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Introduction and preliminaries
Banach contraction principle (Banach 1922) was proved in 1922. After many generali-
zations of this principle were introduced in metric spaces. Also, in recent years some 
important generalizations of usual metric spaces were defined. b-metric space (Bakhtin 
1989; Czerwik 1993) or metric type spaces-MTS by some authors (Hussain et al. 2012; 
Jovanović et al. 2010; Khamsi and Hussain 2010; Stanić et al. 2012) is well known gen-
eralizations of (usual) metric. Also several interesting results about the existence and 
uniqueness of fixed point were proved in b-metric spaces (Aghajani et al. 2014; Amini-
Harandi 2014; Bakhtin 1989; Czerwik 1993; Ding et  al. 2015a, b; Hussain et  al. 2012, 
2013; Jovanović et al. 2010; Khamsi and Hussain 2010; Kir and Kiziltunc 2013; Ozturk 
and Turkoglu 2015; Radenović and Kadelburg 2011; Roshan et al. 2013, 2014).

The following definition is introduced in Bakhtin (1989) and Czerwik (1993).

Definition 1  (Bakhtin 1989; Czerwik 1993) Let X be a (nonempty) set and s ≥ 1 be a 
given real number. A function d : X × X → [0,∞) is a b-metric on X if, for all x, y, z ∈ X , 
the following conditions hold: 

(b1)	 d
(

x, y
)

= 0 if and only if x = y,

(b2)	 d
(

x, y
)

= d
(

y, x
)

,

(b3)	 d(x, z) ≤ s
[

d
(

x, y
)

+ d
(

y, z
)]

 (b-triangular inequality).
In this case, the pair (X, d) is called a b-metric space (metric type space).
It should be noted that, the class of b-metric spaces is effectively larger than that of 

metric spaces, every metric is a b-metric with s = 1, while the converse is not true.
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Example 2  Let (X, d) be a metric space and ρ
(

x, y
)

=
(

d
(

x, y
))p, where p > 1 is a real 

number. Then ρ is a b-metric with s = 2p−1.

However, if (X, d) is a metric space, then (X , ρ) is not necessarily a metric space.
For example, if X = R is the set of real numbers and d

(

x, y
)

=
∣

∣x − y
∣

∣ is usual Euclidean 
metric, then ρ

(

x, y
)

=
(

x − y
)2 is a b-metric on R with s = 2. But is not a metric on R.

Definition 3  (Jovanović et al. 2010) Let {xn} be a sequence in a b-metric space (X, d).

(a) � {xn} is called b-convergent if and only if there is x ∈ X such that d(xn, x) → 0 as 
n → ∞.

(b)  {xn} is a b-Cauchy sequence if and only if d(xn, xm) → 0 as n,m → ∞.

A b-metric space is said to be complete if and only if each b-Cauchy sequence in this 
space is b-convergent.

Proposition 4  (Jovanović et  al. 2010) In a b-metric space (X , d), the following asser-
tions hold: 

p1.  A b-convergent sequence has a unique limit.
p2.  Each b-convergent sequence is b-Cauchy.
p3.  In general, a b-metric is not continuous.

Definition 5  (Hussain and Shah 2011) Let (X, d) be a b-metric space. A subset Y ⊂ X 
is called closed if and only if for each sequence {xn} in Y which b-converges to an element 
x,  we have x ∈ Y .

On the other hand (E.A)-property was introduced by Aamri and Moutawakil (2002). 
Later some authors introduced some new fixed point results using this concept (Ali et al. 
2010; Babu and Sailaja 2011; Nazir and Abbas 2014; Ozturk and Turkoglu 2015). In this 
paper, we prove a common fixed point theorem for two pairs of mappings which satisfy 
the b-(E.A) property in b-metric spaces (Ozturk and Turkoglu 2015).

Definition 6  Let (X, d) be a b-metric space and f and g be selfmappings on X.

	 (i)	 f and g are said to compatible if whenever a sequence {xn} in X is such that 
{

fxn
}

 
and 

{

gxn
}

 are b-convergent to some t ∈ X , then 

(ii)	 f and g are said to noncompatible if there exists at least one sequence {xn} 
in X is such that 

{

fxn
}

 and 
{

gxn
}

 are b-convergent to some t ∈ X , but 
limn→∞ d

(

fgxn, gfxn
)

 is either nonzero or does not exist.
(iii)	 Ozturk and Turkoglu (2015)f and g are said to satisfy the b-(E.A) property if there 

exists a sequence {xn} such that 

for some t ∈ X .

limn→∞ d
(

fgxn, gfxn
)

= 0.

limn→∞ fxn = limn→∞ gxn = t,
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Remark 7  Noncompatibility implies b-(E.A)-property.

Example 8  Ozturk and Turkoglu (2015) Let X = [0, 2] and define d : X × X → [0,∞) 
as follows

Let f , g : X → X be defined by

For a sequence {xn} in X such that xn = 1+ 1
n+2

, n = 0, 1, 2, . . . and

So f and g are satisfy the b-(E.A) property. limn→∞ d
(

fgxn, gfxn
)

 exists and it is not equal 
to 0. Thus f and g are noncompatible.

Definition 9  (Jungck 1986) f and g be given self-mappings on a set X. The pair 
(

f , g
)

 is 
said to be weakly compatible if f and g commute at their coincidence points (i.e. fgx = gfx 
whenever fx = gx).

Main results
In our first result of this section, we generalize, complement and improve recent results 
from (Ozturk and Turkoglu 2015, Theorems 2.1, Corollaries 2.2; 2.3 and Example 2.4) for 
b-metric spaces with much shorter proofs. We begin with our first result.

Theorem 10  Let (X , d) be a b-metric space with s > 1 and f , g , S,T : X → X be a map-
pings with f (X) ⊆ T (X) and g(X) ⊆ S(X) such that 

 where ε > 1 is a constant and

Suppose that one of the pairs 
(

f , S
)

 and 
(

g ,T
)

 satisfy the b-(E.A)-property and that one 
of the subspaces f (X), g(X), S(X) and T (X) is b-closed in X. Then the pairs 

(

f , S
)

 and 
(

g ,T
)

 have a point of coincidence in X.Moreover, if the pairs 
(

f , S
)

 and 
(

g ,T
)

 are weakly 
compatible, then f, g, S and T have a unique common fixed point.

Proof  If the pair 
(

f , S
)

 satisfies the b-(E.A)-property, then there exists a sequence {xn} in 
X satisfying

d
(

x, y
)

=
(

x − y
)2
.

f (x) =

{

1, x ∈ [0, 1]
x+1
8
, x ∈ (1, 2]

g(x) =

{

3−x
2
, x ∈ [0, 1]

x
4
, x ∈ (1, 2]

.

limn→∞ fxn = limn→∞ gxn =
1

4
.

(1)s εd
(

fx, gy
)

≤ Ms

(

x, y
)

, for all x, y ∈ X

Ms

(

x, y
)

= max

{

d
(

Sx,Ty
)

, d
(

fx, Sx
)

, d
(

gy,Ty
)

,
d
(

fx,Ty
)

+ d
(

Sx, gy
)

2s

}

.

lim
n→∞

fxn = lim
n→∞

Sxn = q,
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for some q ∈ X. As f (X) ⊆ T (X) there exists a sequence 
{

yn
}

 in X such that fxn = Tyn. 
Hence limn→∞ Tyn = q. Let us show that limn→∞ gyn = q. By (1),

where

In (2), on taking limit superior, we obtain

because d
(

Sxn, fxn
)

→ 0 as n → ∞. Since s ε > s > 1, we get that

that is lim
n→∞

d
(

fxn, gyn
)

= 0. Further, we have

as n → ∞, thus gyn → q as n → ∞.

If T (X) is closed subspace of X,   then there exists a r ∈ X , such that Tr = q. We shall 
show that gr = q. Indeed, we have

where

(2)s εd
(

fxn, gyn
)

≤ Ms

(

xn, yn
)

Ms

�

xn, yn
�

= max

�

d
�

Sxn,Tyn
�

, d
�

fxn, Sxn
�

, d
�

Tyn, gyn
�

,

d(Sxn,gyn)+d(fxn,Tyn)
2s

�

= max

�

d
�

Sxn, fxn
�

, d
�

fxn, Sxn
�

, d
�

fxn, gyn
�

,

d(Sxn,gyn)+d(fxn,fxn)
2s

�

,

≤ max







d
�

Sxn, fxn
�

, d
�

fxn, gyn
�

,

s[d(Sxn,fxn)+d(fxn,gyn)]
2s







= max
�

d
�

Sxn, fxn
�

, d
�

fxn, gyn
��

.

lim
n→∞

s εd
(

fxn, gyn
)

≤ lim
n→∞

max
{

d
(

Sxn, fxn
)

, d
(

fxn, gyn
)}

≤ lim
n→∞

d
(

fxn, gyn
)

,

lim
n→∞

d
(

fxn, gyn
)

= 0

1

s
d
(

q, gyn
)

≤ d
(

q, fxn
)

+ d
(

fxn, gyn
)

→ 0,

(3)

1

s
d
(

q, gr
)

≤ d
(

q, fxn
)

+ d
(

fxn, gr
)

≤ d
(

q, fxn
)

+
1

s ε
Ms(xn, r),

Ms(xn, r) = max

{

d(Sxn,Tr), d
(

fxn, Sxn
)

, d
(

Tr, gr
)

,

d(fxn,Tr)+d(Sxn,gr)
2s

}

= max

{

d(Sxn, q), d
(

fxn, Sxn
)

, d
(

q, gr
)

,

d(fxn,q)+d(Sxn,gr)
2s

}

≤ max

{

d(Sxn, q), d
(

fxn, Sxn
)

, d
(

q, gr
)

,

d(fxn,q)+sd(Sxn,q)+sd(q,gr)
2s

}

.
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Letting n → ∞, we have

Now, (3) implies

from which it follows d
(

q, gr
)

= 0 (because s ε > s). Hence, q = gr = Tr, that is r is the 
coincidence point of pair 

(

g ,T
)

. As g(X) ⊆ S(X), there exists a point z ∈ X such that 
q = Sz. We claim that Sz = fz. By (1), we have

where

Thus from (4),

from which it follows that d
(

fz, gr
)

= 0. Therefore Sz = fz = q. Hence z is the coinci-
dence point of the pair 

(

f , S
)

. Thus fz = Sz = gr = Tr = q. By the weak compatibility of 
the pairs 

(

f , S
)

 and 
(

g ,T
)

, we btain that fq = Sq and gq = Tq.

We will show that q is a common fixed point of f, g, S and T. From (1) we have

where,

By (5)

from which it follows fq = Sq = q. Similarly, it can be shown gq = Tq = q.

To prove the uniqueness of fixed point, suppose that p is another fixed point of f, g, S 
ad T. By (1),

lim
n→∞

Ms(xn, r) ≤ max

{

0, 0, d
(

q, gr
)

,
d
(

q, gr
)

2

}

= d
(

q, gr
)

.

1

s
d
(

q, gr
)

≤ 0+
1

s ε
d
(

q, gr
)

,

(4)s εd
(

fz, gr
)

≤ Ms(z, r)

Ms(z, r) = max

{

d(Sz,Tr), d
(

fz, Sz
)

, d
(

Tr, gr
)

,
d
(

fz,Tr
)

+ d
(

Sz, gr
)

2s

}

= max

{

0, d
(

fz, q
)

, 0,
d
(

fz, q
)

+ 0

2s

}

= d
(

fz, q
)

.

s εd
(

fz, gr
)

≤ d
(

fz, q
)

= d
(

fz, gr
)

,

(5)s εd
(

fq, q
)

= s εd
(

fq, gr
)

≤ Ms(q, r)

Ms(q, r) = max

{

d(Sq,Tr), d
(

fq, Sq
)

, d
(

Tr, gr
)

,
d
(

fq,Tr
)

+ d
(

Sq, gr
)

2s

}

= max

{

d
(

fq, q
)

, d
(

fq, fq
)

, d(q, q),
d
(

fq, q
)

+ d
(

fq, q
)

2s

}

= d
(

fq, q
)

.

s εd
(

fq, q
)

≤ d
(

fq, q
)

,
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where

Hence, we have

from which again follows that d(q, p) = 0. So q = p. � �

Remark 11  Since the condition (1) from Ozturk and Turkoglu (2015) implies (1) for all 
altering functions ψ and ϕ (Khan et al. 1984; Radenović et al. 2012) and for each ε ∈ (1, 2] 
we get that our Theorem 9 is genuine generalization of the main result from Ozturk and 
Turkoglu (2015). However, the main result from Ozturk and Turkoglu (2015) holds if 
s = 1, what is not case for our Theorem 9. Also, the main result from Ozturk and Turko-
glu (2015) holds if s > 1 and ε ∈ (1,∞) for given altering functions ψ and ϕ.

Corollary 12  Let (X , d) be a b-metric space and f ,T : X → X be mappings such that

 where ε > 1 is a constant and

 Suppose that the pair 
(

f ,T
)

 satisfies the b-(E.A)-property and T(X) is closed in X. Then 
the pair 

(

f ,T
)

 has a unique point of coincidence in X. Moreover, if the pair 
(

f ,T
)

 is weakly 
compatible, then f and T have a unique common fixed point.

Corollary 13  Let (X , d) be a b-metric space and f ,T : X → X be mappings such that

 where ε > 1 is a constant and

 Suppose that the pair 
(

f ,T
)

 satisfies the b-(E.A)-property and T (X) is closed in X. Then 
the pair 

(

f ,T
)

 has a unique point of coincidence in X. Moreover, if the pair 
(

f ,T
)

 is weakly 
compatible, then f and T have a unique common fixed point.

s εd(q, p) = s εd
(

fq, gp
)

≤ Ms(q, p)

Ms(q, p) = max

{

d(Sq,Tp), d
(

fq, Sq
)

, d
(

Tp, gp
)

,
d
(

fq,Tp
)

+ d
(

Sq, gp
)

2s

}

= max

{

d(q, p), d(q, q), d(p, p),
d(q, p)+ d(q, p)

2s

}

= d(q, p).

s εd(q, p) ≤ d(q, p),

(6)s εd
(

fx, fy
)

) ≤ Ms

(

x, y
)

for all x, y ∈ X ,

Ms

(

x, y
)

= max

{

d
(

Tx,Ty
)

, d
(

fx,Tx
)

, d
(

fy,Ty
)

,
d
(

fx,Ty
)

+ d
(

Tx, fy
)

2s

}

,

(7)s 2d
(

fx, fy
)

) ≤ Ms

(

x, y
)

for all x, y ∈ X ,

Ms

(

x, y
)

= max

{

d
(

Tx,Ty
)

, d
(

fx,Tx
)

, d
(

fy,Ty
)

,
d
(

fx,Ty
)

+ d
(

Tx, fy
)

2s

}

,



Page 7 of 10Ozturk and Radenović ﻿SpringerPlus  (2016) 5:544 

Example 14  Let X = [0, 1] and define d : X × X → [0,∞) as follows

Then (X , d) is a b-metric space with s = 2. Let f , g , S,T : X → X be defined by

Clearly, g(X) is closed, f (X) ⊆ T (X) and g(X) ⊆ S(X). The sequence {xn}, xn = 1
2
+ 1

n , 
is in X such that limn→∞ fxn = limn→∞ Sxn = 1

8
. So that the pair 

(

f , S
)

 satisfies the 
b-(E.A)-property. But the pair 

(

f , S
)

 is noncompatible because limn→∞ d
(

fSxn, Sfxn
)

�= 0. 
To check the contractive condition (1), for all x, y ∈ X , and ε = 2,

if x = 0, then (1) is satisfied.
If x ∈

(

0, 1
2

)

, then

If x = 1
2
, then

If x ∈

(

1
2
, 1

]

, then

Thus (1) is satisfied for all x, y ∈ X . The pairs (f;  S) and (g;  T) are weakly compatible. 
Hence, all the conditions of Theorem 9 are satisfied. Moreover 0 is the unique common 
fixed point of f; g; S and T.

The following results are similar to previously and the proofs are omitted.

Theorem 15  Let (X , d) be a b-metric space with s > 1 and f , g , S,T : X → X be a map-
pings with f (X) ⊆ T (X) and g(X) ⊆ S(X) such that

 where ε > 1 is a constant and

d
(

x, y
)

=

{

0, x = y
(

x + y
)2
, x �= y

.

f (x) =
x

4
S(x) =







2x, 0 ≤ x < 1
2

1, x = 1
2

1
8
, 1

2
< x ≤ 1

, g(x) = 0 and T (x) = x.

s εd
(

fx, gy
)

= 22 ·

(x

4

)2

≤

(

9x

4

)2

= d
(

fx, Sx
)

≤ Ms

(

x, y
)

.

s εd
(

fx, gy
)

= 22 ·

(

1

8

)2

≤

(

1

8
+ 1

)2

= d
(

fx, Sx
)

≤ Ms

(

x, y
)

.

s εd
(

fx, gy
)

= 22 ·

(x

4

)2

≤

(

x

4
+

1

8

)2

= d
(

fx, Sx
)

≤ Ms

(

x, y
)

.

(8)s εd
(

fx, gy
)

≤ Ms

(

x, y
)

, for all x, y ∈ X

Ms

(

x, y
)

= max

{

d
(

Sx,Ty
)

,
d
(

fx, Sx
)

+ d
(

gy,Ty
)

2s
,
d
(

fx,Ty
)

+ d
(

Sx, gy
)

2s

}

.



Page 8 of 10Ozturk and Radenović ﻿SpringerPlus  (2016) 5:544 

Suppose that one of the pairs 
(

f , S
)

 and 
(

g ,T
)

 satisfy the b-(E.A)-property and that one 
of the subspaces f (X), g(X), S(X) and T (X) is b-closed in X. Then the pairs 

(

f , S
)

 and 
(

g ,T
)

 have a point of coincidence in X. Moreover, if the pairs 
(

f , S
)

 and 
(

g ,T
)

 are weakly 
compatible, then f, g, S and T have a unique common fixed point.

Theorem 16  Let (X , d)be a b-metric space with s > 1 and f , g , S,T : X → X be a map-
pings with f (X) ⊆ T (X) and g(X) ⊆ S(X) such that

where ε > 1 is a constant and

Suppose that one of the pairs 
(

f , S
)

 and 
(

g ,T
)

 satisfy the b-(E.A)-property and that one 
of the subspaces f (X), g(X), S(X) and T (X) is b-closed in X. Then the pairs 

(

f , S
)

 and 
(

g ,T
)

 have a point of coincidence in X. Moreover, if the pairs 
(

f , S
)

 and 
(

g ,T
)

 are weakly 
compatible, then f, g, S and T have a unique common fixed point.

Well posedness result

Definition 17  (Boriceanu et al. 2010) Let (X , d) be a b-metric space and f : X → X be 
a mapping. The fixed point problem of f said to be well-posed iff

(i)	 f has a unique fixed point q in X, 
(ii)	 If xn ∈ X , n ∈ N and d(xn,Txn) → 0 as n → ∞, then d(xn, q) → 0 as n → ∞.

Theorem 18  Let (X , d) be a b-metric space with s > 1 and f , g , S,T : X → X be a map-
pings. Suppose that all hypotheses of Theorem 9 hold. Then the fixed point problem is well 
posed for mappings f, g, S and T.

Proof  By Theorem 9, The mappings f, g, S and T have a unique common fixed point 
(say) q in X.Let {xn} be a sequence in X such that

Using (1) and triangular inequality, we have

(9)s εd
(

fx, gy
)

≤ Ms

(

x, y
)

, for all x, y ∈ X

Ms

(

x, y
)

= max
{

d
(

Sx,Ty
)

, d
(

fx, Sx
)

, d
(

gy,Ty
)

, d
(

fx,Ty
)

, d
(

Sx, gy
)}

.

lim
n→∞

d
(

fxn, xn
)

= lim
n→∞

d
(

gxn, xn
)

= limn→∞ d(Txn, xn)

= lim
n→∞

d(Sxn, xn) = 0.

d(q, xn) = d
(

fq, xn
)

≤ s
[

d
(

fq, gxn
)

+ d
(

gxn, xn
)]

=
s

sε
Ms(q, xn)+ sd

(

gxn, xn
)
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where

Thus we have

By triangular inequality,

So

On taking the limit as n → ∞ we obtain

� �

Conclusion
In this paper, we given new fixed point theorems for mappings satisfying b-(E.A)-prop-
erty in b-metric spaces. Our results extended b-(E.A)-property results in the literature. 
Also in last section we proved well-posedness result in b-metric spaces.
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Ms(q, xn) = max

{

d(Sq,Txn), d
(

fq, Sq
)

, d
(

gxn,Txn
)

,

d(fq,Txn)+d(Sq,gxn)
2s

}

=max

{

d(q,Txn), 0, d
(

gxn,Txn
)

,
d(q,Txn)+ d

(

q, gxn
)

2s

}

≤ max

{

d(q,Txn), s
[

d
(

gxn, q
)

+ d(q,Txn)
]

,

d(q,Txn)+d(q,gxn)
2s

}

= s
[

d
(

gxn, q
)

+ d(q,Txn)
]

.

d(q, xn) ≤
s2

sε

[

d
(

gxn, q
)

+ d(q,Txn)
]

+ sd
(

gxn, xn
)

.

d(q, xn) ≤
s3

sε

[

d
(

gxn, xn
)

+ 2d(xn, q)+ d(xn,Txn)
]

+ sd
(

gxn, xn
)

.

d(q, xn) ≤
1

(

1− 2s3

sε

)

[(

s3

sε
+ s

)

d
(

gxn, xn
)

+
s3

sε
d(xn,Txn)

]

.

limn→∞ d(q, xn) = 0.
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