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Background
Solar water heaters (SWHs) are powerful and popular techniques to make use of solar 
energy, which typically use solar collectors and concentrators to gather, store, and use 
solar radiation to heat air or water in domestic, commercial, or industrial plants (Mekh-
ile et  al. 2011). As one of the most important types of stationary collector, evacuated 
tube solar collectors have substantially lower heat loss coefficient and cost than stand-
ard flat plate collectors (Kalogirou 2003; Morrison et al. 1984). In Chinese area, all-glass 
evacuated tubular solar water heaters are widely used due to their excellent thermal per-
formance, convenient installation, and easy transportability (Shah and Furbo 2007; Liu 
et al. 2013). In recent years, there are many research groups that focus on the theoretical 

Abstract 

Background:  Heat collection rate and heat loss coefficient are crucial indicators for 
the evaluation of in service water-in-glass evacuated tube solar water heaters. How-
ever, the direct determination requires complex detection devices and a series of 
standard experiments, wasting too much time and manpower.

Findings:  To address this problem, we previously used artificial neural networks and 
support vector machine to develop precise knowledge-based models for predicting 
the heat collection rates and heat loss coefficients of water-in-glass evacuated tube 
solar water heaters, setting the properties measured by “portable test instruments” as 
the independent variables. A robust software for determination was also developed. 
However, in previous results, the prediction accuracy of heat loss coefficients can still 
be improved compared to those of heat collection rates. Also, in practical applications, 
even a small reduction in root mean square errors (RMSEs) can sometimes significantly 
improve the evaluation and business processes.

Conclusions:  As a further study, in this short report, we show that using a novel and 
fast machine learning algorithm—extreme learning machine can generate better 
predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in 
testing.

Keywords:  Water-in-glass evacuated tube solar water heaters, Portable test 
instruments, Heat collection rate, Heat loss coefficient, Extreme learning machine

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

SHORT REPORT

Liu et al. SpringerPlus  (2016) 5:626 
DOI 10.1186/s40064-016-2242-1

*Correspondence:  iamafan@
xmu.edu.cn 
†Zhijian Liu and Hao Li 
contributed equally to this 
work
5 School of Software, Xiamen 
University, Xiamen 361005, 
China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2242-1&domain=pdf


Page 2 of 8Liu et al. SpringerPlus  (2016) 5:626 

and experimental studies of the thermal performance of water-in-glass evacuated tube 
solar water heaters (Pei et  al. 2012; Lin et  al. 2012; Çomaklı et  al. 2012; Govind et  al. 
2009).

However, even though we have a testing standard in China (GB/T 4271-2007, Test 
methods for the thermal performance of solar collectors), there is still few references 
that show the improved measurements of heat collection rate and heat loss coefficient 
for solar water heaters, which is a crucial problem for scientists and technicians when 
evaluating the in service solar water heaters. To solve this problem, we first used “port-
able test instruments” (Liu et al. 2015a, b), which includes digital thermoelectric ther-
mometer, electric platform scale and taper ZSH-3, to measure the basic properties of 
water-in-glass evacuated tube solar water heaters. Based on the 915 data groups, arti-
ficial neural networks (ANNs) and support vector machine (SVM) were successfully 
proved to be efficient and precise for predicting the heat collection rates and heat loss 
coefficients in testing set (Liu et al. 2015a). Compared to conventional measurements, 
knowledge-based machine learning method is much faster and convenient, saving time, 
resources and manpower (Liu et al. 2015a). The flow chart of the novel measurement is 
shown in Fig. 1. To provide a more user-friendly method, the WaterHeater, a software 
based on back-propagation (BP) algorithm in both personal computer (PC) and Android 
platforms were developed (Liu et al. 2015b). However, in spite of these progresses, there 
still remains a question that needed to be solved: given that the lowest average RMSEs 
for the prediction of heat loss coefficient (0.73 in SVM, 0.71 in ANN) is still relatively 
higher than those of heat collection rates (0.29 in SVM, 0.14 in ANN), can we further 
improve the RMSEs when predicting the heat loss coefficients? Although the RMSEs of 
predicting heat loss coefficients are relatively low, which is acceptable to further appli-
cations, results show that the precision in predicting the heat loss coefficients can still 
be improved because their RMSEs in testing is still higher than those of predicted heat 

Fig. 1  Flow chart of the novel method using “portable test instruments” combined with machine learning 
models for determining heat collection rate and heat loss coefficient (Liu et al. 2015a)
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collection rates (Liu et al. 2015a, b). Also, in practical applications, even a slight reduc-
tion in RMSEs will be considered as significant improvements. To further solve this 
problem, in this short report, we show that ELM has a lower RMSE for predicting the 
heat loss coefficients of water-in-glass evacuated tube solar water heaters. Here, ELMs 
were trained by setting the properties measured by “portable test instruments” as the 
independent variables. 915 data groups acquired experimentally were used for model 
training and testing. Comparisons were made between ELMs and our previous models.

Experimental
Measurement

In this research, 915 water-in-glass evacuated tube solar water heaters (in service for 
1 year) were determined by the “portable test instruments” and the PDT2013-1 (China 
Academy of Building Research, Beijing, China) detection device developed by the 
national center for quality supervision and testing of solar heating systems (Liu et  al. 
2015a, b). Forty-eight PDT2013-1 detection devices were employed to measure the heat 
collection rate and heat loss coefficient simultaneously. The measured extrinsic proper-
ties using “portable test instruments” include tube length, number of tubes, tube center 
distance, hot water mass in tank, collector area, final temperature and angle between 
tubes and ground. Table 1 shows the statistical results of the experimental data, which 
has been reported in our previous work (Liu et al. 2015a, b).

Extreme learning machine (ELM)

ELM is a new single hidden layer feed-forward learning algorithm invented by Huang 
et al. (2004, 2006) in recent years, which has been proved to have better performances 
than ANNs and SVM in some scientific cases (Huang 2014). Being similar to the single-
layer feed-forward neural network, the network of ELM is a linear system that the input 
weights and hidden node parameters are selected randomly. The output weights can be 
obtained by calculating the pseudo-inverse of output matrix of hidden layer. Being dif-
ferent to traditional neural networks, ELM does not need to learn iteratively. The basic 
advantages of ELM include simple structure, fast learning speed, good global search 
ability and generalization performance.

For an extreme learning machine with n input neurons, L hidden layer neurons and N 
training cases trained on a data set (xi, ti), the mathematical model can be described as:

Table 1  Statistic of  the variables for  915 samples of  in service water-in-glass evacuated 
tube solar water heaters (Liu et al. 2015a, b)

TCD tube center distance, temp. temperature, HCR heat collection rate (MJ/m2), HLC heat loss coefficient [W/(m3K)]

Item Tube 
length 
(mm)

Number 
of tubes

TCD (mm) Tank vol-
ume (kg)

Collector 
area (m2)

Angle (°) Final 
temp. 
(°C)

HCR HLC

Maximum 2200 64 151 403 8.24 85 62 11.3 13

Minimum 1600 5 60 70 1.27 30 46 6.7 8

Range 600 59 91 333 6.97 55 16 4.6 5

Average 1811 21 76.2 172 2.69 46 53 8.9 10

SD 87.8 5.8 5.11 47.0 0.73 3.89 2.0 0.48 0.77
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where xi = [xi1, xi2, . . . , xin]
T ∈ Rn; ti = [ti1, ti2, . . . , tim]

T ∈ Rm; βi = [βi1,βi2, . . . ,βiL]
T 

is the weight vectors of hidden layer to output layer; g(.) is the activation of hidden layer 
neurons; ai = [ai1, ai2, . . . , ain]

T is the weight vectors of input layer to hidden layer; bi is 
the biases of the neuron in the ith hidden layer; and oj is the output value of the jth input 
training sample.

If L = N, for any α and β, above model can approximate all the training samples with 
zero error, namely:

thus we have:

Which can also be described as:

where Y =
[
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hidden layer:

However, when the training sample is large, in order to reduce the amount of calcu-
lation, the selection of L is usually less than N. In this case, the training error of above 
model approximates an arbitrary value ε > 0, namely:

Therefore, not all parameters of above model need to be adjusted if g(.) is infinitely dif-
ferentiable, and parameters α and β can be selected normally before training and remain 
unchanged in the training. The weight vectors β of hidden layer to output layer can be 
acquired by solving the following equation set:

(1)
L

∑

i=1

βig
(

aixj + bi
)

= oj , j = 1, . . . ,N L ≤ N

(2)

N
∑

j=1

∥

∥oj − yj
∥

∥ = 0

(3)
L

∑

i=1

βig
(

aixj + bi
)

= yj , j = 1, . . . ,N

(4)Hβ = Y

(5)H =









g(a1x1 + b1) g(a2x1 + b2) · · · g(aLx1 + bL)
g(a1x2 + b1) g(a2x2 + b2) · · · g(aLx2 + bL)

...
...

. . .
...

g(a1xN + b1) g(a2xN + b2) · · · g(aLxN + bL)









(6)

N
∑

j=1

∥

∥oj − yj
∥

∥ < ε

(7)
∥

∥

∥
H β̂ − T

∥

∥

∥
= min

β
�Hβ − T�



Page 5 of 8Liu et al. SpringerPlus  (2016) 5:626 

The solution is β̂ = H∗ · Y , where H∗ is the Moore–Penrose pseudo inverse of matrix 
H. Thus there are only three steps in the training of an ELM:

1.	 Select the hidden layer neurons L.
2.	 Select an infinitely differentiable function g(.) as the activation of each hidden layer 

neuron, and calculate the output matrix H (Eq. 5) of hidden layer.
3.	 Calculate the weight vectors β̂ (β̂ = H∗ · Y ) of output layer.

ELM does not need to adjust too many parameters in training, and only needs to 
adjust the weight β̂ of hidden layer to output layer by selecting hidden layer neurons 
L. Compared to other existing machine learning techniques, it can acquire the global 
solution with very short time (Huang 2014). In this study, the data set we used includes 
915 data groups, which corresponds to the precondition that fulfills Eq. 6. Therefore, the 
ELM is considered to be applicable.

Results and discussion
Model development

To develop ELM models, we used Matlab software with the package of basic ELM (with 
randomly generated hidden nodes, random neurons) developed by Huang’s research 
group (ELM code sources). Numbers of hidden nodes were set from 2 to 50 in order to 
search the best testing results with the lowest RMSEs in testing. Prediction models for 
heat collection rates and heat loss coefficients were developed respectively. 85 % of data 
groups were set as the training set. To validate the model, the rest 15 % data groups were 
set as the testing set, which was to test whether the model was effective in field measure-
ments. Models were trained and tested for 20 times with different components of data 
groups in training and testing sets, under the same proportions of training and testing 
sets (85 and 15 %, respectively). The RMSEs were obtained by Eq. 8:

where Zi is the predicted value, Oi is the actual value and ntot is the number of tested 
samples.

Table 2 shows the selected results of ELMs and previous comparable models (Liu et al. 
2015a). The RMSEs shown in Table 2 are the averages of 20 times of training and test-
ing. Results show that the best ELM for heat collection rates exists in the ELM with 31 
hidden nodes, with an average RMSE in testing of 0.30. The best ELM for heat loss coef-
ficients exists in 5 hidden nodes, with an average RMSE in testing of 0.67. We can see 
that the ELM has very good prediction results in both heat collection rates and heat loss 
coefficients. More importantly, though its average RMSE in predicting heat collection 
rates is slightly higher than the SVM and the MLFN with 12 nodes (MLFN-12), the aver-
age RMSE in predicting heat loss coefficients are lower than previous machine learning 
methods, which indicates that the ELM can reduce the prediction errors of heat loss 
coefficients. In practical applications, even this small reduction in RMSE can sometimes 
significantly influence the evaluation and business of solar water heaters. Therefore, the 

(8)RMSE =

√

∑n
i=1 (Zi − Oi)

2

ntot
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ELM can be rationally considered as a good alternative machine learning model for pre-
dicting heat collection rates and heat loss coefficients for water-in-glass evacuated tube 
solar water heaters. For further discussions, two representative testing results are shown 
in Fig. 2, which indicates that the predicted values of heat collection rates using ELM is 
in good agreement with their actual values (Fig. 2a). Though there is a deviation in the 
prediction of heat loss coefficient (Fig. 2b) when the actual values are lower or higher 

Table 2  Prediction results of ELMs and previous machine learning models for heat collec-
tion rates and heat loss coefficients

a  These results were extracted from Liu et al. (2015a)

Model Property predicted Average RMSE in testing

ELM (31 nodes) Heat collection rate 0.30

SVMa Heat collection rate 0.29

GRNNa Heat collection rate 0.33

MLFN (12 nodes)a Heat collection rate 0.14

ELM (5 nodes) Heat loss coefficient 0.67

SVMa Heat loss coefficient 0.73

GRNNa Heat loss coefficient 0.71

MLFN (6 nodes)a Heat loss coefficient 0.73

Fig. 2  Prediction results for a heat collection rates and b heat loss coefficients using ELMs
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than 10  W/(m3K), the deviation belongs to the normal data feature of heat loss coef-
ficients because most of the heat loss coefficients of water-in-glass evacuated tube solar 
water heaters are around 10 W/(m3K). 

Conclusions
In practical applications of water-in-glass evacuated tube solar water heaters, the reduc-
tion of RMSEs, even slight, for predicting heat loss coefficients is a crucial improve-
ment. This is because in practical productions and measurements, technicians usually 
need to deal with more than thousands of water heaters in a production period, and 
therefore a slight increase of prediction accuracy rate may help us avoid a decent num-
ber of measurement mistakes. To generate improvements for predicting the heat loss 
coefficients, this short report presents an alternative method for measuring heat collec-
tion rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters 
using ELM. Results show that the ELMs have decent prediction results for heat collec-
tion rates and heat loss coefficients, compared to previous study using SVM, GRNN 
and MLFNs. This study shows that using Matlab software with the package of basic 
ELM can give precise predicted results of heat collection rates and heat loss coefficients 
with very convenient model development processes. Also, according to the algorithm of 
the ELM, it can dramatically reduce the required training time (Huang et al. 2004, 2006; 
Huang 2014), which are usually seen as one of the important advantages for practical 
applications. In future studies, we’ll focus on developing a completed system with the 
combination of different machine learning models, taking both RMSEs and required 
training times into further considerations.
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