {q1, q2, . . . , qm} where
the evaluation of each sub-query qx either can be pushed inside the relational store, via
SQL, on one of the data replicas/nodes Dy or evaluated via indexless memory-based
graph traversal algorithms across the partitioned graph topology on the n nodes accord-
ing rule-based and cost-based query optimization mechanism. As a result, DG-SPARQL
can leverage larger aggregate memory capacities and higher computational power for

Fig. 4  The four paradigms for building data storage and querying systems Hammoud et al. (2015)

Page 12 of 26Batarfi et al. SpringerPlus (2016) 5:665

managing attributed graph. More details about the distributed query execution mecha-
nism will be presented in “Distributed Query Execution Engine” section.

In practice, by loading only the graph topology on the main memory of the underlying
cluster, we are able to achieve a significant decrease on the main memory usage by avoid-
ing the need to load the attributes of the graph node/edges and their data values, which
are maintained in the M + N attribute tables, into the main memory. This decrease in
the memory usage enable greater scalability capabilities for managing bigger graphs on
a defined memory size or reducing the number of the machines on the underlying com-
puting cluster. In addition, this mechanism avoids building additional memory-based
indices for the graph attributes that could be needed for improving the associated value-
based query predicates and rely for such tasks on the well-designed optimization capac-
ity of the underlying relational storage.

Distributed query execution engine
System architecture

Figure 5 illustrates the architecture of the DG-SPARQL query execution engine which
follows the Master/Slave paradigm. In this architecture, one node is designated as the
Master/Coordinator node which is responsible for query parsing, compilation, optimi-
zation and coordinating the query execution process. As described earlier, DG-SPARQL
is designed to use multiple nodes/machines (slaves) to query big attributed graphs with
topology structure information that can not be maintained in the main memory of a
single node. In particular, let us assume that the DG-SPARQL underlying cluster contain
n nodes. Then, the topology of the attributed graph is partitioned into n disjoint parti-
tions where each partition (TPi) is maintained in the main memory of one of the slave
nodes while the relational encoding of the attributed graph is replicated on the relational
store for all the n slave nodes. In this scheme, the coordinator node maintains the graph
statistics information which is used during the query the optimization process. In addi-
tion, it uses a directory service that maintains two mappings: a mapping for each ver-
tex identifier to its assigned memory partition identifier (TPi) and a mapping for each
edge identifier to its memory partition identifier (TPi) as well. In general, the main goal
of any effective graph partitioning algorithm is to preserve locality in graph accesses
consequently to reduce communication overhead between partitions/nodes during the
query evaluation process. In general, graph partitioning is a challenging problem by
itself (Hendrickson and Kolda 2000) which is out of the focus of this work. In particu-
lar, DG-SPARQL remains agnostic towards the various graph partitioning schemes and
is designed to be able to incorporate any of them. For our current implementation and
experimental evaluation (“Experimental evaluation” section), we employed the METIS
partitioner (METIS 2014). In practice, one of the advantages of the METIS partitioner is
that it collocates the nearby vertices that are nearby to be collocated on the same parti-
tion/machine which reduces the communication cost of common graph traversal opera-
tions (e.g., BFS or DFS).

G-SPARQL is a declarative query language. Thus, for any G-SPARQL query, there
are always various possible execution plans to evaluate such query. G-SPARQL is
equipped with a query optimizer that seeks to optimize the query execution time for
any input query. In particular, among a wide space of alternative possible query plans

Page 13 of 26Batarfi et al. SpringerPlus (2016) 5:665

for executing the user input query, the query optimizer employs a cost model to pre-
dict the time execution cost of each plan then selects the execution plan that with the
minimum cost for actual execution. In order to achieve this goal, the query coordina-
tor node maintains a set of graph statistics (e.g., structural indices, selectivity informa-
tion of value-based predicates on the attributes of graph nodes and edges) which are
utilized by the query optimizer to estimate the time execution cost of each possible
query plan. In practice, the query optimizer starts by compiling the user input query (Q)
into a logical query plan QP using a defined set of G-SPARQL algebraic operators (Sakr
et al. 2012). Using the statistical information and the cost model, the query optimizer
compiles the logical query plan (QP) into a set of sub-query physical query execution
plans, QP → {RQP1, . . . ,RQPx,MQP1, . . . ,MQPy}, where each RQPi refers to a rela-
tional-based sub-query plan which is to be evaluated by one of the relational store on
the underlying n slave nodes via SQL queries, x refers to the number of relational-based
sub-query plans which is less than or equal to the number of slave machines (n) and each
MQPj refers to a main memory query plan which is to be evaluated via graph traversal
operations.

DG-SPARQL is designed to evaluate the sub-query plans in a parallel fashion. In par-
ticular, DG-SPARQL parallelizes the evaluation of the x relational-based sub-query
plans by assigning the evaluation of each plan RQPi into a distinct relational store of
the underlying slave nodes (n). In addition, DG-SPARQL parallelizes the evaluation of
the main memory query plans by relying on Bulk Synchronous Parallel-based (Valiant
1990) graph traversal operations and communication over the graph partitions (TPn). In

D

TP1

D

TP2

D

TP3

Slave 1

Slave 2

Slave 3

Master Node (Coordinator)

Directory
Service
Query

Optimizer

Stat

G-SPARQL Query (Q)

Results

Q QP
{RQP1,…RQPn,MQP1, …. MQm}

RQPj RQPk

MQPx

MQPx
MQPx

Fig. 5  The architecture of DG-SPARQL query execution engine

Page 14 of 26Batarfi et al. SpringerPlus (2016) 5:665

the following subsection, we present the query optimization and execution details of the
DG-SPARQL query engine.

Query optimization and execution in DG‑SPARQL

In general, one of the powerful features of any declarative query language, like
G-SPARQL, is that it provides its users with the ability to describe the logic of their
querying operation without the need to get into the details of how such query will be
executed. In particular, it becomes the responsibility of the query execution engine to
enumerate the various possible query execution plans, for any user declarative query,
and select among them one for actual execution. Ideally, the selected plan is the one with
the lowest execution time. In practice, choosing such an optimal execution plan is not
a trivial task. Therefore, DG-SPARQL relies on a set of cost-based query optimization
techniques that attempt to estimate the cost of the various possible execution plans and
predicts the one with the lowest-cost or at least a closest one to it. In order to achieve
this goal, DG-SPARQL starts by compiling the user input query into a logical query plan
using a defined set of G-SPARQL algebraic operators, listed in Table 1 (Sakr et al. 2012).
In general, the G-SPARQL algebraic operators can be classified into two main groups:

• • Retrieval-Based Operators: This group of operators (NgetAttVal, EgetAttVal,
getEdgeNodes, strucPred, edgeJoin) is mainly used for retrieving a target
set of the graph nodes and edges and can be intuitively represented by the standard
relational operators (e.g., select, project, join) (Sakr et al. 2012).

• • Traversal-Based Operators: This group of operators (pathJoin, sPathJoin, fil-
terPath) is mainly evaluated via traversal operations over the graph topology and
can not be intuitively represented by the standard relational operators.

After generating the initial logical plan of the input G-SPARQL query, this initial plan
gets optimized using some common rules that include the traditional rules for relational
algebraic optimization (e.g. pushing the selection operators down the plan) in addition
to some rules that are specific to the context of the G-SPARQL query plans (Sakr et al.
2014). To illustrate, Fig. 6 presents an example algebraic compilation for the following
G-SPARQL query:

SELECT ?L1 ?L2
WHERE {?X @label ?L1. ?Y @label ?L2.

?X @age ?age1. ?Y @age ?age2.
?X affiliated_at UNSW.
?Y affiliated_at KAU.
?X ??P ?Y.
FILTER(?age1 >= 25).
FILTER(?age2 >= 30)}

As illustrated in Fig. 6, G-SPARQL logical plans are commonly organized in a DAG
shape. In particular, the query planner traverses the logical query plan in a bottom-up
fashion (starting by the leave nodes and then climbing the various paths of the query
plan up to the root) and groups the connected neighbours retrieval-based operators
into initial set of relational-based sub query plans (RQP). This climbing process for each

Page 15 of 26Batarfi et al. SpringerPlus (2016) 5:665

path stops once it touches a traversal-based operator. For example, in Fig. 6, as indi-
cated by dashed rectangles in the figure, two candidate relational-based sub-query plans,
RQP1 and RQP2, have been identified. In principle, the main strategy of DG-SPARQL
query execution engine is to group the retrieval-based operators into relational-based
sub-query plans (RQP) and parallelize their execution, via SQL queries, using the rela-
tional stores of the underlying nodes while each traversal-based operators represents a
main memory query plan (MQP) which is evaluated using BSP-based traversals (Valiant
1990), synchronized by the coordinator node, over the partitioned graph topology. Using
this mechanism, DG-SPARQL can rely on the underlying relational stores on finding the
most efficient physical execution plan of its assigned sub-query plans, represented via
SQL queries, by leveraging its built-in advanced and sophisticated query optimization
mechanisms (e.g., join ordering, join implementation, index selection).

To illustrate the performance advantage of DG-SPARQL as a distributed and parallel
query execution engine, let us consider the illustrated query plan of Fig. 6. For such query

Table 1  G-SPARQL algebraic operators Sakr et al. (2012)

Operator Description

NgetAttVal Returns the values of an attribute for a set of nodes

EgetAttVal Returns the values of an attribute for a set of edges

getEdgeNodes Returns adjacent nodes, optionally through a specific relation, for a set of graph nodes

strucPred Returns a set of vertices that are adjacent to other vertices with a specific relationship and
optionally returns the connecting edges

edgeJoin Returns pairs of vertices that are connected with an edge, optionally of a specified relation-
ship, and optionally returns the connecting edges

pathJoin Returns pairs of vertices which are connected by a sequence of edges of any length, option-
ally with a specified relationship, and optionally returns connecting paths

sPathJoin Returns pairs of vertices which are connected by a sequence of edges of any length, option-
ally with a specified relationship, and returns the shortest connecting path

filterPath Returns paths that satisfy a condition

Fig. 6  An example DAG plan for G-SPARQL

Page 16 of 26Batarfi et al. SpringerPlus (2016) 5:665

plan, the query evaluation process using a centralized execution engine of G-SPARQL
typically goes through a sequential execution of the following three main steps:

1.	 S1: The relational-based sub-query plan (RQP1) gets translated into SQL query
(SQL1 ) which is pushed for evaluation inside the underlying relational store.

2.	 S2: The relational-based sub-query plan (RQP2) gets translated into SQL query
(SQL2 ) which is pushed for evaluation inside the underlying relational store.

3.	 S2: The results, retrieved nodes, of (SQL1) and (SQL2) are then passed for further
memory-based processing using the traversal-based operator, pathJoin, and the
following operators in the query plan.

As a result, the total execution time for this execution plan in a centralized query engine
(CentralizedT) is represented by the sum of the execution times of the three steps:

On the other hand, a simple intuitive alternative execution plan in the DG-SPARQL exe-
cution engine is to parallelize the execution of (SQL1) and (SQL2), representing the two
steps S1 and S2, over the relational stores of two distinct slave machines, to retrieve the
target graph vertices and edges, and then parallelize the execution of the pathJoin
operator over the partitioned graph topology, (S3). Therefore, the total execution time
for this parallelized execution plan in DG-SPARQL (DistributedT) can be represented as
follows:

where (P(S3)) represents the BSP-based parallel implementation of (S3). Clearly, the
parallel execution of G-SPARQL query plans using DG-SPARQL mechanism can show a
significant reduction in the total execution time.

In practice, in DG-SPARQL, the execution of each candidate relational-based sub
query plan (RQP) can typically have various alternatives. For example, it can be trans-
lated into a single SQL query which is executed by a single relational store of the under-
lying nodes. Alternatively, it can be decomposed and translated into multiple SQL
queries which are parallelly executed over multiple nodes. It is the job of the G-SPARQL
query optimizer to enumerate the various possible decompositions (D1,D2, . . . ,Dv) for
the candidate relational-based query plan and chooses only one plan, which is predi-
cated to have the lowest execution time, for actual execution. For example, let us assume
a relational-based sub query plan (RQP) with a possible decomposition (Di) into the set
of decomposed plans, RQP → {DRQP1,DRQP2, . . . ,DRQPd}. The DG-SPARQL predicts
the total execution time (TT (Di)) of each possible decomposition by estimating the fol-
lowing components:

• • ET (DRQPx): represents the estimated execution time for locally evaluating any
decomposed plan, DRQPx, on its assigned slave node to return its intermediate result
of size IRRQPx.

• • MT(DRQPxy): represents the required time to move (transfer) intermediate results
from a node executing a decomposed plan DRQPx into a node executing the decom-

CentralizedT = T (S1)+ T (S2)+ T (S3)

DistributedT = Max (T (S1),T (S2))+ T (P(S3))

Page 17 of 26Batarfi et al. SpringerPlus (2016) 5:665

posed plan DRQPy. In practice, the cost of data transfer is a dominant factor in any
distributed system, therefore, the DG-SPARQL query optimizer typically chooses to
move the data from the node with the smaller intermediate result size to the node
with the highest intermediate result in order to reduce the data transfer cost. In other
words, MT(DRQPxy) = min(IRRQPx, IRRQPy).

• • JT(RQPxy): represents the time to join two intermediate results produced by the two
decomposed plans DRQPx and DRQPy.

In practice, all decomposed plans would initially run in parallel, however, depending on
the dependency graph between the decomposed plans, some of the decomposed plan
are not able to start joining their intermediate results with the intermediate result of an
external node until it finishes the generation of its intermediate results and is receiv-
ing the intermediate results from the external node. As a result, using the dependency
graphs of the decomposition plans and the estimated costs for its various components,
the query optimizer can estimate the total execution times of each decomposition plan,
TT(Di), and choose the plan with the lowest cost for actual execution. It should be also
noted that the query optimizer takes into consideration the number of available nodes
for the various relational-based query plans and their various associated decompositions
in a way that the total number of decomposed plans of all relational-based query plans
should not exceed the number of the available (n) relational stores of the slave nodes.

In principle, the basic implementation of the DG-SPARQL query execution engine
relies on BSP-based main memory traversal algorithms for evaluating the traversal-
based operators (e.g., reachability and shortest path operators). However, it should be
noted that the DG-SPARQL query execution engine remains agnostic to the physical
execution of the logical traversal operators and is able leverage any available indexing
information to improve the query evaluation process of the different types of queries
by taking into consideration the trade-off of building and maintaining their indices in
addition to their main memory consumption. For example, distributed graph indexing
and query answering techniques (Fan et al. 2012) can be leveraged for accelerating the
execution of the traversal-based operators. However, such indexing methods can be only
considered in the cases where there are no restrictions or conditions on the nodes and
edges of the results of the operators as these indexing methods usually do not consider
such filtering or predicate evaluation functionalities in their design.

Experimental evaluation
We implemented DG-SPARQL using C++ and MPICH,3 a high performance imple-
mentation of the Message Passing Interface (MPI). The implementation includes the
query language parser and compiler, cost-based query optimizer, and distributed query
execution engine. We used the IBM DB2 RDBMS for storage, indexing and performing
all SQL-based query evaluation. We implemented a BSP-based version of the breadth-
first graph traversal algorithm which is used for evaluating our traversal-based reacha-
bility and shortest path operators (Redekopp et al. 2013). In this section, we present our
experimental evaluation for DG-SPARQL. The main objective of our experimental

3  https://www.mpich.org/.

https://www.mpich.org/

Page 18 of 26Batarfi et al. SpringerPlus (2016) 5:665

evaluation is to assess two main aspects: the system performance scalability on handling
big attributed graphs in addition to comparing the system performance with Apache
Giraph,4 a popular distributed graph processing system which is built on top of the
Hadoop framework.5

Experimental setup

Experimental environment

Our experiments have been conducted on a cluster of 20 nodes in addition to one node
that servers as the system coordinator and client. Each server has an Intel QuadCore 2.9
GHz CPU, 16 GB of main memory storage, 1 TB of SCSI secondary storage and runs
the 64-bit Fedora 13 Linux operating system, MPICH 3.0.4. For the comparison with
Apache Giraph Systems, we have been using Apache Hadoop 2.6.0, Apache Giraph 1.1.0
and Java version 7.

Dataset

In our experiments, we used two main datasets:

• • The popular LUBM benchmark (2014) which provides an ontology for academic
information (e.g., universities). This is a synthetic dataset that can be generated with
various sizes by controlling the number of generated universities. The original data
generator of the benchmark generates the dataset according to the RDF graph model.
Therefore, we have modified the data generator of the benchmark to generate the
dataset according to the attributed graph model.6 In order to evaluate the scalability
of our system, we generated four datasets at different scales with 20K (D1), 30K (D2),
40K (D3), and 50K (D4) universities with 450 GB, 700 GB, 950 GB and 1.2 TB of
data, respectively. The datasets have been partitioned across the 20 nodes using the
METIS partitioner (METIS 2014).

• • The real DBpedia 3.8 dataset.7 We converted the RDF data model of this dataset into
a property graph data model using the following mechanism (Sun et al. 2015):

•	 Each subject or object node in the RDF graph becomes a vertex with a unique inte-
ger ID in the property graph.

• 	 Object properties in the RDF graph are represented as adjacency edges in the prop-
erty graph, where the source and the target of the edge were vertex IDs, and the
edge was identified by an integer ID.

• 	 Datatype properties in the RDF graph were are represented as attributes in the
property graph.

•	 Provenance or context information are represented as attributes for the graph
edges.

4  http://giraph.apache.org/.
5  https://hadoop.apache.org/.
6  The main extension is to generate attribute/value pairs for the graph edges.
7  http://wiki.dbpedia.org/services-resources/datasets/data-set-38/downloads-38.

http://giraph.apache.org/
https://hadoop.apache.org/
http://wiki.dbpedia.org/services-resources/datasets/data-set-38/downloads-38

Page 19 of 26Batarfi et al. SpringerPlus (2016) 5:665

For the sake of measuring the performance speed-up of the query execution time in
response to increasing the number of slave machines, we have partitioned this dataset
three times into 2, 4 and 6 partitions using the METIS partitioner (METIS 2014).

Workload

In practice, there is no defined standard benchmarks for evaluating the performance of
query engines for attributed graphs (Sakr et al. 2014). Therefore, we defined four main
categories of attributed graph queries which we used in our evaluation. These categories
are described as follows:

• • QT1—Highly Selective Pattern Matching Queries: This category represents a con-
nected graph pattern (e.g., path, star, subgraph) with highly selective predicates that
matches to a small set of answers.

• • QT2—Low Selective Pattern Matching Queries: This category represents a connected
graph pattern with low selective predicates that matches to a large set of answers.

• • QT3—Pattern Matching Queries Combined With Traversal-Based Operators: Com-
bines graph pattern searches with one or more traversal-based operators (e.g., rech-
ability checks, shortest path).

• • QT4—Pattern Matching Queries Combined With Traversal-Based Operators and
Path Filtering Operations: Combines graph pattern searches with one or more tra-
versal-based operators in addition to applying filtering predicates on the traversed
paths by the traversal-based operators.

For each query type, we assigned random literal values of the query templates in order
to generate different query instances. Each query template is instantiated 20 times where
the data values are generated randomly.

Performance evaluation metric

Our main performance metric is the query execution time.
In particular, each query instantiation of the experimental workload has been executed

5 times over our implementation and the Apache Giraph system, and execution times
were collected. All times are in seconds. In order to to ensure that any caching or sys-
tem process activity would not affect the collected results, the longest and shortest times
for each instantiation were dropped and the remaining three execution times for the 20
instantiations were averaged.

Experimental results

Figure 7 illustrates the average query execution times on DG-SPARQL and Giraph for
the 20 instances of each of the identified four query types on the four experimental data-
sets of the LUMB benchmark. The results of the experiments show that DG-SPARQL
is able to outperform Giraph with orders of magnitudes on the various query types. It
also shows that DG-SPARQL is able to scale well to handle the increasing datasets of the
LUMB benchmark.

Page 20 of 26Batarfi et al. SpringerPlus (2016) 5:665

To better understand the underlying factors for the performance improvement of DG-
SPARQL over Giraph, we looked closer at the details of each query. In particular, for QT1
(Fig. 7a), highly selective pattern matching queries, the main strategy of DG-SPARQL is
to translate the query plan of this type of queries into an SQL query which is centrally
executed on one of the underlying RDBMS nodes. In principle, this type of query does
not involve any graph traversal operations, therefore, it does not require any message
exchange between the cluster nodes. In addition, due to the high selectivity of its query
predicates, RDBMS can effectively utilize its solid indexing infrastructure for efficient
evaluation. Therefore, for this type of query, DG-SPARQL has shown the highest order
of magnitudes in performance improvement of G-SPARQL over Giraph. Additionally,
the percentage of performance improvement has increased as the size of the processed
graph dataset increased.

For QT2 (Fig. 7b), low selective pattern matching queries, the strategy of DG-SPARQL
is to translate the query plan of this type of queries into an SQL query with a distrib-
uted execution plan on more than one of the underlying RDBMS nodes. Similar to QT1,
QT2 does not involve any graph traversal operations, however, due to the distributed
execution of the SQL queries, the evaluation of such a query type requires some form
of message exchange and data shuffle operation to be performed between the nodes of
the cluster which are involved in the query evaluation. Thus, for this type of queries,
DG-SPARQL is still able to scale better and outperforms Giraph with orders of mag-
nitudes, however, the percentage of improvement on QT2 is lower than the percentage
of improvement on QT1, which is centrally executed and does not involve any network
communication overhead.
QT3 (Fig. 7c) combines pattern matching operations with traversal-based operations,

thus, DG-SPARQL splits the query execution plan for this type of queries into multiple
sub-plans where some of these plans are represented as SQL queries and their execu-
tion is pushed to the underlying RDBMS nodes while some other plans are evaluated
using the BSP-based BFS traversal (Redekopp et al. 2013). Based on the cost model, the

a c

db

Fig. 7  Average query execution times of DG-SPARQL VS Giraph on LUMB datasets a Query Type QT1 b Query
Type QT2 c Query Type QT3 d Query Type QT4

Page 21 of 26Batarfi et al. SpringerPlus (2016) 5:665

execution of each SQL-based query plan can be centralized on a single RDBMS node or
distributed over more than one node. The same strategy is applied for the queries which
belong to query type, QT4 (Fig. 7d). The main difference between query types, QT3 and
QT4, is the execution of the path filtering condition on QT4 requires a post-processing
step, after determining all the connecting paths between each pair of vertices, to evalu-
ate the filtering predicates on the retrieved paths. For both query types, DG-SPARQL is
also able to scale better and outperforms Giraph with order of magnitudes, however, the
percentage of improvement on QT4 is the lowest among the four query types due to the
network communication overhead and the post processing steps.

Figure 8 illustrates the average query execution times on DG-SPARQL for 20 instances
of each of the identified four query types on the DBpedia real dataset. In order to eval-
uate the speed-up improvement of query execution time in response to increasing
the number of slave nodes (partitions), we have repeated this experiment three times
using 2, 4 and 6 slave nodes. The results of the experiments show that the percent-
age of speedup improvement varies from one query type to another. For example, for
QT1, the query plan of this type of queries is translated into a single SQL query which
is centrally executed on one of the underlying RDBMS nodes. Therefore, increasing the
number of underlying slave nodes does not introduce any speedup improvement for the
query execution time of such type of queries. Queries of query type QT2 achieve the
highest percentage of speedup improvement by increasing the number of the underlying
slave nodes due to their distributed execution plans over the underlying RDBMS nodes.
In particular, increasing the number of slave nodes from 2 to 4 leads to 34 % speedup
improvement while increasing the number of slave nodes from 2 to 6 leads to 59 %
speedup improvement on the query execution times. Queries of query types QT3 and
QT4 achieve comparable percentage of speedup improvement by increasing the num-
ber of the underlying slave nodes due to due to the network communication overhead
and the post processing steps of their query plans. In particular, for QT3, increasing the
number of slave nodes from 2 to 4 leads to 24 % speedup improvement while increasing
the number of slave nodes from 2 to 6 leads to 43 % speedup improvement on the query
execution times. For QT4, increasing the number of slave nodes from 2 to 4 leads to
25 % speedup improvement while increasing the number of slave nodes from 2 to 6 leads
to 44 % speedup improvement on the query execution times. It should be noted that
increasing the number of slave nodes does not necessarily lead to increasing the speedup
improvement on the query execution times as the number of relational-based sub-query
plans can be less than the number of slave machines. In this case, increasing the num-
ber of slave nodes does not lead to speedup improvement on the query execution time
for this type of queries. In addition, increasing the number of slave nodes leads to an
increase in the overhead of the message exchange between the cluster nodes. This over-
head affects having a linear relationship between the number of slave nodes and query
execution time.

Related work
Several languages were introduced for querying various kinds of graph models with
various aims and querying constructs. For instance, GraphQL (He and Singh 2008) is
a graph query language that relies on graph patterns as the fundamental querying

Page 22 of 26Batarfi et al. SpringerPlus (2016) 5:665

units. The language design has mainly focused on manipulating and querying labeled
directed graphs. The GraphDB (Güting 1994) language has been designed to sup-
port spatial networks (e.g., transportation systems) based on the availability of a graph
schema. GraphDB querying abstractions rely on object-oriented concepts including
classes for vertices, edges and paths. It supports regular expressions that are specified
over sequences of vertex and edge types. SoQL (social networks query language) (Ronen
and Shmueli 2009) has been presented as an SQL-like language for querying social net-
works. SoQL provides its users with the ability to retrieve paths and use these retrieved
paths to create new connections with the retrieved nodes which are located at the end of
the paths. The language also enables to formulate complex conditions over the retrieved
paths. PQL (Leser 2005) has been designed as a special-purpose language that is focused
around querying pathways of biological networks.

GRAPHiQL (Jindal and Madden 2014) has been introduced as another SQL-like gen-
eral purpose graph processing language. GRAPHiQL provides its user with the ability
to reason about graphs in terms of the intuitive abstraction of vertices and edges. It also
provides optimized graph querying constructs such as recursion, looping, neighborhood
access. The GRAPHiQL execution engine compiles the user query into SQL query that is
executed by a standard relational engine and relies on query optimization techniques to
tune the performance of these queries. Green-Marl (Hong et al. 2012) has been presented
as a domain-specific language (DSL) with high level language constructs that enables its
users to express their graph querying operations. The execution engine of Green-Marl
translates the user programs into efficient C++ code that exploits data level parallel-
ism and the high-level semantic knowledge of the language constructs. G-Path (Bai et al.
2013) has been introduced as a path-based query language on large graphs. The execu-
tion engine of G-Path is designed on top of the Hadoop framework (Sakr et al. 2013) and
bulk synchronized parallel model (Batarfi et al. 2015) where it executes general graph
queries in the absence of any indexing information. Gremlin (2015), Cypher (2015) and
Horton (Sarwat et al. 2012) are examples of other path-based languages which are used
for graph traversals. Horton+ (Sarwat et al. 2013) has been implemented as a distributed
execution engine for Horton queries that fully manages the graph using the main mem-
ory of a cluster of nodes. In practice, path-based languages may limit the ability of its
users to only think in terms of paths and constrain their ability to express broader graph
querying operations. SQLGraph (Sun et al. 2015) has been presented as an approach that

Fig. 8  Speed-up improvement of query execution time in response to increasing the number of slave nodes
(partitions)

Page 23 of 26Batarfi et al. SpringerPlus (2016) 5:665

exploits both relational and non-relational storage for property graphs. In particular, it
uses relational storage for adjacency information and JSON storage for vertex and edge
attributes. SQLGraph applies a query translation mechanism that translates Gremlin
queries (2015) into SQL queries and leverage relational query optimizers and execution
engines for evaluating the queries. GRAPHITE (Chau et al. 2008) has been presented
as a visual system for querying graph patterns and locates both exact and approximate
subgraph matches in large attributed graphs. VOGUE (Bhowmick et al. 2013) is another
visual human computer interaction(HCI)-aware subgraph query engines that interleaves
visual query construction and query processing with the aim of improving the user expe-
rience and performance of query execution.

For about a decade, the Hadoop framework has often been considered as the de facto
standard in the domain of general distributed computation and big data processing (Sakr
et al. 2013). In general, the MapReduce programming model of the Hadoop framework
is able to implement many common graph querying and processing operations. How-
ever, the Hadoop framework has shown to have limited practicality in the context of big
graph processing. In practice, graph processing algorithms are mostly iterative in nature
and require the traversal of the graph in a particular form. Using the Hadoop frame-
work, this could be implemented via a sequence of job invocations which passes the
whole state of the graph from one step to the following. However, such mechanism is
not adequate for graph processing and leads to inefficient performance because of the
associated serialization and communication overheads (Batarfi et al. 2015). To solve this
inherent performance problem of the Hadoop framework, several specialized platforms
which are designed to serve the unique processing requirements of large-scale graph
processing have been introduced. These systems provide programmatic abstractions for
performing iterative parallel analysis of large graphs on clustered systems (Batarfi et al.
2015).

In general, vertex-centric models express the graph processing job from a vertex per-
spective where they are executed iteratively for each vertex in the graph. The Pregel sys-
tem (Malewicz et al. 2010), introduced by Google, has pioneered the domain of large
scale graph processing systems using the Bulk Synchronous Parallel (BSP) programming
model and by relying on a “think like a vertex” programming model. The introduction of
Google’s Pregel has triggered a lot of interest in the domain of large-scale graph process-
ing and inspired the development of several Pregel-based systems which have been
attempting to exploit different optimization opportunities. For example, Apache Giraph8
is an open source project that clones the ideas and implementation of the Pregel specifi-
cation in Java on top of the infrastructure of the Hadoop framework. GPS (Salihoglu and
Widom 2013), and Giraph++ (Tian et al. 2013) are examples of other systems that have
been presented as enhancements/extensions for the Pregel system in various aspects.
Trinity (Shao et al. 2013) is a memory-based distributed system with the aims of opti-
mizing memory and communication cost under the assumption that the entire graph is
partitioned over a memory cloud. GraphX (Gonzalez et al. 2014) is a distributed graph
processing system which is implemented on top of the Spark framework (Zaharia et al.
2010). Other general purpose distributed graph processing systems include Pregelix (Bu

8  http://giraph.apache.org/.

http://giraph.apache.org/

Page 24 of 26Batarfi et al. SpringerPlus (2016) 5:665

et al. 2014), GRACE (Wang et al. 2013), NScale (Quamar et al. 2014), GraphLab (Low
et al. 2012) and PowerGraph (Gonzalez et al. 2012). In general, these group of systems
are mainly designed for batch processing of large scale graph computations rather than
online graph querying. In addition, they lack any declarative interfaces and thus they
require their users to be experienced programmers to write efficient programs that
acknowledge deep understanding of the programming model and the underlying system
details.

In addition to the distributed graph processing platforms, NXgraph (Chi et al. 2015),
GraphChi (Kyrola et al. 2012) and TurboGraph (Han et al. 2013) have been presented as
centralized systems to process large graphs that are stored in the secondary storage of a
single node. However, several experimental studies have shown the performance and
scalability limitations of the centralized graph processing systems (Barnawi et al. 2014),
(Koch et al. 2015). Several centralized (Abadi et al. 2007; Bröcheler et al. 2009; Neumann
and Weikum 2008; Zou et al. 2011) and distributed (Hammoud et al. 2015; Rohloff and
Schantz 2010; Jiewen et al. 2011; Zeng et al. 2013; Papailiou et al. 2013) SPARQL query
engines for the RDF graph data model have been proposed. However, these systems can
not be directly reused in the context of attributed graph because of the various differ-
ences in the data model and querying requirements. Moreover, several centralized graph
database systems (e.g. Neo4j,9 HypergraphDB10) have also been introduced. However,
such systems can not scale to deal with the performance requirements of querying large
graphs.

Conclusion
In this article, we presented DG-SPARQL, an efficient distributed query engine for the
G-SPARQL query language which is able to handle big attributed graphs. DG-SPARQL
relies on an efficient hybrid Memory/Disk representation of large attributed graphs
where only the topology of the graph is maintained in the distributed memory of com-
puting clusters while the data of the graph are stored in a relational database. The DG-
SPARQL query execution engine relies on a cost model to split the execution plan into
relational-based plans and main memory-based plans. In addition, using the cost model,
the query execution engine can adaptively switch the execution of the plans between
being centralized or distributed based on which is the more efficient model. Our experi-
mental evaluation validated the efficiency and scalability of our approach and showed
that DG-SPARQL is a scalable engine that works for massive graphs. Due to the com-
plexity of graph query languages, in our future work, we are planning to support visual
query interfaces (Hung et al. 2014) that can reduce the burden of query formulation and
ease the process for different types of non-technical users.
Authors’ contributions
OB carried out the analysis of the query language and the design of the cost model. RE carried out identifying the vari-
ous important statistical information for supporting the cost model. AF carried out the analysis of the logical query plans.
AB and SS carried on the implementation the evaluation of the distributed query execution engine. All authors read and
approved the final manuscript.

9  http://neo4j.org/.
10  http://www.kobrix.com/hgdb.jsp.

http://neo4j.org/
http://www.kobrix.com/hgdb.jsp

Page 25 of 26Batarfi et al. SpringerPlus (2016) 5:665

Author details
1 King Abdulaziz University, Jeddah, Saudi Arabia. 2 Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
3 University of New South Wales, Sydney, Australia. 4 King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi
Arabia.

Acknowledgements
This work was supported by King Abdulaziz City for Science and Technology (KACST) project 11-INF1990-03.

Competing interests
The authors declare that they have no competing interests.

Received: 15 January 2016 Accepted: 27 April 2016

References
Abadi DJ, Marcus A, Madden S, Hollenbach KJ (2007) Scalable semantic web data management using vertical partition-

ing. In: Proceedings of the 33rd international conference on very large data bases, University of Vienna, Austria,
September 23–27, 2007, pp 411–422

Bai Y, Wang C, Ning Y, Wu H, Wang H (2013) G-path: flexible path pattern query on large graphs. In: 22nd international
world wide web conference, WWW ’13, Rio de Janeiro, Brazil, May 13–17, 2013, companion volume, pp 333–336

Barnawi A, Batarfi O, Behteshi S, Elshawi R, Fayoumi A, Nouri R, Sakr S (2014) On characterizing the performance of distrib-
uted graph computation platforms. In: TPCTC

Batarfi O, El Shawi R, Fayoumi AG, Nouri R, Seyed-Mehdi-Reza B, Ahmed B, Sherif S (2015) Large scale graph processing
systems: survey and an experimental evaluation. Clust Comput 18(3):1189–1213

Bhowmick SS, Choi B, Zhou S (2013) VOGUE: towards a visual interaction-aware graph query processing framework. In:
CIDR 2013, Sixth biennial conference on innovative data systems research, Asilomar, CA, USA, January 6–9, 2013,
Online proceedings

Bröcheler M, Pugliese A, Subrahmanian VS (2009) DOGMA: a disk-oriented graph matching algorithm for RDF databases.
In: ISWC

Bu Y, Borkar VR, Jia J, Carey MJ (2014) Pregelix: big(ger) graph analytics on a dataflow engine. PVLDB 8(2):161–172
Chau DH, Faloutsos C, Tong H, Hong JI, Gallagher B, Eliassi-Rad T (2008) GRAPHITE: a visual query system for large graphs.

In: Workshops proceedings of the 8th IEEE international conference on data mining (ICDM 2008), December 15–19,
2008. Pisa, Italy, pp 963–966

Chi Y, Dai G, Yu W, Sun G, Li G, Yang H (2015) NXgraph: an efficient graph processing system on a single machine. CoRR,
abs/1510.06916

Copeland GP, Khoshafian S (1985) A decomposition storage model. In: Proceedings of the 1985 ACM SIGMOD interna-
tional conference on management of data, Austin, Texas, May 28–31, 1985, pp 268–279

Cypher Query Language (2015) http://neo4j.com/docs/stable/cypher-query-lang.html
Ehrig H, Prange U, Taentzer G (2004) Fundamental theory for typed attributed graph transformation. In: Graph transfor-

mations, pp 161–177
Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. In: SIGCOMM, pp

251–262
Fan W, Wang X, Wu Y (2012) Performance guarantees for distributed reachability queries. PVLDB 5(11):1304–1315
Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C (2012) PowerGraph: distributed graph-parallel computation on natural

graphs. In: OSDI, pp 17–30
Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I (2014) GraphX: graph processing in a distributed dataflow

framework. In: OSDI, pp 599–613
Gou G, Chirkova R (2007) Efficiently querying large XML data repositories: a survey. IEEE Trans Knowl Data Eng

19(10):1381–1403
Graefe G (2003) Sorting and indexing with partitioned b-trees. In: CIDR
Gremlin Query Language (2015) https://github.com/tinkerpop/gremlin/wiki
Grust T, Sakr S, Teubner J (2004) Xquery on SQL hosts. In: (e)Proceedings of the thirtieth international conference on very

large data bases, Toronto, Canada, August 31–September 3, 2004, pp 252–263
Güting RH (1994) GraphDB: modeling and querying graphs in databases. In: VLDB’94, Proceedings of 20th international

conference on very large data bases, September 12–15, 1994. Santiago de Chile, Chile, pp 297–308
Hammoud M, Rabbou DA, Nouri R, Beheshti S-M-R, Sakr S (2015) DREAM: distributed RDF engine with adaptive query

planner and minimal communication. PVLDB 8(6):654–665
Han W-S, Lee S, Park K, Lee J-H, Kim M-S, Kim Jinha, Yu Hwanjo (2013) TurboGraph: a fast parallel graph engine handling

billion-scale graphs in a single PC. In: KDD, pp 77–85
He H, Singh AK (2008) Graphs-at-a-time: query language and access methods for graph databases. In: ACM SIGMOD, pp

405–418
Hendrickson B, Kolda TG (2000) Graph partitioning models for parallel computing. Parallel Comput 26(12):1519–1534
Hong S, Chafi H, Sedlar E, Olukotun K (2012) Green-Marl: a DSL for easy and efficient graph analysis. In: Proceedings of the

17th international conference on architectural support for programming languages and operating systems, ASPLOS
2012, London, UK, March 3–7, 2012, pp 349–362

Huang J, Abadi DJ, Ren K (2011) Scalable SPARQL querying of large RDF graphs. PVLDB 4(11):1123–1134
Hung HH, Bhowmick SS, Truong BQ, Choi B, Zhou S (2014) QUBLE: towards blending interactive visual subgraph search

queries on large networks. VLDB J 23(3):401–426

http://neo4j.com/docs/stable/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki

Page 26 of 26Batarfi et al. SpringerPlus (2016) 5:665

Jindal A, Madden S (2014) GRAPHiQL: A graph intuitive query language for relational databases. In: 2014 IEEE interna-
tional conference on big data, big data 2014, Washington, DC, USA, October 27–30, pp 441–450

Kleinberg JM, Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) The web as a graph: measurements, models, and
methods. In: COCOON, pp 1–17

Koch J, Staudt CL, Vogel M, Meyerhenke H (2015) Complex network analysis on distributed systems: an empirical com-
parison. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and
mining, ASONAM 2015, Paris, France, August 25–28, 2015, pp 1169–1176

Korf RE (1985) Depth-first iterative-deepening: an optimal admissible tree search. Artif Intel 27(1):97–109
Kyrola A, Blelloch GE, Guestrin C (2012) GraphChi: large-scale graph computation on just a PC. In: OSDI, pp 31–46
Leser U (2005) A query language for biological networks. Bioinformatics 21(Suppl 2):ii33–9
Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM (2012) Distributed GraphLab: a framework for machine

learning in the cloud. PVLDB 5(8):716–727
METIS (2014) http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for large-scale graph

processing. In: SIGMOD conference, pp 135–146
Neumann T, Weikum G (2008) RDF-3X: a RISC-style engine for RDF. PVLDB 1(1):647–659
Papailiou N, Konstantinou I, Tsoumakos D, Karras P, Koziris N (2013) H2RDF+: high-performance distributed joins over

large-scale RDF graphs. In: IEEE Big Data
Powers S (2003) Practical RDF. O’Reilly Media, Newton
Prud’hommeaux E, Seaborne A (2008) SPARQL Query Language for RDF, W3C Recommendation, January 2008. http://

www.w3.org/TR/rdf-sparql-query/
Quamar A, Deshpande A, Lin J (2014) NScale: neighborhood-centric analytics on large graphs. PVLDB 7(13):1673–1676
Redekopp M, Simmhan Y, Prasanna VK (2013) Optimizations and analysis of BSP graph processing models on public

clouds. In: IEEE international symposium on parallel and distributed processing, IPDPS
Rohloff K, Schantz RE (2010) High-performance, massively scalable distributed systems using the MapReduce software

framework: the SHARD triple-store. In: Programming support innovations for emerging distributed applications
Ronen R, Shmueli O (2009) SoQL: a language for querying and creating data in social networks. Proceedings of the

25th international conference on data engineering, ICDE 2009, March 29, 2009–April 2, 2009. Shanghai, China, pp
1595–1602

Sakr S (2009) GraphREL: a decomposition-based and selectivity-aware relational framework for processing sub-graph
queries. In: Database systems for advanced applications, 14th international conference, DASFAA 2009, Brisbane,
Australia, April 21–23, 2009. Proceedings, pp 123–137

Sakr S, Al-Naymat G (2009) Relational processing of RDF queries: a survey. SIGMOD Rec 38(4):23–28
Sakr S, Al-Naymat G (2010) Efficient relational techniques for processing graph queries. J Comput Sci Technol

25(6):1237–1255
Sakr S, Pardede E (2011) Graph data management: techniques and applications. IGI Global
Sakr S, Elnikety S, He Y (2012) G-SPARQL: a hybrid engine for querying large attributed graphs. In: ACM CIKM, pp 335–344
Sakr S, Liu A, Fayoumi AG (2013) The family of mapreduce and large-scale data processing systems. ACM Comput Surv

46(1):11
Sakr S, Elnikety S, He Y (2014) Hybrid query execution engine for large attributed graphs. Inf Syst 41:45–73
Salihoglu S, Widom J (2013) GPS: a graph processing system. In: SSDBM, pp 22
Sarwat M, Elnikety S, He Y, Kliot G (2012) Horton: online query execution engine for large distributed graphs. In: IEEE 28th

international conference on data engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1–5 April,
2012, pp 1289–1292

Sarwat M, Elnikety S, He Y, Mokbel MF (2013) Horton+: a distributed system for processing declarative reachability que-
ries over partitioned graphs. PVLDB 6(14):1918–1929

Shao B, Wang H, Li Y (2013) Trinity: a distributed graph engine on a memory cloud. In: SIGMOD, pp 505–516
Sun W, Fokoue A, Srinivas K, Kementsietsidis A, Hu G, Xie GT (2015) SQLGraph: an efficient relational-based property

graph store. In: SIGMOD, pp 1887–1901
The Lehigh University Benchmark (LUBM) (2014) http://swat.cse.lehigh.edu/projects/lubm/
Tian Y, Balmin A, Corsten SA, Tatikonda S, McPherson J (2013) From “think like a vertex” to “think like a graph”. PVLDB

7(3):193–204
Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111
Wang G, Xie W, Demers A, Gehrke J (2013) Asynchronous large-scale graph processing made easy. In: CIDR
Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with working sets. In: HotCloud
Zeng K, Yang J, Wang H, Shao B, Wang Z (2013) A distributed graph engine for web scale RDF data. In: VLDB
Zhou R, Hansen EA (2006) Breadth-first heuristic search. Artif Intel 170(4):385–408
Zou L, Mo J, Chen L, Özsu MT, Zhao D (2011) gStore: answering SPARQL queries via subgraph matching. PVLDB

4(8):482–493

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://swat.cse.lehigh.edu/projects/lubm/

	A distributed query execution engine of big attributed graphs
	Abstract
	Introduction
	Background
	Attributed graphs
	G-SPARQL query language

	Distributed hybrid representation of the attributed graphs
	Distributed query execution engine
	System architecture
	Query optimization and execution in DG-SPARQL

	Experimental evaluation
	Experimental setup
	Experimental environment
	Dataset
	Workload
	Performance evaluation metric

	Experimental results

	Related work
	Conclusion
	Authors’ contributions
	References

