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Background
It is well known that magnetic object like unexploded ordnance (UXO) or underwater 
vehicle can be detected by magnetic sensors. There are different ways for localization 
or track of the magnetic object through magnetic anomaly (Nara et al. 2006; McFee and 
Das 1981; Wynn et  al. 1975; Wahlstrom and Gustafsson 2014; McGary 2009; Birsan 
2011; Song et al. 2014; Liu and Wang 2010). We can locate magnetic object like UXO 
using either a single magnetic sensor or sensor array with a designed scan routine (scan 
several lines) (Abdelrahman and Essa 2015; McFee and Das 1981). We can also use the 
magnetic contour map to locate the position of static magnetic object.

We can estimate a magnetic source with six parameters, three describing the position 
and three describing the magnetic moments of a target. The vector magnetic sensor can 
measure three components of the magnetic field. Thus, we can build three functions 
using one vector sensor. In order to calculate six parameters, at least two vector sensors 
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are required. Thus, an array with magnetic vector sensors is widely used for locating or 
tracking position of moving object (Wahlstrom and Gustafsson 2014; Liu and Wang 
2010; Song et al. 2014; Marschner and Fischer 2007; Nara et al. 2006). Nara et al. (2006) 
designed a magnetic sensor array for detecting the object position using the magnetic 
field and spatial gradients. Marschner and Fischer (2007) measured the magnetic object 
using a hall sensor array. Song et  al. (2014) proposed the tracking method based on 
tri-axial transmitting coils and uniaxial sensing of the generated electromagnetic field. 
When the vector magnetic sensors are assembled into an array, they have a common 
alignment with the coordinate axes. If not, there will be large measurement error when 
alignment error of vector magnetic sensors exists (Sui et al. 2012). More important, it is 
difficult for us to deal with the alignment of vector sensor in the array.

However, scalar magnetic sensor such as optical pumped magnetometer is relatively 
insensitive to its orientation. In the theory of optical pumped magnetometer, the angle 
between the direction of the optical axis and the direction of the ambient field is called 
tumble angle q. The sensor can’t be operating only when the optical axis is parallel with 
the ambient field (q = 0° or q = 180°) or perpendicular to the ambient field (q = 90°). 
The optical pumped magnetometer will perform satisfactorily when the angle q within 
a range, like 10° < q < 85° or 95° < q < 170° (CS-L, Scintrex), 6° < q < 84° or 96° < q < 174° 
(G882, Geometrics). Thus, the measurement value of it is almost not influenced by 
its orientation in measurement coordinate axes. Therefore, it has a great advantage to 
assemble an array with scalar magnetic sensors. In this paper, we propose a method 
based on a scalar magnetometer array to track the magnetic target. The position of the 
target can be obtained by the proposed method in real time. In order to compute in real 
time, we use the particle swarm optimization (PSO) algorithm. In addition, we can esti-
mate the magnetic moment of the target after computing its position.

Localization theory
In the process of localization or track, the basic assumption is that the target can be 
modeled as a magnetic dipole. When the distance between the target and a sensors is 
three times longer than the size of itself, we can consider the target as the magnetic 
dipole (Wiegert and Gerovska 2000). The external magnetic field induced by the dipole 
can be described as:

where r is the distance from the dipole with coordinates (0, 0, 0) to a sensor with coor-
dinates (x, y, z). Mx, My, Mz denote the components of the magnetic moment �M of the 
dipole. μ0 is the permeability.

In practice, the magnetic field measured by the sensor includes: the earth magnetic 
field �BE and the external magnetic field �BA. However, �BA may vary from approximately 
0.01–100 nT and is much smaller than �BE. Therefore, it is valid that �BA ≪ �BE . And the 
magnetic anomaly ΔB generated by the magnetic target can be regarded as the projec-
tion of �BA on �BE and defined as (Stavrev and Gerovska 2000; Blakely 1996):

(1)�BA =

�

�

�

�

�

�

BAx

BAy

BAz

�

�

�

�

�

�

= µ0

4πr5





3x2 − r2 3xy 3xz

3xy 3y2 − r2 3yz

3xz 3yz 3z2 − r2









Mx

My

Mz







Page 3 of 10Fan et al. SpringerPlus  (2016) 5:502 

where Bm is the magnetic sensor output value. �u denotes the direction of vector �BE . I0 and 
D0 denote the inclination and declination of the normal geomagnetic field, respectively.

ΔB can be expressed in matrix form as:

where G = [ cos(I0) cos(D0) cos(I0) sin(D0) sin(I0) ], K =
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We can separate the position and magnetic moment of the target by matrix transfor-
mation through Eq. (3). Then the expression is given by:

We can see from Eq. (4) that MT(MM
T)−1

G
T is a function of Mx, My, Mz, I0, D0 and 

µ0

4πr5�B
GKG

T is a function of x, y, z, I0, D0, ΔB. The magnetic moment information  
(Mx, My, Mz) locates at the left side of Eq. (4) and the position information (x, y, z) locates 
at the right side of Eq. (4).

Based on the analysis, we design an array with four scalar magnetometers and an iner-
tia instrument, shown in Fig. 1. The inertia instrument is fixed at the array center. L is 
the distance between the array center to the boundary.

We can see from Eq. (4) that MT(MM
T)−1

G
T is same for four scalar magnetometers at 

each measurement. Thus we can obtain the equation as:
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Fig. 1  Schematic diagram of the scalar magnetometer array
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where  

K1 =





3(x + L)2 − r21 3(x + L)(y− L) 3(x + L)z

3(x + L)(y− L) 3(y− L)2 − r21 3(y− L)z

3(x + L)z 3(y− L)z 3z2 − r21



,
 

K2 =





3(x + L)2 − r22 3(x + L)(y+ L) 3(x + L)z

3(x + L)(y+ L) 3(y+ L)2 − r22 3(y+ L)z

3(x + L)z 3(y+ L)z 3z2 − r22



,
 

K3 =





3(x − L)2 − r23 3(x − L)(y− L) 3(x − L)z

3(x − L)(y− L) 3(y− L)2 − r23 3(y− L)z

3(x − L)z 3(y− L)z 3z2 − r23



, 

K4 =





3(x − L)2 − r24 3(x − L)(y+ L) 3(x − L)z

3(x − L)(y+ L) 3(y+ L)2 − r24 3(y+ L)z

3(x − L)z 3(y+ L)z 3z2 − r24



.

If the parameters—I0, D0, ΔBi—are known, the position of the target can be obtained 
by minimizing:

In order to obtain the position of the target, a few assumptions of minor restrictive-
ness should be made. We assume that the geomagnetic field is constant or smoothly 
changes and its gradient remains very uniform in the measurement region (McFee and 
Das 1981). ΔBi can be easily calculated by ΔBi ≈ Bmi − BE, when BE is known. BE can be 
measured through the method in paper (McFee and Das 1981). Therefore, we can calcu-
late the position of the target through Eq. (6) using some algorithms.

Particle swarm optimization
In order to calculate the position of the target in real time, we use the PSO algorithm to 
obtain the solution, which can be rapidly converged and has few adjustable parameters 
(Eberhart and Kennedy 1995; Yang et al. 2010). In order to better understand the PSO 
algorithm, the detailed descriptions of some key terms in PSO are given as follows.

1.	 Particle A particle is an individual in the swarm. The position of each particle is 
adjusted by the velocity of them.

2.	 Position The position of each particle represents the candidate solution for the prob-
lem.

3.	 Velocity The direction and magnitude of the velocity determine the position of the 
particle in next iterative process. And the velocity of particle is changed according to 
the relative position of the personal best (pbest) and the global best (gbest).

4.	 pbest The pbest is a position with the best fitness value discovered by a particle in the 
solution space.

5.	 gbest The gbest is a position with the best fitness value discovered by the entire 
swarm in the solution space.

6.	 Fitness The fitness is a value of the fitness function with one solution. And it can rep-
resent the quality of the solution.
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7.	 Solution space The solution space is a reasonable range in which the particles search 
for the optimal solution.

8.	 Fitness function The fitness function is a mathematical expression of the problem and 
is used to evaluate the position of each particle.

The PSO algorithm works on social behavior of particles in the swarm. Particles fly 
around in solution space. And in each iterative process, the position of each parti-
cle in the solution space is adjusted by dynamically altering the velocity of each par-
ticle, according to its own experience and the experience of other particles (Robinson 
and Rahmat-Samii 2004; Ratnaweera et  al. 2004). Therefore, in the PSO algorithm, 
the ith particle is described by position vector xi = (xi1, xi2, . . . , xid) and velocity vec-
tor vi = (vi1, vi2, . . . , vid) and d is the dimension of the solution space. According 
to the fitness function defined by user, the previous best position of the ith particle 
Pi = (pi1, pi2, . . . , pid) is the best fitness value obtained by that particle. And the previous 
best position of the group Pg = (pg1, pg2, . . . , pgd) is the best fitness value obtained by 
swarm. In each iterative process, the velocity and the position of a particle are updated 
according to the following equations:

where c1 and c2 are acceleration factors, rand1 and rand2 are uniform random variables 
in the interval [0, 1]. w is the inertia weight.

Much work has been done to understand and develop the ideal parameters for PSO 
implementation. Eberhart and Shi (2001), Shi and Eberhart (1999) suggested varying the 
value of w from 0.9 at the beginning of search to 0.4 at the end of search and suggested 
that the best value of c1 and c2 is 1.49 in most problems. In addition, population size N 
is also an important parameter and should be selected carefully. Large size increases the 
execution time and reduces the efficiency of the algorithm. While, small size leads to low 
accuracy of the optimal solution. Parametric studies on the size (Shi and Eberhart 1998; 
Ratnaweera et al. 2004) have found that the size should be selected in the range from 10 
to 60. And the best value of the population size should be determined according to the 
problem.

Experimental section
We conducted two simulation experiments in this section. In the first, we deter-
mined the best value of the population size of the PSO algorithm. And in the sec-
ond, we tested the performance of the proposed method using the PSO algorithm. 
In the two experiments, the magnetic moment of the target was set [920, −102, 
1100] A m2. The length L of the array was 3 m. The solution space of the problem was 
set {[−100, 100] ; [−100, 100] ; [10, 50]}m. Scalar magnetometers is with high sensitiv-
ity, and intrinsic noise was about 0.6 pT/

√
Hz at 1 Hz. Geomagnetic field measurement 

error was set as: the average is zero and the standard deviation is 0.1 nT.

(7)vij(t + 1) = wvij + c1rand1
(

pij(t)− xij(t)
)

+ c2rand2
(

pgj(t)− xij(t)
)

(8)xij(t + 1) = xij(t)+ vij(t + 1)
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Results and discussion
Population size of the PSO algorithm

In the first experiment, the magnetic target was at a fixed position and we changed the 
population size of the PSO algorithm to calculate the position of the target. The algo-
rithm ran 100 times at each population size, and the results were shown in Table 1.

In Table 1, we can see that the calculation accurate and execution time of the algo-
rithm is related to the population size. The calculation accurate increases along with the 
size. And the execution time also increases along with the size. However, we find that the 
accurate is almost not improved when the size reaches a certain level. Thus, the popula-
tion size of the PSO algorithm is 30.

Track results

In the second experiment, the target moved along a plan trajectory. And we used the 
PSO algorithm to locate the target. The localization result is shown in Fig. 2. It shows 
that the tracked trajectory obtained by this method is close to the plan trajectory. And 
the positions of the target are calculated accurately. Figure 3 shows the relative error of 
the position component at each sampling point. It can be seen that the localization error 
increases as the distance increases, because the useful magnetic anomaly information 
attenuates with three cubed function. The relative error of localization is <5 %. Statisti-
cally, the localization error will be larger when the distance becomes larger.

Table 1  Effect of population size on the algorithm

Population size RMSE Execution time (s)

X position Y position Z position

10 1.14053 1.60896 0.72492 0.19503

20 0.92803 1.30975 0.50881 0.37247

30 0.53957 0.67759 0.34209 0.56457

40 0.54759 0.64686 0.34652 0.75011

50 0.52929 0.6308 0.33388 0.95753

60 0.53449 0.60565 0.32572 1.12175
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Fig. 2  Localization result of magnetic target
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The magnetic moment of the target can be estimated when the target’s position had 
been calculated, as:

where Mx, My, Mz denote the component of the magnetic moment �M of the target.
Scalar value of magnetic moment can be obtained by Eq. (9), which is related to the 

target size. We can also estimate the orientation of the magnetic target by magnetic 
moment (Mx, My, Mz). Figure 4 shows the magnetic moment of the target calculated by 
Eq. (9). Comparing the theoretical value and the calculated value of moment, there is a 
difference between the values. It is mainly because that the calculated position of the tar-
get is not accuracy. Therefore, the accurate of calculated moment depends on the accu-
rate of calculated position. From (9), we can know that the error of calculated moment 
comes from the error of the target’s position.
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In addition, we also investigate the execution time of the PSO algorithm. Figure  5 
shows the execution time of the PSO algorithm. The maximum time is about 0.69 s and 
the average time is about 0.56 s. The execution time is possible for the method to track 
the target in real-time.

Discussion

Equation (4) is obtained in the case that the array is in the static state. Consider using a 
magnetometer array on a moving vehicle and trying to locate a magnetic target. Rota-
tional vibrations due to the vehicle’s motion will generate changes of the array attitude. 
Therefore, the position (x, y, z) in Eq. (4) should be corrected by the attitude angles. In 
our magnetometer array, the attitude angles (α, β, γ) of the array can be measured by the 
inertia instrument. And the corrected position of the target is expressed as:

where Rα =





1 0 0
0 cos α sin α

0 − sin α cos α



, Rβ =





cos β 0 − sin β

0 1 0
sin β 0 cos β



, Rγ =





cos γ sin γ 0
− sin γ cos γ 0

0 0 1



.

In this simulation, the array attitude angles were changed and measured by the inertia 
instrument: (α = 5°, β = 10°, γ = 5°). The target moved along a plan trajectory. And we 
used the PSO algorithm to locate the target. The localization result is shown in Fig.  6. 
When the array attitude is changed, the calculated position with attitude correction is 
close to the true position. However, the calculated position without attitude correction 
has a large difference from the true position. Therefore, we must correct the position (x, y, 
z) in Eq. (4) by using the array attitude angles if its attitude changes.

In the PSO algorithm, the fitness function is a link between the particles and the physi-
cal world. And the well fitness function should have a good performance both in the qual-
ity of the solution and in the convergence speed. Thus, well fitness function must fulfill 
two criteria. First, the fitness function should be sensitive enough to the global optimal 
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solution. In other words, it should be a steep function of the variables when the variables 
are close to the global optimal solution, otherwise it should be a smooth function of the 
variables. In our fitness function [Eq.  (6)], it is a steep function when the variables are 
close to the global optimal solution. However, there are some local optima in the solu-
tion space. Sometimes, the PSO algorithm can’t jump out from the local optima when 
trapping in it. This is the reason why the quality of the solution calculated by the PSO 
algorithm is not too high. Second, the fitness function should be simple enough to reduce 
calculating time. In our fitness function [Eq. (6)], it is relatively complex and consumes 
more computing time. Therefore, we will improve the PSO algorithm ability of finding the 
global optimal solution and construct a better fitness function in the future.

Conclusions
In this paper, we propose an efficient method for tracking the magnetic target in real-
time, which consists of scalar magnetometers array and a PSO algorithm. The scalar 
magnetometers are used to measure the scalar value of the magnetic anomaly included 
by the magnetic target. We separate the position information and magnetic moment 
information by matrix transformation and build the function F of x, y and z. Then, we 
use the PSO algorithm to obtain the solution of the function F. The simulation result 
shows that the position of the magnetic target can be calculated accurately. Then the 
magnetic moment of the target can be estimated when the target’s position had been 
calculated. The PSO algorithm can reduce the execution time. Therefore, this method 
can be used for real time localization of the magnetic target. In addition, because of the 
array formed by scalar magnetometers which are insensitive to its orientation, it is easy 
for this array to be mounted on the platform.
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