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Background
Now a day’s, CMOS technology is approaching its physical boundary and facing ear-
nest challenges by designing perpetually incrementing frequencies and downscaling of 
computational devices. This technology has found many complication like high leak-
age current, high power consumption, high lithography cost, low density problem and 
limitation of speed in GHz range. Therefore, to overcome the deficiencies an extensive 
research on nanotechnologies must be taken into consideration. A report of ITRS (Inter-
national Technology Road 2013) shows a road map of future computing technologies. 
Quantum-dot cellular automata (Lent et al. 1993; Orlov et al. 1997) is one of the promis-
ing alternative technologies that proffers an innovative approach and has exhibited ultra 
low power, extreme speed and highly dense digital devise designing capabilities. In addi-
tion, QCA based memory unit, reversible logic and arithmetic logic circuit have been 
considered in several studies (Kim et  al. 2007; Navi et  al. 2010; Hänninen and Takala 
2010; Hashemi et al. 2012; Qanbari and Sabbaghi-Nadooshan 2013; Kianpour and Sab-
baghi-Nadooshan 2014; Sayedsalehi et al. 2015; Angizi et al. 2015; Bahar et al. 2015).

The rudimentary element of QCA circuit is a majority gate (MV); digital operation can 
be employed by using MV. MV characterizes and determines the function value based 
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on majority verdict (Oya et al. 2003). Up to now, most QCA circuits have been inves-
tigated and designed only by means of 3-input majority gates (MV3). However, if these 
circuits are constructed using 5-input majority gates (MV5), they would be optimized in 
cell counts, area and complexity.

To reveal the effectiveness of proposed MV5, a QCA full-adder has been designed 
using proposed MV5. Results reveal the superiority of proposed FA in terms of latency, 
cell counts and area to other previous designs (Tougaw and Lent 1994; Wang et al. 2003; 
Zhang et al. 2004; Azghadi et al. 2007; Cho and Swartzlander 2007, 2009).

Proposed five‑input majority gate
MV5 is a cell arrangement which includes five input cells, one output and some device 
cells. The logic function of MV5 can be presented as Eq. (1), where the inputs are labeled 
as A, B, C, D and E respectively. The truth table of the MV5 is shown in Table 1.

The proposed design of MV5 is shown in Fig. 1. In this design, A, B, C, D and E are 
labeled as inputs and the output cell is labeled as OUTPUT. Additionally, three middle 
cells are labeled 1, 2 and 3. Polarization of input cells are fixed and middle cells and out-
put cell are free to change. Here, cell “A” has an impact on all the middle cells. Similarly, 
cell “B”, cell “C” cell “D” and cell “E” also have an impact on all the middle cells. These 
impacts are propagated to the output cell and construct the MV5 output, efficiently. The 
propose MV5 requires only nine cells and uses conventional QCA cells to implement.

(1)
MV (A,B,C ,D,E) = ABC +ABD+ABE +ACD+ACE +ADE + BCD+ BCE + BDE +CDE

Table 1  Truth table of MV5 based on sum of inputs

Σ (A, B, C, D, E) MV (A, B, C, D, E)

0 0

1 0

2 0

3 1

4 1

5 1

Fig. 1  Proposed 5-input majority gate
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Physical proofs
To carry out the physical proofs, the below postulates are considered:

• • All cells are alike and the distance of end to end of each cell is 18 nm.
• • The space between two neighbor cells is 2 nm shown in Fig. 2.

The proposed MV5 has approximately 32 distinct input states; we should verify all the 
input condition to validate the accuracy of the gate. In this paper, only one state (A = 1, 
B =  0, C = D = E =  1) has been considered for verification. Similarly, other states 
can be verified too. For a fixed input MV5, the five input cells polarization are remain 
unchanged; only the intermediary cells and the output cell are subject to be changed to 
their polarization according to the input cells. Here, the proposed MV5 have three inter-
mediary cells and one output cell those are labeled as 1, 2, 3 and OUTPUT respectively 
shown in Fig. 1.

A structure is said to be stable, when the QCA cells are assembled with their mini-
mum potential energies. The potential energy between two different cell electrons can 
be computed using the Eq.  (2) (Halliday and Resnick 2004; McDermott 1984; Halloun 
and Hestenes 1985). Here, U is potential energy; a fixed colon is k, q1 and q2 are electric 
charges, and the distance between two electric charges is r. The total potential energy of 
a given structure is “UT” and that can be calculated using Eq. (3).

For, finding the stable structure, one needs to calculate the potential energy Ui for each 
middle cell. Here, cell 1 has two different polarization state; polarization P = +1 and 
P = −1 shown in Fig. 3.

Now, considering state 3 (a); here the potential energy for cell 1 UT is the summation 
of potential energies of both x and y electrons. Potential energy for x and y electrons are 
the total energy exist between each electron (e1, e2, e3, e4, e5, e6, e7, e8, e9, and e10) with 
electron x and y respectively, which is calculated using Eq. (2). Finally, using Eq. (3) total 
potential energy for “cell 1” can be calculated. Similarly, potential energy of “cell 1” for 
state 3.3 (b) can be calculated. The necessary calculations for finding the total potential 
energies of structure (a) and structure (b) are given below:

(2)U =
kq1q2

r

(3)UT =

n∑

i=1

Ui

Fig. 2  Two rectangular QCA cell
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Figure 3a (For electron x) Figure 3a (For electron y)
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Total potential energy of Fig. 3a is

Similarly, the total potential energy for Fig. 3b can be calculated and it is

With comparison of the achieved results, the electrons in cell 1 are located in state (a) 
is more stable because it has the lower potential energy than state (b). Similar the poten-
tial energy for cell 2 and cell 3 can be calculated and the final results are mentioned as.
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a b

Fig. 3  Five-input majority gate a cell-1 polarization P = −1, b cell-1 polarization P = +1



Page 5 of 10Bahar and Waheed ﻿SpringerPlus  (2016) 5:636 

Proposed QCA full‑adder
The proposed MV5 is implemented by designing an efficient QCA full-adder. The sche-
matic diagram of newly proposed QCA full-adder is shown in Fig. 4.

This full-adder is designed using the planar designing concept. The proposed FA has 
been implemented using 2-inverters and 2-MVs. In comparison with the earlier FA 
(Azghadi et  al. 2007), it has an extra inverter gate. The structure of proposed MV5, it 
would be easier to employ 2-inverters rather than 1-inverter and some wires for trans-
mitting the inverted signal to other part. The proposed QCA FA is simple in structure 
and easy to construct. In this design, at first the carry value is calculated and then takes 
its inversion value and uses this value as an input of the MV5 gates.

Power dissipation of proposed QCA full‑adder
The power dissipates from a single cell depends on the rate of change of the clock and 
the tunneling energy. The power dissipation of a QCA circuit in a single clock phase can 
be simply calculated by adding the power dissipated by each majority gate and inverter 
(Liu et al. 2012).

Using Hamming distance (HD) power dissipation of a QCA circuit can be estimated. 
Power dissipation is depends on HD between input cells to inverter cells as well as HD 
between majority voter gates (Liu et al. 2012). For an inverter when the input is changed 
from 0 → 0 or 1 → 1. In this case the HD will be 0, and the power dissipation by inverter 
at γ = 0.25 Ek and T = 2.0 K is 0.8 meV whereas for γ = 1.0 Ek, it is 8.0 meV (Liu et al. 
2012). If the input is changed from 0 → 1 or 1 → 0, in this case the HD will be 1 and 
the power dissipation by the inverter is 28.4  meV, where T =  2.0 K and γ =  0.25 Ek. 
For majority gate, power dissipation is minimum, when the inputs are changed from 
000 → 000 i.e. HD is 0, and the power dissipation is maximum when polarization of all 
inputs are changed i.e. input polarization are changed from 000 → 111 i.e. HD is 3. The 
power dissipation by the majority voter gate for HD 0 and 3 are 0.8 and 41.0 meV respec-
tively, where γ = 0.25 Ek and T = 2.0 K (Liu et al. 2012).

By using Hamming distance based methodology described in (Liu et  al. 2012), the 
power dissipated by the proposed MV5 and 1-bit QCA full-adder is estimated and the 
results are shown in Table 2.

Simulations and results comparison
The proposed MV5 and FA have been simulated and verified using QCADesigner (Walus 
et  al. 2003, 2004) only tools for QCA layout design and verification. In these simula-
tions, both bi-stable and coherence vector engines have been employed to simulate. In 
both simulations identical outputs are obtained which confirm the correctness of the 

MV3
MV5

A B Cin

Carry out Sum

Fig. 4  Schematic diagram of QCA full-adder
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proposed designs. The simulated circuit layout and simulated output of proposed MV5 
are shown in Fig. 5.

The proposed QCA full-adder is designed in three layers illustrated in Fig. 6. The main 
layer contains 34 cells, second layer contains 4 cells and the third layer contains 10 cells. 
Finally, it requires 48 cells and 3 clock phases to produce exact outputs (Sum and Carry).

Using QCADesigner, complexity, time delay and area consumption of QCA circuits 
can easily be calculated (Walus et  al. 2003). Table  3 demonstrates a concise compari-
son between the proposed QCA FA and the earlier FA (Vetteth et al. 2002; Wang et al. 
2003; Zhang et al. 2005; Cho and Swartzlander 2007; Kim et al. 2007; Cho and Swart-
zlander 2007, 2009; Navi et  al. 2010; Hänninen and Takala 2010; Hashemi et al. 2012; 
Qanbari and Sabbaghi-Nadooshan 2013) in terms of complexity, area and time delay. 
Here, complexity indicates the number of cell is used to design the FA. Similarly, the area 
represents the total covered area of the corresponding FA in micro meter. The “Latency” 
indicates the number of clock zone used. It also indicates the time delay of the circuit.

It is clear that the new QCA full-adder dominates all the previous designs (Vetteth 
et al. 2002; Wang et al. 2003; Zhang et al. 2005; Cho and Swartzlander 2007; Kim et al. 
2007; Cho and Swartzlander 2007, 2009; Navi et  al. 2010; Hänninen and Takala 2010; 
Hashemi et al. 2012; Qanbari and Sabbaghi-Nadooshan 2013) in terms of covered area 
and number of cell count. It leads to a very dense structure and has the same time delay 
with the previous best designs (Qanbari and Sabbaghi-Nadooshan 2013). According to 
the bar chat shown in Fig. 7, the proposed FA leads to around 95.17 % improvement in 

Table 2  Power dissipation of proposed five input majority gate and QCA full adder

Power dissipation at T = 2.0 K

γ = 0.25 Ek (meV) γ = 0.50 Ek (meV) γ = 0.75 Ek (meV) γ = 1.0 Ek (meV)

Five input majority gate 75.3 77.8 80.6 84.5

QCA full-adder 125.9 129.1 136.8 145.4

C

B

A

D

E

Output

a b

Fig. 5  Simulated a circuit layout and b input–output wave form of proposed MV5
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area and 83.6 percent improvement in cell complexity in comparison to the QCA FA 
designed using 3-input majority gates and inverters in (Vetteth et al. 2002). This FA also, 
leads to around 40 % improvement in area and 23.8 % improvement in cell complexity 
compared to the best QCA FA designed using previous MV5 and inverters (Qanbari and 
Sabbaghi-Nadooshan 2013).

Fig. 6  Simulated circuit layout of proposed full-adder a main layer, b layer-1, c layer-2, d top view of the 
adder, e simulation result
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Reliability of proposed QCA circuits
The temperature effect on the output cell’s polarization of proposed MV5 and QCA 
FA are observed. The output cell’s polarization is taken at different temperature using 
QCADesigner tool. The average output polarization (AOP) for each output cell is calcu-
lated from (Pudi and Sridharan 2011) and shown in Fig. 8. The proposed circuit works 
efficiently in temperature range of 1–6 K, and the AOP for each output cell is changed 
very little in this range. When the temperature is above 6 K, the AOP is dropped drasti-
cally, which results incorrect outputs.

Conclusion
A new flexible 5-input majority gate and a new efficient full-adder have been presented. 
The proposed MV5 has been implemented in one layer and using nine QCA cells only. To 
validate the correctness and effectiveness of the proposed MV5 a QCA FA has been pre-
sented. Moreover the estimation of power dissipation by the proposed QCA full-adder 

Table 3  Comparison of QCA full-adders in terms of gate count, area and latency

Full adder Type of full adder Complexity  
(cells)

Area  
(μm2)

Latency 
(clock cycle)

FA [1] Coplanar QCA FA (Vetteth et al. 2002) 292 0.62 3.5

FA [2] Robust QCA FA (Kim et al. 2007) 220 0.36 3

FA [3] Coplanar QCA FA (Wang et al. 2003) 145 0.17 1.25

FA [4] Type-I QCA FA (Cho and Swartzlander 2007) 135 0.14 1.25

FA [5] Multilayer QCA FA (Zhang et al. 2005) 108 0.10 1

FA [6] The Robust QCA FA (Hänninen and Takala 
2010)

102 0.10 2

FA [7] Type-II QCA FA (Cho 2006; Azghadi et al. 
2007)

86 0.10 0.75

FA [8] Robust QCA FA (Hashemi et al. 2012) 79 0.05 1.25

FA [9] Multilayer QCA FA (Navi et al. 2010) 73 0.04 0.75

FA [10] Multilayer QCA FA (Qanbari and Sabbaghi-
Nadooshan 2013)

63 0.05 0.75

Proposed full adder 48 0.03 0.75
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Fig. 7  A comparative analysis of proposed full-adder with previous
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circuits illustrates that the proposed QCA FA is highly energy efficient circuit. The pro-
posed FA has a considerable improvement in comparison to the previous FAs in terms of 
covered area, number of cells and has a similar time delay to the previous best FA.
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