
Conflict management based on belief 
function entropy in sensor fusion
Kaijuan Yuan1, Fuyuan Xiao1, Liguo Fei1, Bingyi Kang1 and Yong Deng1,2,3*

Background
Wireless Sensor Networks(WSN) play an important role in intelligent navigation. It 
can not only detect and process vehicle’s running information, such as the internal run-
ning states and external surroundings, dynamics and current position, but also transmit 
information via wireless, which improves the safety and the comfort of vehicles (Jiménez 
et al. 2012). Compared with the single detection system, WSN adopt a group of sensors 
to detect data (Jiménez et al. 2014). In this way, it can overcome the limitation of single 
sensor and enhance the accuracy and reliability of detection systems. When in face of 
complex environments (García et al. 2013) and other influences (Jiménez et al. 2012), the 
detection system of WSN can identify the object more accurately.

On account that sensor outputs may contain uncertainty, how to represent this kind 
of uncertain information and combine multi sensors’ outputs have attracted more and 
more attention. As an imprecise reasoning theory, Dempster–Shafer evidence theory 
(D–S evidence theory) (Dempster 1967; Shafer 1976) can be used to address the issue 
(Fan and Zuo 2006). D–S evidence theory was first proposed by Dempster (1967) and 
then developed by Shafer (1976). It is widely applied to uncertainty modelling (Walley 
and Cooman 2001), decision making (Fu and Yang 2014; Zavadskas et al. 2015; Mardani 
et al. 2015; Deng et al. 2015b; Deng 2015b), information fusion (Liu et al. 2013; Wang 
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et al. 2015; Jiang et al. 2016) and uncertain information processing (Su et al. 2015; Yang 
and Han 2016). Dempster’s combination rule can allow for data fusion to combine the 
sensors’ reports of WSN. It takes into consideration of all sensors’ reports to make a 
more reasonable decision, which makes great effort to improve the accuracy and reliabil-
ity of the detection system (Jiang et al. 2016).

However, different sensors’ reports may conflict highly with others due to different 
sources. When faced with such conflicting information, it may arrive at a counter-intuitive 
conclusion by using Dempster’s combination rule. How to effectually handle conflict is inevi-
table in data fusion of WSN (Xu et al. 2014; Moosavian et al. 2015; Yu et al. 2015). To address 
the issue, a number of solutions are proposed. Smets came up with an conjunctive combina-
tion rule (Smets 1990), Dubois and Prade brought up a disjunctive combination rule (Dubois 
and Prade 1988; Smets 1993). Murphy proposed to modify the evidences before combination 
(Murphy 2000), that is averaging the belief function first and combining the evidences next. 
Deng et al. put forward with the weighted averaging combination method to improve the 
Dempster’s combination rule (Yong et al. 2004). Zhang et al. (2014) introduced the vector 
space to deal with the issue. These solutions are generally divided into two categories, the 
first kind is to modify the model and the second kind is to modify the method.

This paper introduces Deng entropy (Deng 2015a) and evidence distance (Jousselme 
et al. 2001) and proposes a new method. First, evidence distance is adopted to quantify 
conflict degree among different sensors. It can be used to decrease the effect of conflict-
ing sensors’ reports on the final decision. Besides, Deng entropy is applied to measure 
information volume. The more information a sensor report contains, the less possible it 
will conflict with others. Therefore, Deng entropy can be used to increase the effect of 
this kind of sensor report on the final decision. The new method takes into consideration 
of not only conflict degree but also information volume of sensors’ outputs. It can cope 
with conflict and make a reasonable decision effectually.

The paper is organized as follows. The preliminaries of D–S evidence theory and Deng 
entropy are briefly introduced in “Preliminaries” section. “The proposed method” section 
presents the new method. An example is illustrated in “Application” section to show the 
efficiency of the new method. Finally, this paper is concluded in “Conclusions” section.

Preliminaries
In this section, some preliminaries are briefly introduced below.

Dempster–Shafer evidence theory (Dempster 1967; Shafer 1976)

The Dempster–Shafer evidence theory (D–S evidence theory or belief function theory), 
is first proposed by Dempster (1967) and then developed by Shafer (1976). It is an impre-
cise reasoning theory which is widely used in the fields of uncertainty modeling (Al-Ani 
and Deriche 2002; Wang et  al. 2015), information fusion (Molina et  al. 2009; Zhang 
2014; Chin and Fu 2015) and uncertain information processing (Le et al. 2007; Liu et al. 
2014; Ma et al. 2016). Bayes method requires the prior information while the D–S evi-
dence theory can deal with the uncertain information under the situation of not know-
ing the prior probability (Su et al. 2016, 2015). When the prior probability is known, the 
evidence theory can definitely degenerate to the probability theory. And it is generalized 
by Deng to the open world (Deng 2015c). By using Dempster’s combination rule, all the 
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information derived from the WSN is taken into consideration and it helps to draw a 
more reasonable conclusion. Besides, it makes great effort to improve the accuracy of 
the detection system and make reasonable decisions (Yager 2004). With the require-
ment in optimization under uncertain environment (Du et al. 2015; Deng et al. 2015a), 
evidence theory is also widely used in optimization and decision making (Frikha and 
Moalla 2015; Han et al. 2016). Here are some basic concepts given below.

Let � be a set of n mutually exclusive and collectively exhaustive events about some 
problem domain, � is made up by all the possible answers to a question and is called 
the frame of discernment (Jones 2002; Yager 1987), also known as sample space, which 
is indicated by � = {θ1, θ2, . . . , θn}. The power set of � is indicated by 2�, each element 
of which is called a hypothesis. Based on the above two concepts, the definition of belief 
function can be given. A belief function is a mapping m from 2� to [0, 1] (Jiang et  al. 
2015), which is defined as following:

satisfying

where m is also called the belief function or the Basic Probability Assignment(BPA), 
m(A) is called the basic probability number of A (Dubois and Prade 1988; Jiang et  al. 
2015). When m(A) > 0, A is viewed as a focal element.

The upper bound function (Dempster 1967) of a hypothesis A indicating the total 
belief degree of A, is denoted by Bel:

The plausibility function Pl of hypothesis A indicates the belief level of not denying A, 
which is defined as:

The belief function Bel(A) and the plausibility function Pl(A) represent the upper limit 
function and the lower limit function of hypothesis A respectively (Dempster 1967), sat-
isfying Bel(A) ≤ Pl(A).

As for the same object, there may be different evidences due to different sources of 
sensors, Dempster proposed to combine multi evidences by combination rule. Demp-
ster’s combination rule, also called the orthogonal sum, is defined as following:

(1)m : 2� → [0, 1]

(2)

m(∅) = 0
∑

A⊆�

m(A) = 1

(3)

Bel : 2� → [0, 1]

Bel(A) =
∑

B⊆A

m(B) ∀A ⊆ �

(4)

Pl : 2� → [0, 1]

Pl(A) = 1− Bel
(

Ā
)

=
∑

B∩A�=∅

m(B) ∀A ⊆ �

(5)m(C) = mi(X)⊕mi(Y ) =

{

0 X ∩ Y = ∅
∑

X∩Y=C ,X ,Y⊆� mi(X)×mi(Y )

1−K X ∩ Y �= ∅
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K is the conflict factor which is adopted to measure the conflict degree. It is defined 
below:

Dempster’s combination rule can be used to combine two and more than two hypoth-
eses. And when faced with more than two hypotheses, it has the following form:

Though the conflict factor K is useful in general cases, it is not reasonable in some spe-
cial cases (Zadeh 1986). Liu (2006) introduced Pignistic transformations and proposed 
to combine the distance between betting commitments with conflict factor K to measure 
the conflict degree.

Dempster’s combination rule is effectually in sensor data fusion in common cases. 
However, it may come to a counter-intuitive conclusion in some special cases. Zadeh 
(1986) put forward such an example that is given below.

Example 1  Assume there are three possible objects including F1, F2, F3. The 
object hypotheses set is � = {F1, F2, F3}. Assume there are two evidences, 1 and 
2, obtained by two sensors. The BPAs of objects supported by such evidences are 
m1({F1}) = 0.9,m1({F3}) = 0.1,m2({F2}) = 0.9,m2({F3}) = 0.1. These two evidences do 
not support any other subsets of 2�. The given data indicates that both two evidences 
have a low belief degree of 10 % supporting hypothesis {F3}. We apply Eq. (5) directly, the 
BPA of hypothesis {F3} based on two evidences is

The result is obviously wrong because both two evidences do not support the object F3 
very well.

To address the issue, Murphy (2000) proposed a different idea that averaging the belief 
function first and fusing the evidences next. Deng introduced the evidence distance and 
proposed to adopt the weighted averaging method to improve the Dempster combi-
nation rule (Yong et  al. 2004; Han et  al. 2007). Zhang introduced the vector space to 
measure the conflict degree by the distance of the space vectors (Zhang et al. 2014). This 
paper proposes a new method which introduces Deng entropy (Deng 2015a) to measure 
the information volume of the evidence. The new method considers both information 
volume and conflict degree, which is more reasonable in conflict management.

Evidence distance (Jousselme et al. 2001)

The evidence distance is first proposed by Jousselme et  al. (2001) and then applied to 
weighted averaging combination method by Yong et al. (2004). It can measure the con-
flict degree among evidences effectually. The concept of evidence distance is given below.

The distance between two evidence bodies m1(·) and m2(·) is indicated by 
dBOE(m1,m2) , which is defined as

(6)
K =

∑

X∩Y=∅,∀X ,Y⊆�

mi(X)×mi(Y )

(7)m = m1 ⊕m2 ⊕ · · · ⊕mn = (((m1 ⊕m2)⊕ · · ·)⊕mn)

m({F3}) =
0.1× 0.1

1− 0.9× 0.1− 0.1× 0.9− 0.9× 0.9
= 1.
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where −→m 1 and −→m 2 are the vector forms of the evidence bodies m1(·) and m2(·) respec-
tively (the size of each is 2�). D is a matrix of 2� × 2�, whose elements have the follow-
ing form:

As for multi evidences, the distances between every two evidences can be expressed in 
the form of distance matrix DM, which is given below:

The greater the distance of two evidences is, the less these two evidences support each 
other. If an evidence conflicts highly with others, it will have less effect on the final com-
bination result. Thus, the similarity measure Simij can be defined:

And the Similarity Measure Matrix (SMM) is expressed below:

The support degree of each evidence is defined as following:

And the credibility degree Crdi of evidence i is defined as following:

The credibility degree can represent how reliable an evidence is. The higher the cred-
ibility degree is, the more effect the evidence will have on the final combination result.

Deng entropy

Deng entropy is first presented by Deng (2015a). It is an efficient tool to measure 
uncertain information which is the generalization of Shannon entropy (Shannon 2001; 
Yager 1983; Fei et al. 2015). Deng entropy can be applied in evidence theory where the 
uncertain information is represented by BPA. When the uncertainty is represented by 

(8)dBOE(m1,m2) =

√

1

2

(−→m 1 −
−→m 2

)T
D
(−→m 1 −

−→m 2

)

(9)D(s1, s2) =
|s1 ∩ s2|

|s1 ∪ s2|
s1, s2 ∈ 2�

(10)DM =









0 d12 · · · d1m
d21 0 · · · d2m
...

...
...

...
dm1 dm2 · · · 0









(11)Sim(mi,mj) = 1− d(mi,mj)

(12)SMM =









1 S12 · · · S1m
S21 1 · · · S2m
...

...
...

...
Sm1 Sm2 · · · 1









(13)Sup(mi) =

m
∑

j=1,j �=i

Sim
(

mi,mj

)

(14)Crdi =
Sup(mi)

∑k
i=1 Sup(mi)

(i = 1, 2, · · · , k)
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probability distribution, the uncertain degree measured by Deng entropy is the same as 
that of Shannon entropy. The related concepts are given below.

Let Ai be a hypothesis of the belief function m, |Ai| is the cardinality of set Ai. Deng 
entropy Ed of set Ai is defined as following:

When the belief value is only assigned to single elements, Deng entropy degenerates to 
Shannon entropy, namely

The greater the cardinalities of hypotheses are, the greater the Deng entropy of evi-
dence is, the more information the evidence contains. If an evidence has a great Deng 
entropy, it will be better supported by other evidences, and it will play a more important 
part in the final combination result. Here are some numeric examples to illustrate the 
properties of Deng entropy (Deng 2015a).

Example 2  Assume there is a mass function m(a) = 1, the associated Shannon entropy 
H and Deng entropy Ed are calculated as following:

Example 3  Given a frame of discernment X = {a, b, c}, for a mass function 
m(a, b, c) = 1,

For the other mass function m(a) = m(b) = m(c) = m(a, b) = m(a, c) = m(b, c)

= m(a, b, c) = 1
7
, and the Deng entropy is calculated as following:

Example 2 shows that Deng entropy is the same as Shannon entropy when the uncer-
tain information is in the form of probability distribution. Example 3 illustrates that 
Deng entropy can measure the uncertainty effectually.

(15)Ed = −
∑

i

m(Ai) log
m(Ai)

2|Ai| − 1

(16)Ed = −
∑

i

m(Ai) log
m(Ai)

2|Ai| − 1
= −

∑

i

m(Ai) logm(Ai)

H = 1× log 1 = 0

Ed = −1× log
1

21 − 1
= 0

Ed = −1× log
1

23 − 1
= 2.8074

Ed = −
1

7
× log

1/7

21 − 1
−

1

7
× log

1/7

21 − 1
−

1

7
× log

1/7

21 − 1

−
1

7
× log

1/7

22 − 1
−

1

7
× log

1/7

22 − 1
−

1

7
× log

1/7

22 − 1
−

1

7
× log

1/7

23 − 1

= 3.8877
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The proposed method
In this section, a new method focusing on managing conflict and making sensor data 
fusion is proposed. The new method is on the basis of evidence distance and Deng 
entropy. The evidence distance is adopted to measure the conflict degree of sensors’ 
reports, and the support degree derived from the distance is used to represent the reli-
ability of reports. If a sensor report is well supported by other reports, it will have little 
conflict with others, and it will be assigned to a high weight to play a more important 
role in the final fusion result. On the contrary, if an evidence is poorly supported by oth-
ers, it will conflict highly with others, and it will be assigned to a small weight in order to 
have little influence in the final fusion result. The Deng entropy is applied to measure the 
information volume of reports (Shannon 2001). If a sensor report has a big information 
volume, it will be well supported by others, so that it will have a higher weight propor-
tion. Otherwise, if an evidence has a small information volume, it may be unreliable and 
conflict with others. In this case, a smaller weight proportion will be assigned to it. The 
procedures of the proposed method are described as four steps:

Step 1: Calculate the support degree of evidences
For the given data collected by sensors, using Eq. (8) to calculate the distance between 
every two evidences. According to Eqs. (11) and (12), the support degree Sup(i) of each 
evidence can be obtained.

Step 2: Calculate the information volume of evidences
According to Eq.  (15), the Deng entropy Ed(i) of each evidence can be calculated. In 
Example 3, the Deng entropy of the given belief function is 0. It means the belief func-
tion has little information and may not be supported by other evidences. But it is sup-
posed to have a little influence in the final data fusion result. To avoid that assigning zero 
weight to this kind of evidence, we proposed to use information volume Iv(i) to measure 
the uncertain information. It is defined as following: 

 In this way the evidence whose total BPA is assigned to single object can have a small 
weight to affect the fusion result, which is more reasonable in practical application.

Step 3: Normalize the weights of evidences
For each evidence, the weight Wi is defined as following: 

 Assume there are k evidences, the normalization process is given in Eq. (19). 

(17)Iv(i) = eEd = e
−
∑

i m(Ai) log
m(Ai)

2|Ai|−1

(18)Wi = Sup(i)× Iv(i)

(19)wi =
Wi

∑k
j=1Wj

(i = 1, 2, . . . , k)
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Step 4: Make data fusion based on belief function
 Use the weights obtained by Step 3 to modify the BPAs of the evidences. Combine the 
weighted evidences k − 1 times by Eq. (7) when there are k evidences. And then the final 
sensor data fusion result can be obtained.

The specific flowchart of the new method is shown in Fig. 1.

Application
In this section, a numerical example from reference Zhang et  al. (2014) is illustrated 
to demonstrate the effectiveness of the proposed method. Assume that there are three 
objects A, B, C in a target recognition system. The frame of discernment is denoted by 
� = {A,B,C}. In the WSN, there are five different kinds of sensors to observe objects 
which are CCD sensor (S1), sound sensor (S2), infrared sensor (S3), radar sensor (S4) and 
ESM sensor (S5). The evidences obtained from these five kinds of sensors are shown in 
Table 1.

As for the BPAs given above, it is obvious that the detection of S2 is abnormal. It may 
lead to a counter-intuitive result after fusion.

Table 2 figures out the fusion results when using different combination rules and dif-
ferent numbers of evidences. The calculation process about the last column of the pro-
posed method is given below.

First, adopt Eqs. (8)–(13) to calculate the support degree Sup(i) of each evidence.

Fig. 1  The flowchart of the new method

Table 1  BPAs for the example

{A} {B} {C} {A,C}

S1 : m1(·) 0.41 0.29 0.3 0

S2 : m2(·) 0 0.9 0.1 0

S3 : m3(·) 0.58 0.07 0 0.35

S4 : m4(·) 0.55 0.1 0 0.35

S5 : m5(·) 0.6 0.1 0 0.3
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Next, apply Eq. (17) to obtain the information volume Iv(i) of each evidence.

Then, obtain the weight of each evidence after normalization.

Sup(1) = 3.4551

Sup(2) = 2.0716

Sup(3) = 3.7689

Sup(4) = 3.8239

Sup(5) = 3.8056

IV(1) = 4.7893

IV(2) = 1.5984

IV(3) = 6.1056

IV(4) = 6.6287

IV(5) = 5.8764

w1 = 0.1827

w2 = 0.0366

w3 = 0.2540

w4 = 0.2798

w5 = 0.2469

Table 2  Fusion results with different combination rules

Combination rule Fusion results

{m1,m2} {m1,m2,m3} {m1,m2,m3,m4} {m1,m2,m3,m4,m5}

 Dempster m(A) = 0 m(A) = 0 m(A) = 0 m(A) = 0

m(B) = 0.8969 m(B) = 0.6575 m(B) = 0.3321 m(B) = 0.1422

m(C) = 0.1031 m(C) = 0.3425 m(C) = 0.6679 m(C) = 0.8578

Yager m(A) = 0 m(A) = 0.4112 m(A) = 0.6508 m(A) = 0.7732

m(B) = 0.2610 m(B) = 0.0679 m(B) = 0.0330 m(B) = 0.0167

m(C) = 0.0300 m(C) = 0.0105 m(C) = 0.0037 m(C) = 0.0011

m(AC) = 0 m(AC) = 0.2481 m(AC) = 0.1786 m(AC) = 0.0938

m(�) = 0.7090 m(�) = 0.2622 m(�) = 0.1339 m(�) = 0.1152

Murphy m(A) = 0.0964 m(A) = 0.4619 m(A) = 0.8362 m(A) = 0.9620

m(B) = 0.8119 m(B) = 0.4497 m(B) = 0.1147 m(B) = 0.0210

m(C) = 0.0917 m(C) = 0.0794 m(C) = 0.0410 m(C) = 0.0138

m(AC) = 0 m(AC) = 0.0090 m(AC) = 0.0081 m(AC) = 0.0032

Deng et al. m(A) = 0.0964 m(A) = 0.4674 m(A) = 0.9089 m(A) = 0.9820

m(B) = 0.8119 m(B) = 0.4054 m(B) = 0.0444 m(B) = 0.0039

m(C) = 0.0917 m(C) = 0.0888 m(C) = 0.0379 m(C) = 0.0107

m(AC) = 0 m(AC) = 0.0084 m(AC) = 0.0089 m(AC) = 0.0034

Zhang et al. m(A) = 0.0964 m(A) = 0.5681 m(A) = 0.9142 m(A) = 0.9820

m(B) = 0.8119 m(B) = 0.3319 m(B) = 0.0395 m(B) = 0.0034

m(C) = 0.0917 m(C) = 0.0929 m(C) = 0.0399 m(C) = 0.0115

m(AC) = 0 m(AC) = 0.0084 m(AC) = 0.0083 m(AC) = 0.0032

Proposed method m(A) = 0.2849 m(A) = 0.8274 m(A) = 0.9596 m(A) = 0.9886

m(B) = 0.5306 m(B) = 0.0609 m(B) = 0.0032 m(B) = 0.0002

m(C) = 0.1845 m(C) = 0.0986 m(C) = 0.0267 m(C) = 0.0072

m(AC) = 0 m(AC) = 0.0131 m(AC) = 0.0106 m(AC) = 0.0039
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Finally, modify the BPAs by weights and combine the weighted averaging evidence 4 
times. The final results are listed in Table 2.

Figure 2 compares different combination rules with different number of evidences by 
the BPA of object A. It’s clear that the proposed method has the highest belief degree of 
A whatever the number of evidences is.

Even though there are four of five evidences supporting the hypothesis {A}, Dempster’s 
combination rule comes to a wrong conclusion due to the conflicting evidence of S2. It’s 
obvious that Dempster’s combination rule can’t handle with conflict.

When there are only two evidences, Yager’s method assigns most belief degree to the 
universal set � which means it can not make a decision. Other methods except for the 
proposed method have high belief of object B on account of the influence of S2.

When it comes to three evidences, the first four methods can not make decisions. 
The reason is that the belief degree they assigned to hypothesis {A} is smaller than 0.5. 
Though both Zhang’s method and the proposed method can identify the object is A, the 
belief degree to object A assigned by the proposed method reaches up to 0.8274 while 
that of Zhang’s method is only 0.5681. It’s clear that the proposed method is not only 
efficient but also reliable even though there are only three evidences.

Under the situation of five evidences, the proposed method improves the accuracy of 
identification to 0.9886. Therefore the proposed method can deal with conflict and make 
decision effectually.

Evidence distance reflects the relationships of different evidences. Deng entropy rep-
resents the inner properties of evidences. The proposed method takes into account of 
not only evidences’ relationships but also the nature of evidences so that it is efficient in 
dealing with conflict.

Conclusions
In this paper, a new weighted averaging combination method on basis of evidence dis-
tance and Deng entropy is brought up to manage conflict in sensor data fusion. The 
proposed method has three advantages. First, it adopts Deng entropy to measure the 
information volume and applies evidence distance in measuring conflict degree. The 
new method takes into consideration of not only evidences’ relationships but also evi-
dences’ inner properties which is more reasonable. Besides, the proposed method pre-
serves the desirable properties of the weighted averaging method. What’s more, the new 
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method requires less information and is much more simple to make decision compared 
with other methods. Generally speaking, it is an efficient method to deal with conflict in 
sensor data fusion and helps a lot with proper identification in WSN.
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