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Background
Systems of differential–algebraic equations (DAEs) are often used to model many 
important problems in real applications. These equations arise, for instance, in electri-
cal networks, optimal control, mechanical systems, incompressible fluids dynamics and 
chemical process simulations. DAEs are characterized by the so called index, which has 
several definitions (Günther and Wagner 2001; Kunkel and Mehrmann 1996; Martinson 
and Barton 2000). The most used index is the differentiation index, which is the mini-
mum number of times that all or a part of the DAE must be differentiated with respect to 
time, in order to obtain an ordinary differential equation (Martinson and Barton 2000). 
In real applications, higher-index DAEs (differentiation index greater than one) arise 
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naturally in many important application problems like constrained multibody systems 
(Benhammouda and Vazquez-Leal 2015; Simeon 1996; Simeon et al. 1994), vehicle sys-
tem dynamics (Simeon et al. 1991), space shuttle simulation (Brenan 1983) and incom-
pressible fluids dynamics. Unfortunately, higher-index DAEs are known to be difficult 
to solve. Therefore, they are usually transformed to ordinary differential systems (index-
zero) or index-one DAEs before solving them. This transformation, called index-reduc-
tion, can be computationally very expensive and may also change the properties of the 
solution. Therefore, new techniques are required to solve higher-index DAEs efficiently.

The Adomian decomposition method (ADM) and its modifications (Adomian and 
Rach 1985; Adomian 1988; Almazmumy et al. 2012; Fatoorehchi et al. 2015; Hendi et al. 
2012; Pue-on and Viryapong 2012; Ramana and Raghu Prasad 2014; Wazwaz 2001) are 
known to be efficient methods in solving a large variety of linear and nonlinear prob-
lems in science and engineering. Among these problems, we mention algebraic equa-
tions (Adomian and Rach 1985), ordinary differential equations (Almazmumy et  al. 
2012; Fatoorehchi et al. 2015; Hendi et al. 2012; Pue-on and Viryapong 2012; Ramana 
and Raghu Prasad 2014; Wazwaz 2001), partial differential equations (Adomian 1984) 
and integral equations (Bakodah 2012).

However, for the application of the ADM to DAEs, one finds only four pieces of work 
in the literature (Duan and Sun 2014; Çelika et  al. 2006; Hosseini 2006a, b). In Duan 
and Sun (2014), an index-one DAE is transformed to a second order ordinary differential 
equation before applying the ADM to it. In Çelika et al. (2006), the ADM is applied to 
simple semi-explicit index-one DAEs, where the DAE is first transformed to a system of 
ordinary differential equations before applying the ADM. In Hosseini (2006a), the ADM 
is applied to linear higher-index Hessenberg DAEs after transforming them to index-
one DAEs. In Hosseini (2006b), index-one and index-two DAEs with linear constraints 
are solved where these DAEs are pre-processed by a transformation that relies much 
on the special forms they have. Therefore, in all these previous works, the ADM is not 
applied directly to the DAEs but rather to the transformed equations. The drawback of 
such transformations is that they can involve complex algorithms, can be computation-
ally expensive and may lead to non-physical solutions.

In this work, we present a new procedure for solving a class of nonlinear higher-index 
Hessenberg DAEs based on the ADM. The ADM is first applied directly to the DAE 
where the nonlinear terms are expanded using the Adomian polynomials (Duan 2010a, 
b, 2011, Rach 2008, 1984; Wazwaz 2000). Based on the index condition, a nonsingular 
algebraic recursion system is derived for the expansion components of the solution. 
Also, it is important to note that unlike previous works (Duan and Sun 2014; Çelika et al. 
2006; Hosseini 2006a, b), our procedure does not make transformations to the DAEs 
before applying the ADM to them. To demonstrate the effectiveness of the proposed 
technique, we solve a nonlinear index-three Hessenberg DAEs system with nonlinear 
algebraic constraints. Further, our technique is based on a simple algorithm that can be 
programmed in Maple or Mathematica to simulate real application problems.

This paper is organized as follows: in “Review of the Adomian decomposition method” 
section, we review the ADM for solving ordinary differential equations. Next, in “The 
proposed method” section, we present our method for the solution of nonlinear higher-
index Hessenberg DAEs systems. Then in “Application to a nonlinear index-3 DAEs 
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system” section, we apply the developed technique to solve a nonlinear index-three Hes-
senberg DAEs system with nonlinear algebraic constraints. Finally, a discussion and a 
conclusion are given in “Discussion” and “Conclusion” sections, respectively.

Review of the Adomian decomposition method
In this section, we give a brief review for the Adomian decomposition method (ADM) 
(Adomian and Rach 1985; Almazmumy et al. 2012; Fatoorehchi et al. 2015; Hendi et al. 
2012; Pue-on and Viryapong 2012; Ramana and Raghu Prasad 2014; Wazwaz 2001) to 
solve ordinary differential equations. For this purpose, let us consider the following non-
linear differential equation

where L is an easily invertible operator (usually taken as the highest-order derivative), 
R is an operator grouping the remaining lower-order derivatives, N (u) is the nonlinear 
term and f is a given analytical function.

Solving Eq. (1) for Lu then applying the inverse operator L−1 to both sides, we obtain

If Lu = u̇ = du/dt and the initial condition u(t0) = c0 is given, then L−1 represents the 
integral from t0 to t and L−1Lu = u− c0. If Lu = ü = u(2) = d2u/dt2 and the initial con-
ditions u(t0) = c0 and u̇(t0) = c1 are given, then L−1 is the double fold integral from t0 to 
t and L−1Lu = u− c0 − c1(t − t0). In this case from (2), we have

where g = c0 + c1(t − t0).

To apply the ADM to Eq. (3), we first assume that the solution u of (1) to have the infi-
nite series form

where the unknown solution components un, n = 0, 1, 2, . . . are to be determined later by 
the method.

Second, the nonlinear term N(u) is expanded in an infinite series in terms of the Ado-
mian polynomials Nn (Duan 2010a, b, 2011; Rach 2008, 1984; Wazwaz 2000) as

Substituting (4) and (5) into (3) and choosing u0 as

we obtain

(1)Lu+ Ru+ N (u) = f ,

(2)L−1Lu = L−1f − L−1Ru− L−1N (u).

(3)u = g + L−1f − L−1Ru− L−1N (u),

(4)u =

∞
∑

n=0

un,

(5)N (u) =

∞
∑

n=0

Nn(u0, . . . ,un).

(6)u0 = g + L−1f ,

(7)

∞
∑

n=0

un = u0 − L−1R

∞
∑

n=0

un − L−1

∞
∑

n=0

Nn.
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Comparing the general terms on the left hand side and the right hand side of (7), we 
derive the following recursion scheme for the ADM

Since u0 is known from (6), recursion (8) can be used to generate as many solution com-
ponents un as one wants. Further, if series (4) converges then it gives the exact solution 
of (1) and an approximation of order K to solution can be obtained from

To compute the Adomian polynomials Nn, n = 0, 1, . . . associated with the nonlinearity 
N (u), one can use the following definition for all forms of nonlinearity

Using this formula, we obtain the following first few Adomian polynomials

where the dash (′) represents the differentiation with respect to u0.
In a similar manner, one can easily generate the remaining polynomials from ( 10) and 

expand (11). In the literature, there are several algorithms for computing the Adomian 
polynomials without the need for formula (10), but a more convenient algorithm for the 
m-variable case is recently proposed in Duan (2011)

The proposed method
In this section, we present our method for solving a class of nonlinear higher-index Hes-
senberg differential–algebraic equations (DAEs). This technique is based on the Ado-
mian decomposition method (ADM). To solve this class of DAEs, we first apply the 
ADM directly to it and expand the nonlinear terms using the Adomian polynomials. 
Then, an algebraic recursion system for the solution expansion components is derived. 
Taking account of the index of the DAE, this system is shown to be uniquely solvable for 

(8)un = −L−1Run−1 − L−1Nn−1, n ≥ 1.

(9)
u(t) =

K−1
∑

n=0

un.

(10)Nn(u0, . . . ,un) =
1

n!

dn

d�n

[

N

(

∞
∑

i=0

�
iui

)]

�=0

, n ≥ 0.

(11)

N0(u0) = N (u0),

N1(u0,u1) = u1N
′(u0),

N2(u0,u1,u2) = u2N
′(u0)+

u2
1

2!
N ′′(u0),

N3(u0,u1,u2,u3) = u3N
′(u0)+ u1u2N

′′(u0)+
u3
1

3!
N ′′′(u0),

N4(u0,u1,u2,u3,u4) = u4N
′(u0)+

(

u2
2

2!
+ u1u3

)

N ′′(u0)+
u2
1
u2

2!
N ′′′(u0)

+
u4
1

4!
N (4)(u0),

(12)Nn =
1

n

m
∑

k=1

n−1
∑

i=0

(i + 1)vk ,i+1

∂Nn−1−i

∂vk ,0
, n ≥ 1.
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the solution expansion components. Also, it is important to note that unlike previous 
works (Çelika et al. 2006; Duan and Sun 2014, 2006a, b), our technique does not make 
transformations to DAEs before applying the ADM to them.

The class of nonlinear higher-index Hessenberg DAEs we consider here is

where u(m)(t) stands for dmu/dtm, m ≥ 1 and u ∈ R
nu, v ∈ R

nv, M : Rnu × R
nv −→ R

nu , 
N : Rnu −→ R

nv.
This DAE is supplied with some consistent initial conditions

where cn, n = 0, . . . ,m− 1 are given constants. Note here that no initial conditions are 
prescribed to the variable v. We also assume that DAE initial-value problem (13)–(14) 
has a unique analytical solution.

The vectors u and v are called the differential and the algebraic variables respectively. 
System (13) is index (m+ 1) if the square matrix

is nonsingular for t ≥ t0.

Systems (13) arise frequently in many important applications like Navier–Stokes equa-
tions in incompressible fluids dynamics or Euler–Lagrange equations in constrained 
multibody systems. In what follows, we assume that system (13) is index (m+ 1) that is 
(m+ 1)-index condition (15) holds.

To solve DAE initial-value problem (13)–(14) by the ADM, we apply the operator L−1 
(which is in the present case the m-fold integral from t0 to t) to both sides of the first 
equation of (13) to get

First, we assume the components u and v of the solution of (13) to have the infinite series 
form

where the unknowns un and vn, n = 0, 1, 2, . . . will be determined later by our method.
Second, we expand the nonlinear terms M(u, v) and N(u) in infinite series using the 

Adomian polynomials Mn and Nn as

where Mn := Mn(u0, v0, . . . ,un, vn) and Nn := Nn(u0, . . . ,un).

(13)

{

u(m)(t) = M(u(t), v(t)),
0 = N (u(t)), t ≥ t0,

(14)u(n)(t0) = cn,

(15)
∂N

∂u
·
∂M

∂v
∈ R

nv × R
nv

(16)u =

m−1
∑

n=0

(cn/n!)(t − t0)
n + L−1M(u, v).

(17)
u =

∞
∑

n=0

un, v =

∞
∑

n=0

vn,

(18)M(u, v) =

∞
∑

n=0

Mn, N (u) =

∞
∑

n=0

Nn,
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Substituting expansions (17) and (18) into equation (16), we get

Choosing the first m terms un as

then comparing the general term on the left hand side with that on the right hand side of 
(19), we derive the following recursion system for the unknowns un and vn−m

Using (12), the Adomian polynomials Mn and Nn, n = 0, 1, 2, . . . can be written as

and

One important property of the Adomian polynomials Mn and Nn we exploit here is their 
linearity with respect to vn and un, n ≥ 1 respectively.

For the value n = m, system (21) can be written as

The unknowns in this algebraic system are um and v0. System (24) is linear if the given 
function M(u, v) is linear with respect to v and this system is nonlinear with respect to 
v0 if M(u, v) is nonlinear with respect to v. Since index condition (15) holds, the Jacobian 
matrix

of system (24) is nonsingular. Therefore, system (24) is uniquely solvable for the 
unknowns um and v0.

To solve system (24) for um and v0, we multiply its first equation by − ∂N0

∂u0
 and substitute 

−

(

∂N0

∂u0

)

um by its expression from the second equation of (24). Then, we obtain the fol-
lowing equation for the unknown v0

(19)

{

∑∞
n=0 un =

∑

m−1
n=0 (cn/n!)(t − t0)

n +
∑∞

n=0 L
−1

Mn,

0 =
∑∞

n=0Nn.

(20)un = (cn/n!)(t − t0)
n
, n = 0, . . . ,m− 1,

(21)

{

un = L−1Mn−m,

0 = Nn, n ≥ m.

(22)

Mn =











M(u0, v0), n = 0,

1

n

�

n−1
i=1 i

�

∂Mn−i

∂u0

�

ui + i

�

∂Mn−i

∂v0

�

vi +

�

∂M0

∂u0

�

un +

�

∂M0

∂v0

�

vn, n ≥ 1,

(23)Nn =











N (u0), n = 0,

1

n

�

n−1
i=1 i

�

∂Nn−i

∂u0

�

ui +

�

∂N0

∂u0

�

un, n ≥ 1.

(24)











um − L
−1

M(u0, v0) = 0,

−

�

∂N0

∂u0

�

um =
1

m

�

m−1
i=1 i

�

∂Nm−i

∂u0

�

ui.

(25)

(

I −
∂M0

∂v0

−
∂N0

∂u0
0

)
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Since index condition (15) holds, Eq. (26) can be solved uniquely for v0. Substituting this 
computed value of v0 into the first equation of (24), we can determine um.

Now for the values n ≥ m+ 1, we use the first equation of (21) and the second equa-
tion of (22) to get

where

From the second equations of (21) and (23), we deduce that

where

Set of Eqs. (27) and (29) is a linear algebraic system for the unknowns un and wn−m. Since 
index condition (15) holds, the coefficient matrix (25) of this system is nonsingular. 
Therefore, system (27) and (29) is uniquely solvable for un and wn−m, for n ≥ m+ 1.

To solve set of Eqs.  (27) and (29), we multiply Eq.  (27) by − ∂N0

∂u0
 and substitute 

−

(

∂N0

∂u0

)

un by its expression from (29), to obtain the following algebraic system for the 
unknown wn−m

Since index condition (15) holds, Eq. (31) can be solved uniquely for wn−m, and we have

Then, substituting the expression of wn−m into (27), we determine the unknown un

(26)

(

∂N0

∂u0

)

L−1M(u0, v0) = −
1

m

m−1
∑

i=1

i

(

∂Nm−i

∂u0

)

ui.

(27)un −

(

∂M0

∂v0

)

wn−m = P,

(28)

wn−m = L−1vn−m,

P = L−1Q,

Q =
1

n−m

n−m−1
∑

i=1

i

(

∂Mn−m−i

∂u0

)

ui + i

(

∂Mn−m−i

∂v0

)

vi +

(

∂M0

∂u0

)

un−m.

(29)−

(

∂N0

∂u0

)

un = R, n ≥ m+ 1,

(30)R =
1

n

n−1
∑

i=1

i

(

∂Nn−i

∂u0

)

ui.

(31)

(

∂N0

∂u0
·
∂M0

∂v0

)

wn−m = −R+

(

∂N0

∂u0

)

P.

(32)wn−m =

(

∂N0

∂u0
·
∂M0

∂v0

)−1[

−R+

(

∂N0

∂u0

)

P

]

.

(33)un =

(

∂M0

∂v0

)(

∂N0

∂u0
·
∂M0

∂v0

)−1[

−R+

(

∂N0

∂u0

)

P

]

+ P.
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Now differentiating Eq. (32) m times with respect to t, we determine the unknown vn−m

Using (33) and (34) for n ≥ m with (20), we can determine all solution components 
un and vn. An approximate solution for DAE initial-value problem (13)–(14) can be 
obtained using (9) as

where K is the order of approximation of u(t).
It is worth noting that Eq. (21) is linear with respect to vn−m for all values of n ≥ m, 

except for the case n = m where (21) is nonlinear with respect to v0 if the given function 
M(u, v) is nonlinear with respect to v. This linearity property of Eq. (21) has a great posi-
tive impact on the simplicity of our method and its efficiency. Note here also that many 
important problems arising from applications like constrained mechanical systems and 
the semi-discrete form of Navier–Stokes equations lead to DAEs systems of the form of 
(13 ), where M(u, v) is linear with respect to v. For these problems, system ( 21) is linear 
for all values of n ≥ m.

Application to a nonlinear index‑3 DAEs system
In this section, we illustrate and demonstrate the effectiveness of our technique to solve 
nonlinear higher-index Hessenberg DAEs systems, which are known to be difficult to 
solve even numerically. Following the procedure developed in the previous section, we 
first apply the ADM directly to the DAEs system and expand the nonlinear terms using 
the Adomian polynomials. Then, taking account of the index of the DAE, we derive a 
nonsingular algebraic recursion system for the expansion components of the solution. 
Finally, by solving this algebraic system we obtain the solution of the DAE.

As a test problem, we consider the following nonlinear index-three Hessenberg DAEs 
system which describes the constrained motion of a particle to a circular track Benham-
mouda (2015)

DAEs system (36) is supplied with the following (consistent) initial conditions

Note that no initial condition v(0) is prescribed to the variable v(t) because v(0) is pre-
determined by the DAE and initial conditions (37). System (36) is index-three since 
three time differentiations of the algebraic equation (third equation) of (36) will lead to 
an ordinary differential equation for v(t). As a consequence, this DAEs system is difficult 

(34)vn−m =

(

∂N0

∂u0
·
∂M0

∂v0

)−1[

−R(m) +

(

∂N0

∂u0

)

P(m)

]

.

(35)u(t) =

K−1
∑

n=0

un, v(t) =

K−m−1
∑

n=0

vn,

(36)

ü1 = 2u2 − 2u32 − u1v,

ü2 = 2u1 − 2u31 − u2v,

0 = u21 + u22 − 1, t ≥ 0.

(37)u1(0) = 1, u̇1(0) = 0, u2(0) = 0, u̇2(0) = 1.
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to solve numerically. Note also that the third equation of (36) is nonlinear which make 
this DAEs system harder to solve.

To solve DAEs initial-value problem (36)–(37) by the procedure developed in the pre-
vious section, we let Lu = ü and have L−1u =

∫ t
0

∫ t
0
udtdt.

We assume that the solution components u1, u2, and v of (36) to have the form

where the unknowns u1,n, u2,n and vn, n = 0, 1, 2, . . . will be determined later by our 
technique.

Applying L−1 to both sides of the first two equations of (36), we obtain

Substituting expressions (38) into (39), we get

where Ak ,n, Bk ,n, k = 1, 2 and Cn, n = 0, 1, 2, . . . are the Adomian polynomials associ-
ated to the nonlinear terms u3k , ukv and u2

1
+ u2

2
− 1, respectively.

Choosing the first two terms in the series expansions of u1 and u2 as

Then comparing the general terms on the left and right hand sides of (40), we derive the 
following recursion system

Since Bk ,n−2 =
∑n−2

i=0 uk ,n−2−ivi, k = 1, 2 and Cn =
∑n

i=0

(

u1,n−iu1,i + u2,n−iu2,i
)

, for 
n ≥ 2, system (40) gives

(38)u1 =

∞
∑

n=0

u1,n, u2 =

∞
∑

n=0

u2,n, v =

∞
∑

n=0

vn,

(39)

u1 = 1+ L−1
(

2u2 − 2u32 − u1v
)

,

u2 = t + L−1
(

2u1 − 2u31 − u2v
)

,

0 = u21 + u22 − 1, t ≥ 0.

(40)

∞
∑

n=0

u1,n = 1+ L−1

∞
∑

n=0

(

2u2,n − 2A2,n − B1,n

)

,

∞
∑

n=0

u2,n = t + L−1

∞
∑

n=0

(

2u1,n − 2A1,n − B2,n

)

,

0 =

∞
∑

n=0

Cn,

(41)u1,0 = 1, u1,1 = 0, u2,0 = 0, u2,1 = t.

(42)

u1,n = L−1
(

2u2,n−2 − 2A2,n−2 − B1,n−2

)

,

u2,n = L−1
(

2u1,n−2 − 2A1,n−2 − B2,n−2

)

,

0 = Cn, n ≥ 2.
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System (43) can be written in the form

System (44) is a (3× 3) linear algebraic system for the unknowns u1,n, u2,n and L−1vn−2, 
with the coefficient matrix

System (44) is uniquely solvable for all consistent initial conditions u1,0 and u2,0, since the 
determinant of this matrix is −

(

u2
1,0

+ u2
2,0

)

= −1.

Now, we solve system (44) recursively to obtain the solution of DAEs system (36)–(37).
For n = 2, we have

Since A1,0 = u3
1,0

= 1 and A2,0 = u3
2,0

= 0, system (46) reduces to

Equations (47) yield

(43)

u1,n = L−1

(

2u2,n−2 − 2A2,n−2 −

n−2
∑

i=0

u1,n−2−ivi

)

,

u2,n = L−1

(

2u1,n−2 − 2A1,n−2 −

n−2
∑

i=0

u2,n−2−ivi

)

,

0 =

n
∑

i=0

(

u1,n−iu1,i + u2,n−iu2,i
)

, n ≥ 2.

(44)

u1,n + u1,0L
−1vn−2 = L−1

(

2u2,n−2 − 2A2,n−2 −

n−3
∑

i=0

u1,n−2−ivi

)

,

u2,n + u2,0L
−1vn−2 = L−1

(

2u1,n−2 − 2A1,n−2 −

n−3
∑

i=0

u2,n−2−ivi

)

,

u1,0u1,n + u2,0u2,n = −(1/2)

n−1
∑

i=1

(

u1,n−iu1,i + u2,n−iu2,i
)

, n ≥ 2.

(45)





1 0 u1,0
0 1 u2,0

u1,0 u2,0 0



.

(46)

u1,2 + L−1v0 = L−1
(

2u2,0 − 2A2,0

)

,

u2,2 = L−1
(

2u1,0 − 2A1,0

)

,

u1,2 = −(1/2)(u21,1 + u22,1).

(47)

u1,2 + L−1v0 = 0,

u2,2 = 0,

u1,2 = −
1

2
t2.

(48)u1,2 = −
1

2
t2, u2,2 = 0, v0 = 1.
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For n = 3, we have

Since A1,1 = 3u2
1,0
u1,1 = 0 and A2,1 = 3u2

2,0
u2,1 = 0, system (49) reduces to

Equations (50) yield

For n = 4, we have

Since A1,2 = 3u2
1,0
u1,2 + 3u1,0u

2
1,1

= −(3/2)t2 and A2,2 = 3u2
2,0
u2,2 + 3u2,0u

2
2,1

= 0, sys-
tem (52) reduces to

Equations (53) yield

For n = 5, we have

Since A1,3 = 3u2
1,0
u1,3 + 6u1,0u1,1u1,2 + u3

1,1
= 0 and A2,3 = 3u2

2,0
u2,3 + 6u2,0u2,1u2,2

+u
3
2,1

= t
3, system (55) reduces to

(49)

u1,3 + L−1v1 = L−1
(

2u2,1 − 2A2,1 − u1,1v0
)

,

u2,3 = L−1
(

2u1,1 − 2A1,1 − u2,1v0
)

,

u1,3 = −(u1,2u1,1 + u2,1u2,2).

(50)

u1,3 + L−1v1 =
1

3
t3,

u2,3 = −
1

3!
t3,

u1,3 = 0.

(51)u1,3 = 0, u2,3 = −
1

3!
t3, v1 = 2t.

(52)

u1,4 + L−1v2 = L−1
(

2u2,2 − 2A2,2 −
(

u1,2v0 + u1,1v1
)

)

,

u2,4 = L−1
(

2u1,2 − 2A1,2 −
(

u2,2v0 + u2,1v1
)

)

,

u1,4 = −(1/2)(2u1,3u1,1 + 2u2,3u2,1 + u21,2 + u22,2).

(53)

u1,4 + L−1v2 =
1

4!
t4,

u2,4 = 0,

u1,4 =
1

4!
t4.

(54)u1,4 =
1

4!
t4, u2,4 = 0, v2 = 0.

(55)

u1,5 + L−1v3 = L−1
(

2u2,3 − 2A2,3 −
(

u1,3v0 + u1,2v1 + u1,1v2
))

,

u2,5 = L−1
(

2u1,3 − 2A1,3 −
(

u2,3v0 + u2,2v1 + u2,1v2
))

,

u1,5 = −(u1,4u1,1 + u2,4u2,1 + u1,3u1,2 + u2,3u2,2).
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Equations (56) yield

Continuing this process until n = 9 and using the previously calculated expansion 
components (48), (51), (54), (57) we obtain the following ADM solution expansion 
components

Using values (41) and (58), we construct the approximate solution

Expansions (59) are the first few terms of Taylor expansions, around t = 0, of

which is the exact solution of DAE initial-value problem (36)–(37).

Discussion
System of higher-index differential–algebraic equations (DAEs) still require new numer-
ical and analytical methods to solve them efficiently. Such problems are known to be 
difficult to solve. In this paper, we developed a novel technique that applies the Adomian 
decomposition method (ADM) directly to solve a class of nonlinear higher-index Hes-
senberg DAEs. Our technique has successfully handled this class of DAEs without the 
need for complex transformations like index-reductions. The proposed method trans-
forms these DAEs into easily solvable algebraic systems for the expansion components 
of the solution. To demonstrate the effectiveness of our technique, we solve one nonlin-
ear index-three Hessenberg DAEs system with nonlinear algebraic constraints is solved. 
It is important to note that nonlinear algebraic constraints make the DAE more difficult 
to solve. In particular some transformations like those in Hosseini (2006b) cannot not 

(56)

u1,5 + L−1v3 = −
1

15
t5,

u2,5 =
1

5!
t5,

u1,5 = 0.

(57)u1,5 = 0, u2,5 =
1

5!
t5, v3 = −

4

3
t3.

(58)

u1,2 = −
1

2
t2, u1,3 = 0, u1,4 =

1

4!
t4, u1,5 = 0

u1,6 = −
1

6!
t6, u1,7 = 0, u1,8 =

1

8!
t8, u1,9 = 0,

u2,2 = 0, u2,3 = −
1

3!
t3, u2,4 = 0, u2,5 =

1

5!
t5,

u2,6 = 0, u2,7 = −
1

7!
t7, u2,8 = 0, u2,9 =

1

9!
t9,

v0 = 1, v1 = 2t, v2 = 0, v3 = −
4

3
t3, v4 = 0,

v5 =
4

15
t5, v6 = 0, v7 = −

8

315
t7.

(59)u1(t) =

9
∑

n=0

u1,n, u2(t) =

9
∑

n=0

u2,n, v(t) =

7
∑

n=0

vn.

(60)u1(t) = cos t, u2(t) = sin t, v(t) = 1+ sin 2t,



Page 13 of 14Benhammouda ﻿SpringerPlus  (2016) 5:590 

be used. This example shows that the direct application of the ADM is a simple pow-
erful technique to obtain the exact or approximate solutions of nonlinear higher-index 
Hessenberg DAEs. In the case we want to solve a DAE with an unknown solution, one 
way to measure the error for the approximate solution is to use the mean square resid-
ual (MSR) as in Benhammouda and Vazquez-Leal (2015) since the convergence of the 
method is still not shown.

Conclusion
This work presents the analytical solution of a class of nonlinear higher-index Hessen-
berg DAEs using the Adomian decomposition method (ADM). A procedure for solving 
this class of DAEs is presented. For this class, the technique was tested on a nonlinear 
higher-index Hessenberg DAEs system with nonlinear algebraic constraints. The results 
obtained show that the method can be applied to nonlinear higher-index Hessenberg 
DAEs efficiently to obtain the exact or an approximate solution. On the one hand, it is 
important to note that these types of DAEs are difficult to solve and on the other, the 
direct application of the ADM was able to solve this class of nonlinear higher-index Hes-
senberg DAEs. Also, it is important to note that unlike previous works (Duan and Sun 
2014; Çelika et al. 2006; Hosseini 2006a, b), our procedure does not make transforma-
tions to DAEs before applying the ADM to them. Our technique is based on a straight-
forward procedure that can be programmed in Maple or Mathematica to simulate real 
application problems. Finally, further work is needed to show the convergence of the 
proposed method, apply it with its modifications (for example a multistage ADM) to 
solve nonlinear higher-index Hessenberg partial differential–algebraic equations and 
other nonlinear higher-index DAEs.
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