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Background
In this paper, we shall assume that readers are familiar with the basic theorems and the 
standard notations of the Nevanlinna value distribution theory of meromorphic func-
tions such as m(r, f), N (r, f ),T (r, f ), . . ., (see Hayman 1964; Yang 1993; Yi and Yang 1995). 
For a meromorphic function f, S(r, f) denotes any quantity satisfying S(r, f ) = o(T (r, f )) 
for all r outside a possible exceptional set of finite logarithmic measure, S(f ) denotes the 
family of all meromorphic function a(z) such that T (r, a) = S(r, f ) = o(T (r, f )), where 
r → ∞ outside of a possible exceptional set of finite logarithmic measure. In addition, 
we denote by S1(r, f ) any quantity satisfying S1(r, f ) = o(T (r, f )) for all r on a set F of 
logarithmic density 1, the logarithmic density of a set F is defined by

Throughout this paper, the set F of logarithmic density can be not necessarily the same 
at each occurrence.

Complex differential equations have attracted many mathematicians, and there are 
many results about the existence or growth of solutions of differential equations (see He 
1981; Laine 1993, 1971; Liao 2015; Tu et al. 2013). In recent, with the development of 
Nevanlinna theory in complex difference equations (see Barnett et al. 2007; Chiang and 
Feng 2008; Gundersen et al. 2002; Halburd and Korhonen 2006a, b), there has been an 
increasing interest in studying difference equations, difference product and q-difference 
in the complex plane C, a number of papers (including Chen 2010; Gan 2015; Halburd 
and Korhonen 2007; Heittokangas et al. 2001; Laine and Yang 2007; Qi and Yang 2015; 

lim sup
r→∞

1

log r

∫

[1,r]∩F

1

t
dt.

Abstract 

By using the Nevanlinna theory of value distribution, we investigate the existence of 
solutions of some types of non-linear q-difference differential equations. In particular, 
we generalize the Rellich–Wittich-type theorem and Malmquist-type theorem about 
differential equations to the case of q-difference differential equations (system).
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Zheng and Chen 2010; Zhang and Korhonen 2010) have focused on the existence and 
growth of solutions of difference equation.

The following two results had been proved by F. Rellich and H. Wittich, respectively.

Theorem 1  (see He 1981, Rellich). Let the differential equation be the following form

If f(w) is transcendental meromorphic function of w, then Eq. (1) has no non-constant 
entire solution.

Wittich (1955) studied the more general differential equation than Eq. (1) and obtained 
the following result.

Theorem 2  (see Wittich 1955). Let

be differential polynomial, with coefficients a(i)(z) are polynomial of z. If the right-hand 
side of the differential equation

f(w) is the transcendental meromorphic function of w, then the Eq. (2) has no non-con-
stant entire solution.

In the 1980s, Yanagihara and Shimomura extended the above type theorem to the case 
of difference equations (see Yanagihara 1980, 1983; Shimomura 1981), and obtained the 
following two results

Theorem 3  (see Shimomura 1981). For any non-constant polynomial P(w), the differ-
ence equation

has a non-trivial entire solution.

Theorem 4  (see Yanagihara 1980). For any non-constant rational function R(w), the dif-
ference equation

has a non-trivial meromorphic solution in the complex plane.

Conclusions and our main results
In the present paper, we mainly study the above Rellich–Wittich-type theorem of q-dif-
ference differential equation (system).

Definition 5  We call the equation a q-difference differential equation (system) if a 
equation (system) contains the q-difference term f(qz) and differential term f ′(z) of one 
function f(z) at the same time.

We consider the system of q-difference differential equation of the form

(1)w′(z) = f (w),

�(z,w) =
∑

a(i)(z)w
i0(w′)i1 · · · (w(n))in

(2)�(z,w) = f (w),

w(z + 1) = P(w(z))

w(z + 1) = R(w(z))
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where aJ1(z), bJ2(z) are polynomials of z and q ∈ C\{0}, Pm[f ] is a polynomial of f of 
degree m,

and dm(z), . . . , d0(z) are polynomials of z, and obtain the following results.

Theorem 6  For system (3), if s ≥ 1, t ≥ 1 and f is a transcendental meromorphic func-
tion, then the system (3) has no non-constant transcendental entire solutions (w1,w2) with 
zero order.

Remark 7  Under the assumptions of Theorem 6, the system of q-difference differential 
equation

has no non-constant transcendental entire solutions (w1,w2) with zero order, where 
s1, s2 ≥ 1 and Psi [f ] and Qti [f ] are irreducible polynomials in f.

If s = t and w1 = w2, we can get the following theorem easily

Theorem 8  Let

if s ≥ 1 and f is a transcendental meromorphic function, then the system (4) has no non-
constant transcendental entire solution with zero order.

From Remark 7, we have

Remark 9  Let s ≥ 1 and f be a transcendental meromorphic function, then the equation

(3)





�1(z,w1) :=
�

J1

aJ1(z)

n1�

j=1

(w
(j)
1 (qjz))

ij = Ps[f (w2)],

�2(z,w2) :=
�

J2

bJ2(z)

n2�

j=1

(w
(j)
2 (qjz))

ij = Pt [f (w1)],

Pm[f ] = dm(z)f
m + dm−1(z)f

m−1 + · · · + d0(z),





�

J1

aJ1(z)

n1�

j=1

(w
(j)
1 (qjz))

ij =
Ps2 [f (w2)]

Qt2 [f (w2)]
,

�

J2

bJ2(z)

n2�

j=1

(w
(j)
2 (qjz))

ij =
Ps1 [f (w1)]

Qt1 [f (w1)]
,

(4)�(z,w) :=
∑

J

aJ (z)

n∏

j=1

(
w(j)(qjz)

ij
)
= Ps[f (w)],

∑

J

aJ (z)

n∏

j=1

(
w(j)(qjz)

ij
)
=

Ps[f (w)]

Qt [f (w)]
,
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has no non-constant transcendental entire solution with zero order, where Ps[f ] and 
Qt [f ] are irreducible polynomials in f.

As we know, it is very interest problem about the Malmquist theorem of differential 
equations, Laine (1993) gave the following results

Theorem 9  (see Laine 1993). Let

where R(z, w) is defined as

If Eq. (5) has transcendental meromorphic solution, then there will be l = 0 and k ≤ 2n.

Theorem 10  (see Laine 1993). Let

where R(z, w) is defined as in Theorem 9. If Eq. (6) has transcendental meromorphic solu-
tion, then there will be l = 0 and k ≤ min{�, �+ µ(1−�(∞))}, where

and

Recently, there were a number of papers focused on the Malmquist-type theorem of 
the complex difference equations. Ablowitz et al. (2000) proved some results on the clas-
sical Malmquist-type theorem of the complex difference equations by applying Nevan-
linna theory. Besides, Gao, Xu and Li also studied some systems of complex difference 
equation and obtained some more precise results related to Malmquist-type theorem 
(see Gao 2012a, b, c; Li and Gao 2015; Xu et al. 2013, 2015; Xu and Xuan 2015). In this 
paper, we mainly study the q-difference differential equation about the Maimquist-type 
theorem, and obtain the following theorem.

Theorem 11  Let

where R(z, w) is defined as

(5)(w′(z))n = R(z,w),

R(z,w) =

∑k
i=0 ai(z)∑l
j=0 bj(z)

.

(6)
∑

a(i)(z)w
i0(w′)i1 · · · (w(n))in = R(z,w),

△ = max

{
n∑

α=0

(1+ α)iα

}
, � = max

{
n∑

α=0

iα

}
,

µ = max

{
n∑

α=0

αiα

}
, �(∞) = 1− lim sup

r→∞

N (r,w)

T (r,w)
.

(7)(w′(qz))n = R(z,w),

R(z,w) =
P(z,w)

Q(z,w)
=

∑k
i=0 ai(z)w

i

∑l
j=0 bj(z)w

j
,
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P(z, w) and Q(z, w) are irreducible polynomials in w, coefficients ai(z), bj(z) are rational 
functions of z. If Eq. (7) exists transcendental meromorphic solutions with zero order, then 
we also think that l = 0 and k ≤ 2n.

Similar to the proof of Theorem 11, we can get the following corollary easily.

Corollary 12  Let

where R(z,  w) is defined as in Theorem  11. If Eq. (8) has transcendental meromorphic 
solution of zero order, then there will be l = 0 and k ≤ min{�, �+ µ(1−�(∞))}, where 
�, � and µ are stated as in Theorem 10.

Some Lemmas

Lemma 13  (Valiron-Mohon’ko, Laine 1993). Let f(z) be a meromorphic function. Then 
for all irreducible rational functions in f,

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f(z)) satisfies

where d = max{m, n} and �(r) = maxi,j{T (r, ai),T (r, bj)}.

Lemma 14  (Zhang and Korhonen 2010, Theorem 1 and Theorem 3) Let f(z) be a tran-
scendental meromorphic function of zero order and q be a nonzero complex constant. 
Then

and

on a set of logarithmic density 1.

Lemma 15  (see Barnett et al. 2007). Let f(z) be a nonconstant zero-order meromorphic 
function and q ∈ C\{0}. Then

on a set of logarithmic density 1 for all r outside a possible exceptional set of logarithmic 
density 0.

Lemma 16  (see Yi and Yang 1995, p. 37 or Yang 1993). Let f(z) be a nonconstant mero-
morphic function in the complex plane and l be a positive integer. Then

(8)
∑

a(i)(z)w
i0(w′)i1(q1z) · · · (w

(n)(qnz))
in = R(z,w),

R(z, f (z)) =

∑m
i=0 ai(z)f (z)

i

∑n
j=0 bj(z)f (z)

j
,

T (r,R(z, f (z))) = dT (r, f )+O(�(r)),

T (r, f (qz)) = (1+ o(1))T (r, f (z))

N (r, f (qz)) = (1+ o(1))N (r, f (z)),

m

(
r,
f (qz)

f (z)

)
= S(r, f ),
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Lemma 17  Let q ∈ C\{0} and f(z) be a nonconstant meromorphic function with zero 
order. Then for any positive finite integer k, we have

and

Proof  It follows from Lemma 15 that

Moreover, we have

This completes the proof of Lemma 17.� �

The Proof of Theorem 6
Suppose that wi(i = 1, 2) be non-constant entire functions solutions of system (3) with 
zero order. Suppose i = 1, let E1 = {z : |w1(z)| > 1} and E2 = {z : |w1(z)| ≤ 1}, then we 
have

where � = max{�i}, �i = i1 + · · · + in1. It follows from Lemma 15 and 17 that

And since w1(z) is a non-constant entire function, we have N (r,w1) = 0. Thus, we have 
N (r,�1(z,w1) = 0 and

Similarly, we have

where η = max{ηi}, ηi = i1 + · · · + in2.

N (r, f (l)) = N (r, f )+ lN (r, f ), T (r, f (l)) ≤ T (r, f )+ lN (r, f )+ S(r, f ).

m

(
r,
f (k)(qz)

f (z)

)
= S1(r, f ),

m
(
r, f (k)(qz)

)
≤ m(r, f )+ S1(r, f ).

m

(
r,
f (k)(qz)

f (z)

)
≤ m

(
r,
f (k)(qz)

f (qz)

)
+m

(
r,
f (qz)

f (z)

)
= S1(r, f ).

m
(
r, f (k)(qz)

)
= m

(
r,
f (k)(qz)

f (z)
f (z)

)
≤ m(r, f )+ S1(r, f ).

|�1(z,w1)| =

������

�

J1

aJ1(z)(w1(z))
�i

�
w′
1(q1z)

w1(z)

�i1

· · ·

�
w′
1(qn1z)

w1(z)

�in1

������

≤





|w1(z)|
�
�

J1
|aJ1(z)|

���w
′
1(q1z)

w1(z)

���
i1
· · ·

���w
′
1(qn1 z)

w1(z)

���
in1

, if z ∈ E1,

�
J1
|aJ1(z)|

���w
′
1(q1z)

w1(z)

���
i1
· · ·

���w
′
1(qn1 z)

w1(z)

���
in1

, if z ∈ E2,

m(r,�1(z,w1)) =
1

2π

(∫

E1

+

∫

E2

)
log+ |�1(z,w1)|dθ ≤ �m(r,w1)+ S1(r,w1).

(9)T (r,�1) = m(r,�1) ≤ �m(r,w1)+ S1(r,w1).

(10)T (r,�2) = m(r,�2) ≤ ηm(r,w2)+ S1(r,w2),
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Since Ps[f (w2)] is a polynomial of f (w2), we can take a complex constant α such that

where β1, . . . ,βs are complex constants, and there at least exists a constant β ∈ {β1, . . . , 
βs} which is not Picard exceptional value of f (w2). Let {ξj , j = 1, 2, . . . , p2} be the zeros of 
f (w2)− β, where p2 is any positive integer with p2 ≥ 1. Then it follows

Thus, by using the second main theorem and (10), (11), we can get that

Similarly, there exists any positive integer p1(≥ 1) such that

It follows from (12) and (13) that

Since wi(i = 1, 2) are transcendental and p1, p2 are arbitrary, we can get a contradiction 
with (4). Hence, we complete the proof of Theorem 6.

The Proof of Theorem 11
We firstly choose a constant a ∈ C such that P(z, a) �= 0 and Q(z, a) �= 0, then (7) can be 
rewritten as

where A1(z), . . . ,Ak(z),B1(z), . . . ,Bl(z) are all rational functions. Let ϕ(z) = 1
w(z)−a, that 

is, w(z) = 1
ϕ(z) + a and

Ps[f (w2)] − α = [f (w2)− β1] · · · [f (w2)− βs],

(11)

p2∑

j=1

N

(
r,

1

w2 − ξj

)
≤ N

(
r,

1

f (w2)− β

)
≤ N

(
r,

1

Ps[f (w2)] − α

)
.

(12)

(p2 − 2)T (r,w2) ≤

p2∑

j=1

N

(
r,

1

w2 − ξj

)
+ S(r,w2)

≤ N

(
r,

1

Ps[f (w2)] − α

)
+ S(r,w2)

≤ T (r,Ps[f (w2)])+ S(r,w2)

≤ T (r,�1(z,w1))+ S(r,w2)

≤ �T (r,w1)+ S1(r,w1)+ S1(r,w2).

(13)(p1 − 2)T (r,w1) ≤ ηT (r,w2)+ S1(r,w1)+ S1(r,w2).

(14)[(p1 − 2)(p2 − 2)− �η]T (r,wi) ≤ S1(r,w1)+ S1(r,w2),

(15)(w′(qz))n =
P(z, a)+ A1(z)(w − a)+ · · · + Ak(z)(w − a)k

Q(z, a)+ B1(z)(w − a)+ · · · + Bl(z)(w − a)l
,

(16)(w′(qz))n = (−1)nϕ(qz)−2n(ϕ′(qz))n.
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Hence, it follows from (15) and (16) that

where ãi(z) = (−1)−nP(z, a) �= 0, b̃i(z) = Q(z, a) �= 0.
Suppose that w(z) is a transcendental meromorphic solution of equation (7) with zero 

order, then ϕ(z) = 1
w(z)−a is also a transcendental meromorphic solution of Eq. (17). We 

will discuss two cases as follows.
If 2n+ l − k ≤ 0, then degϕ P̃(z,ϕ) = k and degϕQ̃(z,ϕ) = l − (2n+ l − k) = k − 2n. 

It follows by Lemma 13 that

And by Lemmas 13–17, we have

Thus, it follows

which implies k ≤ 2n. Since 2n+ l − k ≤ 0 and l ≥ 0, then we have l = 0.
If 2n+ l − k ≥ 0, then then degϕ P̃(z,ϕ) = 2n+ l and degϕQ̃(z,ϕ) = l. It follows by 

Lemma 13 that

Similar to the argument as in above, we can get l = 0 and k ≤ 2n.
This completes the proof of Theorem 11.
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(17)

(ϕ′(qz))n = (−1)−nϕ(qz)2n(w′(qz))n

= (−1)−nϕ(qz)2n
P(z, a)+ A1(z)ϕ(z)

−1 + · · · + Ak(z)ϕ(z)
−k

Q(z, a)+ B1(z)ϕ(z)−1 + · · · + Bl(z)ϕ(z)−l

=: ϕ(qz)2nϕ(z)l−k

∑k
i=0 ãi(z)ϕ(z)

i

∑l
i=0 b̃i(z)ϕ(z)

i

=
P̃(z,ϕ(z))

Q̃(z,ϕ(z))
= R̃(z,ϕ(z)),

T (r, R̃(z,ϕ(z)) = kT (r,ϕ)+ S(r,ϕ).

T (r, (ϕ′(qz))n) = nT (r,ϕ′(qz))

≤ nN (r,ϕ(qz))+ nN (r,ϕ′(qz))+ nm(r,ϕ′(qz))

≤ 2nT (r,ϕ(qz))+ S(r,ϕ)

≤ 2nT (r,ϕ)+ S1(r,ϕ).

(18)kT (r,ϕ) ≤ 2nT (r,ϕ)+ S1(r,ϕ),

T (r, R̃(z,ϕ(z)) = (2n+ l)T (r,ϕ)+ S(r,ϕ).
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