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Background
The study of autonomous nonlinear evolution equations has a rich and long history, 
which has continued to attract attention in more recent years. The exact solutions to 
nonlinear evolution equations are the key tool to understand the various physical phe-
nomena that govern the real world today. Hence searching for exact traveling wave solu-
tions to nonlinear evolution equations plays an important role in the study of nonlinear 
physical phenomena in many fields such as fluid dynamics, water wave mechanics, mete-
orology, electromagnetic theory, plasma physics and nonlinear optics.

In the past several decades, there has been significant progress in the development 
of various methods for finding exact traveling wave solutions to nonlinear evolution 
equations, such as the Bäcklund transformation (Wahlquist and Estabrook 1973; Luo 
2011), the F-expansion method (Liu and Yang 2004; Islam et al. 2014), the tanh method 
(Wazwaz 2004), the exp-function method (Yusufoglu 2008; Khan and Akbar 2014a), the 
(G′/G)-expansion method (Wang et  al. 2008; Zayed and Al-Joudi 2010; Kim and Sak-
thivel 2012; Khan and Akbar 2014b; Islam et al. 2013), the functional variable method 
(Zerarka et  al. 2010; Khan and Akbar 2014c; Zayed et  al. 2013a), the exp(−Φ(ξ))-
expansion method (Khan and Akbar 2014d, 2015), the modified simple equation method 
(Jawad et al. 2010; Khan and Akbar 2013, 2014e; Ahmed et al. 2013), the homotopy per-
turbation method (Mohiud-Din 2007; Mohyud-Din and Noor 2009), the Kudryashov 
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method (Kudryashov 2012; Lee and Sakthivel 2013), and the Riccati equation mapping 
method (Zayed and Arnous 2013a, b).

The aim of this work is to demonstrate the efficiency of the generalized Kudryashov 
method for finding exact traveling wave solutions transmutable to the solitary wave 
solutions for system of nonlinear evolution equations. For this purpose, we consider the 
one dimensional variant Boussinesq equations, and the (2 +  1)-dimensional breaking 
soliton equations.

Algorithm of the generalized Kudryashov method
Let us consider the nonlinear evolution equation in two independent variables x and t:

where u = u(x, t) is an unknown function, x is the spatial variable and t is the time vari-
able, P is a polynomial in u and its various partial derivatives, in which the highest order 
derivatives and nonlinear terms are involved.

The main steps of generalized Kudryashov method are as follows (Demiray et  al. 
2014a, b; Baskonus and Bulut 2015):

Step 1:  The traveling wave variable ξ = x − ω t transforms Eq. (1) into an ordinary dif-
ferential equation of the form:

where the prime indicates differentiation with respect to ξ, and ω ∊ ℝ\{0} is the velocity 
of the relative wave mode.

Equation  (2) may be successively integrated as many times as possible. Remaining 
to the boundary conditions u(ξ) → 0 and d

mu(ξ)
dξm

→ 0 (m = 1, 2, 3, . . .) for ξ → ±∞, 
ξ = x − ω t, the constants of integration, if any, should be set to zero (Malfliet and Here-
man 1996; Wazwaz 2009).

Step 2:  Suppose that the solution of Eq. (2) has the following form:

where ai(i = 0, 1, 2, . . . ,N ) and bj(j = 0, 1, 2, . . . ,M) are constants to be determined 
afterward such that aN �= 0 and bM �= 0, and Q = Q(ξ) satisfies the following ordinary 
differential equation:

The solution of Eq. (4) is as follows:

where A is a constant of integration.

(1)P(u,ut ,ux,uxx, . . .) = 0, xǫR, t > 0

(2)Ψ (u, u′, u′′, . . .) = 0,

(3)
u(ξ) =

∑N
i=0 aiQ

i(ξ)
∑M

j=0 bjQ
j(ξ)

,

(4)
dQ(ξ)

dξ
= Q2(ξ)− Q(ξ).

(5)Q(ξ) =
1

1+ A exp(ξ)
,
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Step 3:  The positive integers N and M appearing in Eq. (3) can be determined by con-
sidering the homogeneous balance between the highest order derivatives and the non-
linear terms come out in Eq. (1) or Eq. (2). Moreover precisely, we define the degree of 
u(ξ) as D(u(ξ)) = N −M which gives rise to the degree of other expression as follows:

where p, q, s are integer numbers.
Therefore, we can find the value of N and M in Eq. (3).

Step 4:  Substituting Eqs.  (3) and (4) into Eq.  (2), we obtain a polynomial in Qi−j, 
(i, j = 0, 1, 2, . . .). In this polynomial equating the coefficients of all terms of the same 
powers of Q to zero, we obtain a system of algebraic equations which can be solved 
by using Maple or Mathematica to get the unknown parameters ai(i = 0, 1, 2, . . . ,N ), 
bj(j = 0, 1, 2, . . . ,M), and ω. Consequently, we obtain the exact solutions of Eq. (1).

Applications
In this section, we will apply the generalized Kudryashov method to construct the exact 
traveling wave solutions transmutable to the solitary wave solutions for the following 
two nonlinear evolution equations:

Example 1. The variant Boussinesq equations:  In this subsection, we will apply the 
generalized Kudryashov method to find the exact solutions and then the solitary wave 
solutions to the variant Boussinesq equations (Wang et al. 2008; Khan and Akbar 2013, 
2014b) in the form,

which was derived by Sachs in the year 1988 (Sachs 1988) as a model for water waves 
(Guo et al. 2015), where u(x, t) is the velocity, H(x, t) is the total bottom depth of the 
region occupied by the fluid and the subscripts denote the partial derivatives. The Bouss-
inesq equation is a celebrated model of long water wave of moderate amplitude, which 
describes one dimensional, and weakly nonlinear internal wave which develops at the 
boundary between two immiscible fluids. Besides, the equation is a simplified model of 
the atmospheric movement equation which is applicable to mesoscale and quasi-incom-
pressible fluid movement, which means important physical applications in hydrodynam-
ics. The Boussinesq equation also is of considerable mathematic interests because of its 
rich mathematical structures (Guo et al. 2015).

The traveling wave transformation is defined by,

Using traveling wave Eqs.  (7), (6) transform into the following ordinary differential 
equations:

D

(

dqu

dξq

)

= N −M + q, D

(

up
(

dqu

dξq

)s)

= (N −M)p+ s(N −M + q),

(6)
ut +Hx + uux = 0,

Ht + (uH)x + ux x x = 0,

(7)u(ξ) = u(x, t), H(ξ) = H(x, t), ξ = x − ω t.
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Integrating Eqs.  (8) and (9) with respect to ξ, choosing the constant of integration 
as zero (under the boundary conditions described in “Algorithm of the generalized 
Kudryashov method” section (Step 1) and using similar boundary conditions for H(ξ)), 
we obtain the following ordinary differential equations respectively:

From Eq. (10), we get

Substituting Eq. (12) into Eq. (11), we obtain

Now balancing the highest order derivative u′′ and nonlinear term u3, we get 
3N − 3M = N −M + 2 or equivalent to N = M + 1.

Setting M = 1, we obtain N = 2. Therefore, Eq. (3) reduces to

Substituting Eq.  (14) along with Eq.  (4) into Eq.  (13), we get a polynomial of Qk, 
(k = 0, 1, 2, . . .). Equating the coefficients of this polynomial of the same powers of Q 
to zero, we obtain a system of algebraic equations. This system of equations yields the 
values for ω, a0, a1, a2, b0 and b1.

(8)−ω u′ +H ′ + uu′ = 0,

(9)−ωH ′ + (uH)′ + u′′′ = 0.

(10)−ωu+H +
1

2
u2 = 0,

(11)−ωH + uH + u′′ = 0.

(12)H = ω u−
1

2
u2.

(13)u′′ − ω2u+
3

2
ω u2 −

1

2
u3 = 0.

(14)u(ξ) =
a0 + a1Q + a2Q

2

b0 + b1Q
.

Set 1 : ω = ±2, a0 = 0, a1 = 0, a2 = ±2b1, b0 = −0.50 b1.

Set 2 : ω = ±1, a0 = 0, a2 = 0, b0 = − b1 ±
1

2
a1.

Set 3 : ω = ±1, a0 = 0 , a1 = ±2b0, a2 = ±2b1.

Set 4 : ω = ∓1, a0 = ∓2b0 , a1 = ∓(2b1 − 2b0), a2 = ±2b1.

Set 5 : ω = ∓2, a0 = ±2b1 , a1 = ∓4b1, a2 = ±2b1, b0 = −
1

2
b1.

Set 6 : ω = ±I
√
2, a0 = ∓

Ib1√
2
, a1 = ∓2b1 ± I

√
2b1, a2 = ±2b1, b0 = −

b1

2
.
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Set 1 corresponds to the following solutions for the variant Boussinesq equations:

Set 2 corresponds to the following solutions for the variant Boussinesq equations:

Set 3 corresponds to the following solutions for the variant Boussinesq equations:

Set 4 corresponds to the following solutions for the variant Boussinesq equations:

Set 5 corresponds to the following solutions for the variant Boussinesq equations:

Set 6 corresponds to the following solutions for the variant Boussinesq equations:

(15)u(x, t) = ∓
4

A2 exp(2x ∓ 4t)− 1
,

(16)H(x, t) = −
8A2 exp(2x ∓ 4t)

(

A2 exp(2x ∓ 4t)− 1
)2

.

(17)u(x, t) = ±
2 a1

Aa1 exp(x ∓ t)∓ 2b1A exp(x ∓ t)+ a1
,

(18)H(x, t) =
2Aa1(a1 ∓ 2b1) exp(x ∓ t)

(Aa1 exp(x ∓ t)∓ 2b1A exp(x ∓ t)+ a1)
2
.

(19)u(x, t) = ±
2

1+ A exp(x ∓ t)
,

(20)H(x, t) =
2A exp(x ∓ t)

(1+ A exp(x ∓ t))2
.

(21)u(x, t) = ∓
2A exp(x ± t)

1+ A exp(x ± t)
,

(22)H(x, t) =
2A exp(x ± t)

(1+ A exp(x ± t))2
.

(23)u(x, t) = ±
4A2 exp(2x ± 4t)

1− A2 exp(2x ± 4t)
,

(24)H(x, t) = −
8A2 exp(2x ± 4t)

(

A2 exp(2x ± 4t)− 1
)2

.

(25)u(x, t) = ±

(

I
√
2∓

4A exp(x ∓ I
√
2 t)

A2 exp(2x ∓ 2I
√
2t)− 1

)

,

(26)
H(x, t) = −






1+

8A2 exp(2x ∓ 2I
√
2 t)

�

A2 exp(2x ∓ 2I
√
2t)− 1

�2






.
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Remark  The bottom depth H(x,t) must be a non-negative and real physical quantity. 
Solutions (17)–(22) of the variant Boussinesq equations are significant both mathemati-
cally and physically for their positive sign for H(x, t). Besides solutions (15) and (23) are 
valid mathematically and physically for their positive and negative signs for u(x, t) but 
their corresponding solutions (16) and (24) are valid only mathematically. Solutions (25) 
and (26) are complex solutions, therefore although they are logically true but they have 
no physical significance (Figs. 1, 2).

We can obtain some traveling wave solutions since A is an arbitrary constant of inte-
gration, for example.

If we put A = 1 into Eqs. (19) and (20) and considering u(x, t) > 0 as well as a wave 
moving to the right, i.e., in the positive direction of x-axis, we obtain

Fig. 1  Kink profile of variant Boussinesq equations for A = 1 [only shows the shape of the graph described 
by Eq. (27)]. a The 3D profile, and b the 2D profile for t = 4

Fig. 2  Bell-shaped bottom depth profile of variant Boussinesq equations for A = 1 [only shows the shape of 
the graph described by Eq. (28)]. a The 3D profile, and b the 2D profile for t = 5
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Example 2: The (2 + 1)‑dimensional breaking soliton equations:  Now, we will investi-
gate explicit exact traveling wave solutions of the following (2 + 1)-dimensional breaking 
soliton equations (Zayed et al. 2013b):

where α is a nonzero constant. Equations (29) and (30) describe the (2 + 1)-dimensional 
interaction of a Riemann wave propagation along the y-axis with a long wave propagated 
along the x-axis.

Applying the traveling wave variable ξ = x + y− ω t and proceeding as before, we 
obtain

Integrating Eq. (32), we obtain

choosing constant of integration as zero under the boundary conditions elucidated in 
“Algorithm of the generalized Kudryashov method” section (Step 1) and similar bound-
ary conditions for v(ξ).

Substituting Eq. (33) into Eq. (31) and integrating, we get

choosing constant of integration to zero under the boundary conditions mentioned in 
“Algorithm of the generalized Kudryashov method” section (Step 1).

Considering the homogeneous balance between u′′ and u2 in Eq.  (34), we obtain 
N = M + 2.

Setting M = 1, we obtain N = 3. Therefore, Eq. (3) takes the form

Substituting Eq.  (35) along with Eq.  (4) into Eq.  (34), we get a polynomial of Qk, 
(k = 0, 1, 2, . . .). Equating the coefficients of the polynomial of the same powers of Q to 
zero, we obtain a system of algebraic equations. This system of equations yields the val-
ues for ω, a0, a1, a2, b0 and b1.

(27)u(x, t) = 1− tanh

(

1

2
(x − t)

)

,

(28)H(x, t) =
1

2
sec h2

(

1

2
(x − t)

)

.

(29)ut + α uxxy + 4α(uv)x = 0,

(30)uy = vx,

(31)−ω u′ + α u′′′ + 4α(uv)′ = 0,

(32)u′ = v′.

(33)v = u,

(34)α u′′ − ω u+ 4α u2 = 0,

(35)u(ξ) =
a0 + a1Q + a2Q

2 + a3Q
3

b0 + b1Q
.
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Set 1 corresponds to the following solutions for the breaking soliton equations:

If we set A = 1, then Eq. (36) transforms to

Again, if we set A = −1, then Eq. (36) becomes

Set 2 corresponds to the following solutions for the breaking soliton equations:

If we set A = 1, then Eq. (39) becomes

Again, if we set A = −1, then Eq. (39) becomes (Fig. 3)

Comparisons

1.	 Khan and Akbar (2013) studied the variant Boussinesq equations by means of the 
modified simple equation method and found only four solutions (see “Appendix 1”). 
On the other hand, by using the generalized Kudryashov method we have found 
twelve solutions. Moreover, if we put A =  1 into our solutions Eqs.  (19) and (20), 
then these solutions coincide with the solutions (42) and (44) obtained by Khan and 
Akbar (2013) for the value of ω = −1 and ω = 1 (see “Appendix 1”). Similarly, if we 
put A = −1, then our solutions Eqs. (19) and (20) coincide with the solutions (43) 
and (45) for the values of ω = −1 and ω = 1 obtained by Khan and Akbar (2013).

Set 1 : ω = −α, a0 = −
1

4
b0, a1 =

3

2
b0 −

1

4
b1, a2 =

3

2
(b1 − b0), a3 = −

3

2
b1

Set 2 : ω = α, a0 = 0, a2 =
3

2
b1 − a1, a3 = −

3

2
b1, b0 =

2

3
a1

(36)u
(

x, y, t
)

= v
(

x, y, t
)

=
4A exp

(

x + y+ α t
)

− A2 exp
(

2x + 2y+ 2α t
)

− 1

4
(

1+ A exp
(

x + y+ α t
))2

.

(37)u
(

x, y, t
)

= v
(

x, y, t
)

=
1

8

(

3 sec h2
(

1

2

(

x + y+ α t
)

)

− 2

)

.

(38)u
(

x, y, t
)

= v
(

x, y, t
)

= −
1

8

(

3 csc h2
(

1

2

(

x + y+ α t
)

)

+ 2

)

.

(39)u
(

x, y, t
)

= v
(

x, y, t
)

=
3A exp

(

x + y− α t
)

2
(

1+ A exp
(

x + y− α t
))2

.

(40)u
(

x, y, t
)

= v
(

x, y, t
)

=
3

8
sec h2

(

1

2

(

x + y− α t
)

)

.

(41)u
(

x, y, t
)

= v
(

x, y, t
)

= −
3

8
csc h2

(

1

2

(

x + y− α t
)

)

.
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The remaining solutions of Khan and Akbar (2013) given in “Appendix 1” are obtained 
changing ξ by −ξ in our Eq. (19). Note that all the solutions obtained here are also valid 
when one replaces the traveling wave variable ξ by −ξ.

2.	 Zayed et al. (2013b) investigated exact traveling wave solutions to the (2 + 1)-dimen-
sional breaking soliton equation by means of the functional variable method and 
found only one solution (see “Appendix 2”). On the other hand, by using the general-
ized Kudryashov method we found four solutions from which one of our solutions 
coincides with the solution of Zayed et al. If we set c = α into the solution (46) (see 
“Appendix 2”) obtained by Zayed et al. (2013b), then our solution (41) coincides with 
that solution.

From the above discussion, we conclude that the generalized Kudryashov method is a 
more reliable technique, in principle, than the modified simple equation method and the 
functional variable method.

Conclusions
In this article, we have successfully presented a mathematical tool named the general-
ized Kudryashov method for finding exact traveling wave solutions to the variant Bouss-
inesq equations, and the (2 + 1)-dimensional breaking soliton equations. The obtained 
results will serve as a very important milestone in the study of plasma physics and water 
waves phenomena. We also have demonstrated that the generalized Kudryashov method 
is an effective tool for obtaining exact analytical solutions for large classes of system of 
nonlinear evolution equations.
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Appendix 1
Khan and Akbar (2013) found the following exact traveling wave solutions of the variant 
Boussinesq equations by using the modified simple equation method:

Appendix 2
Zayed et  al. (2013b) found the following exact traveling wave solution to the 
(2 + 1)-dimensional Breaking Soliton Equation by means of functional variable method:
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