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Background
A space manipulator system is composed of system body (satellite) and its on-board 
manipulator. Since the manipulator system with gas thruster can fly or float free in the 
micro-gravity space environment, which expands the working space for the manipula-
tor, so the manipulator system could instead astronauts engaged in a variety of extrave-
hicular activities. Path planning of the manipulator system will become one of the main 
research directions in the area of space in the future (Yoshida and Wilcox 2008). In the 
space environment, space debris and cabin peripheral testing devices have the potential 
to be obstacles for space manipulator in the process of on-orbit operation, and the col-
lisions occurred between the manipulator and the obstacles will not only interfere with 
on-orbit operation to complete the task, but also do harm to the manipulator system and 
operation personnel. Therefore, the obstacle avoidance path planning of space manipula-
tor has very important research significance.

The main idea of the obstacle avoidance planning is designing an optimal path which 
can avoid all obstacles and meet certain targets from the starting point to the target 
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point. For the path planning problem, a number of methods have been addressed, such 
as C-space method (Ping et al. 2009), A* search method (Kala et al. 2010), the improved 
artificial potential field method (Liu and Zhang 2014), neural networks (Duguleana et al. 
2012) and so on, but they all have certain limitations. C-space method needs large com-
putation. The calculation is more time consuming than the response of the manipulator 
which has limited its range of application in the area of the practical obstacle avoid-
ance. Since the computational amount of A* search method will increase sharply with 
the increase of space dimension, it is difficult to satisfy its time and space requirements. 
The improved artificial potential field method is very suitable for dealing with dynamic 
obstacles, but it is easy to fall into local minimum point. During the process of searching 
path, the neural network method was easy to lose information. This caused it is difficult 
to find a feasible path to meet the constraints in a complex environment.

Ant colony algorithm has strong robustness and ability of distributed computing, 
and it is easy to be combined with other methods, but it also has some defects, such 
as slow convergence speed, easily falling into local optimum. In this paper, firstly we 
establish models for the space manipulator and the environment, and then transform the 
search strategy, transfer rules (Hao and Wang 2010) and pheromone update methods 
to improve the ant colony algorithm, and finally the improved ant colony algorithm is 
used to search the better obstacle avoidance path. Using this method, manipulator end-
effector can avoid all the obstacles smoothly and its motion path is shorter than the path 
obtained by the basic ant colony algorithm.

Models of manipulator and environment
In this paper, we study the obstacle avoidance path planning of S-R-S space manipula-
tor with seven degrees of freedom (Zhou et al. 2015). In the S-R-S structure, the first, 
second and third joint are used to compose the shoulder joint which can be equivalent 
to a virtual ball joint and its center is located in the intersection of three revolving axes, 
wrist joint is comprised of the 5th, 6th and 7th joint, the 4th joint is regarded as elbow 
joint which is a simple rotary joint. Figure  1 is the structure diagram of S-R-S space 
manipulator.

The description about joints information of S-R-S space manipulator can reference to 
the general model as Fig. 2. The D-H parameters of system and quality characteristics of 
space manipulator are shown as Tables 1 and 2. The comments of the above symbols are 
shown as Table 3.

Fig. 1  Structure diagram of S-R-S space manipulator
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Kinematics equation of space manipulator

Japanese scholars Y. Umetani and K. Yoshida proposed the Generalized Jacobian Matrix 
which reflects the relationships between the motion velocity of end-effector and angular 
velocity of joints, Xu Wenfu etc. (Xu and Li 2008) analyzed the kinematics equation of 
free floating space manipulator based on Generalized Jacobian Matrix:

where, ve, ωe are respectively the linear and the angular velocity of manipulator end-effec-
tor, Jm is a Jacobian matrix bound up with the motion of manipulator, J b denotes a Jac-
obian matrix associated with the base motion, J bm is a matrix associated with base and 

(1)

[

ve
ωe

]

=

[

Jm − J bI
−1
b IM

]

Θ̇ = J ∗(�b,Θ ,mi, I i) Θ̇

Fig. 2  Structure diagram of general model

Table 1  D-H parameters of system

i αi−1 ai−1 di θi

1 −π/2 0 d1 θ1

2 π/2 0 0 θ2

3 −π/2 0 d3 θ3

4 π/2 0 0 θ4

5 −π/2 0 d5 θ5

6 π/2 0 0 θ6

7 0 0 d7 θ7

Table 2  Quality characteristics of space manipulator

B0 B1 B2 B3 B4 B5 B6 B7

m (kg) 1146.342 3.692 60.416 3.678 35.654 3.461 2.624 0.114

l (m) 0.85 0.13 1.5 0.12 1.24 0.22 0.07 0.01

Ixx (kg m2) 291.077 0.013 13.556 0.012 1.235 0.061 0.066 0

Iyy (kg m2) 536.263 0.005 2.274 0.010 7.309 0.028 0.004 0

Izz (kg m2) 669.647 0.015 15.756 0.005 6.104 0.035 0.004 0
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manipulator, Θ̇ is a set of seven joint angles, J ∗(�b,Θ ,mi, I i) is the generalized Jacobian 
matrix of space manipulator, which is the function about base attitude, joint angles of 
manipulator, the mass, and inertia of rigid body. The kinematics equation is derived from 
the centroid position, the velocity of the links, the end-effector and the momentum conser-
vation law, which is a mature and classic equation and already applied widely in many areas. 
The generalized Jacobian matrix is indispensable in path planning of space manipulator.

Expression of valid path in space environment

The task of obstacle avoidance path planning is to find a non-collision way from a start-
ing position to the target location according to a certain evaluation standard in the envi-
ronment with obstacles. We assume that S is the position of manipulator end-effector 
and G is the target position, and there are some obstacles between S and G. Manipulator 
will search a short and safety path from S to G, and it is shown in Fig. 3.

For the convenience of the research, we established the coordinate O′ − X ′ Y ′ Z′ 
shown in Fig. 4, where, S is the origin point in the new coordinate, the SG direction is 
forward Z′ axis, and the direction of X ′ and Y ′ could be chosen properly. The transfor-
mation between the coordinate system of O′ − X ′Y ′Z′ and O − X YZ can be described as 
the following formula (Porta Garcia et al. 2009):

(2)
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Table 3  The comments of the symbols

System CM The system’s center of gravity
∑

I The inertial coordinate system

B0 Base of the system

Bi (i = 1,2…,7) The ith link

Ji The ith joint

Ci Gravity center of Bi
ai Position vector from Ji to Ci
bi The distance from Ci to Ji+1

b0 ∈ R
3 Position vector from CM of base to joint 1

rb ∈ R3 Position vector of the center of mass (CM) of base

r i ∈ R3(i = 1, 2, . . . , 7) Position vector of CM of link i

rg ∈ R3 Position vector of the system

re ∈ R3 Position vector of end-effector

pi ∈ R3 Position vector of joint i

pi Position vector of Ji
αi−1 The link corner of manipulator

ai−1 The length of common vertical line from the joint shaft i − 1 to i

di The link offset

θi The ith joint angle

Θ ∈ Rn Joint angle vector

mi Mass of link i

li Length of the ith link

I Movement inertia of the links
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where, αx, βx and γx are the intersection angle between X axis and X ′, Y ′, Z′. αy, βy and γy 
are the intersection angle between Y axis and X ′, Y ′, Z′. αz, βz and γz are the intersection 
angle between Z axis and X ′, Y ′, Z′. The coordinates of the obstacles can be calculated by 
the formula (2).

As shown in Fig. 4, we established a cube ABCDEFGH in the coordinate O′ − X ′Y ′Z′ , 
and the face ABCD of the cube is in plane X ′Y ′. In this paper, the method of equally 
dividing space was used to extract grid points that the path planning needed from the 
three-dimensional space. Firstly, ABCDEFGH is divided equally along the border AB, 
getting n+ 1 planes, then the planes are divided into m and l parts equally along the 

Fig. 3  Bypass through the space obstacles

Fig. 4  Illustration of space obstacles in coordinate O′ − X
′
Y
′
Z
′
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border AD and AA′ in proper sequence, and the intersection point inside can be resolved 
(Hu and Cai 2011). Plane partition is shown in Fig. 5.

Obstacle avoidance planning based on improved ant colony algorithm
Inspired by the fact that ants always find a shortest path between the food and the nest 
during the foraging process, M. Dorigo proposed ant colony algorithm (Dorigo et  al. 
1996). Ant colony algorithm has many advantages, but there are some defects, such as 
high complexity, easy to fall into local optimum. In order to obtain the better obstacle 
avoidance path, the search strategy, transition rule and pheromone updating method in 
classical ant colony algorithm are improved in this paper.

Visual area

In this paper, we take x axis for the main direction of path planning and set the maxi-
mum transverse and longitudinal moving distance for ants (Feng et al. 2011). Thus, there 
is a visible area when the ants search the next node. This area plays the role of simplify-
ing the search space and improving the search efficiency of ant colony algorithm.

Fitness function

With the purpose of searching the shortest obstacle avoidance path between starting 
point and the target point, the fitness function is defined as:

where, n is the number of populations, i means the current point, and i + 1 means the 
next point.

(3)F
(

x, y, z
)

=

n
∑

i=1

√

1+
(

yi+1 − yi
)2

+ (zi+1 − zi)
2

Fig. 5  Representation of grid coordinate in plane 
∏

i
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Search strategy

The selection probability of each point is calculated according to the heuristic function 
when ants move from the current point to next point, the heuristic function in this paper 
is defined as (Sgorbissa and Zaccaria 2012):

where, D
(

i, j, k
)

 represents the distance between two points, making the ants move 
towards its near point, its expression is shown as follows:

where, a, b are the expression of the current and next point respectively.
S
(

i, j, k
)

 denotes the security factors impelling ants to select safe points, and we use 
Num and UNum to show:

where, Num denotes the number of viewpoints, UNum indicates the number of unreach-
able points in viewpoints region. When the chosen point cannot be reached,

Q(i, j, k) is the length of path from next point to target point, which makes ants choose 
the points closer to the goal point, and its expression is given as follows:

where, b, d denotes the next and target point respectively.
The steps that ants select next point pi+1 in plane 

∏

i+1 are as follows:

Step 1: Determine the set of feasible points in the plane 
∏

i+1.
Step 2: Calculate the heuristic information value Ha+1,u,v of the set of feasible points 
according to the formula (4).
Step 3: Calculate the selection probability p (i + 1,u, v) at any point (i + 1,u, v) within 
the plane 

∏

i+1:

where, τa+1,u,v is the pheromone of point p (a+ 1,u, v) in the plane 
∏

i+1.
Step 4: Select the points in plane 

∏

i+1 using the roulette wheel method on the basis of 
the selection probability of each point.

(4)H
(

i, j, k
)

= D
(

i, j, k
)

· S
(

i, j, k
)

· Q
(

i, j, k
)

(5)D
(

i, j, k
)

=

√

(xa − xb)
2 +

(

ya − yb
)2

+ (za − zb)
2

(6)S
(

i, j, k
)

=
Num−UNum

Num

(7)S
(

i, j, k
)

= 0

(8)Q(i, j, k) =

√

(xb − xd)2 + (yb − yd)2 + (zb − zd)2

(9)p(i + 1,u, v) =







τa+1,u,vHa+1,u,v
�

(τa+1,u,vHa+1,u,v)
at feasible points

0 others
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Transition probability

The probability value is computed by formula (9) during the process that ants search 
the obstacle avoidance path, and the node with the highest probability is selected as the 
next node. Due to the fact that ant colony algorithm is easy to fall into local optimum, 
the chosen node with high probability may not be the optimal solution, if the size of 
problem is large, it is more difficult to find the optimal solution (Hao and Wang 2010). 
In addition, if transfer probability is only obtained by using the (9), the algorithm will 
lose randomness and some good solutions will be ignored. Then, the consequence is that 
the global optimal solution is wrong. Therefore, the method of combining random and 
deterministic probability is adopted to select the nodes.

To adjust the degree of exploring a new path and make the search activities focus on 
the spatial neighborhood of the optimal solution, the parameter q0 is introduced in this 
paper. If an ant is located at the node i, it will choose the next node to transfer according 
to the following formula:

where, τa+1,u,v is the pheromone value of the point p (a+ 1,u, v) in plane 
∏

i+1, and 
Ha+1,u,v denotes the heuristic information value of the set of feasible points from the 
point pi to the points in plane 

∏

i+1. q is the random number in the evenly distributed 
interval (0, 1], and q0 is the number in the interval (0, 1], we define the value of q0 is 0.5 in 
the path planning. j is the selected node according to the formula (10).

Updating pheromone

In order to increase the probability of the points that ants have not passed in the search 
process and achieve global search, local pheromone updating as ants search, and the 
updating formula is:

In the above formula, τijk is the pheromone value at 
(

i, j, k
)

, ς indicates the attenuation 
coefficient of pheromone.

Global update is to regard the length of path which ants have finished searching as the 
evaluation value and select the shortest path from the set of path. Increasing the phero-
mone of nodes in the shortest path, updating formulas are shown as follows (Dong et al. 
2009):

where, ρ is the pheromone update coefficient, K  is a constant, length (m) shows the 
length of path that the mth ant has passed.

Steps of the algorithm

The progress of improved ant colony algorithm is shown in Fig. 6.

(10)k =

{

arg max
{

τa+1,u,vHa+1,u,v

}

if q ≤ q0
j else

(11)τijk = (1− ς) τijk

(12)τijk = (1− ρ) τijk + ρ �τijk

(13)�τijk =
K

min
(

length (m)
)
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Fig. 6  Flow chartoftheimproved ant colony algorithm
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Step1: Initialization. The ants whose number is m are placed in the start point, set-
ting iteration counter Nc = 0, the maximum number of iterations Ncmax, the number 
of ants N , attenuation coefficient and update coefficient of the pheromone.
Step2: Ants search path. Search the next point according to formula (9) and (10), at 
the same time, record the path that ants have walked and update the local pheromone 
according to the formula (11).
Step3: To determine whether the target point is reached, then go to Step4, otherwise 
turn to Step2.
Step4: Update the total length of path. If the new path is shorter than the length of the 
known optimal path, we will replace the original optimal path with a new path.
Step5: Update the global pheromone for the updated path base on (12) and (13).
Step6: Nc = Nc + 1, if Nc ≤ Ncmax, then turn to Step2, otherwise put out the optimal 
path p.

Simulation results
In this paper, the space manipulator with seven degrees of freedom is used for path 
planning about obstacle avoidance, for the convenience of theoretical research, the end-
effector is only considered instead of the whole manipulator system.

In our experiments, three obstacles are set up and each obstacle is irregular body 
whose surface and bottom are both parallel to the plane XY. The eight vertex coordi-
nates of the first obstacle are: (4,4,1), (4,8,1), (8,4,1), (8,8,1), (5,5,4), (7,5,4), (5,7,4), (7,7,4); 
The second obstacle’s coordinates are: (10,8,1.25), (10,12,1.25), (14,8,1.25), (14,12,1.25), 
(11,9,5), (11,11,5), (13,9,5), (13,11,5); The eight vertex coordinates of the third obsta-
cle are: (16,12,1.5), (16,16,1.5), (20,12,1.5), (20,16,1.5), (17,13,6), (17,15,6), (19,13,6), 
(19,15,6). The coordinates of starting point and target point are (1, 4, 2) and (21, 14, 1), 
respectively. Parameters of the improved ant colony algorithm are shown in Table 4.

In the process of simulation for the improved ant colony algorithm, it is easy to find 
out that the path ants have walked is different every time under the same program. 
Therefore, ant colony algorithm and the improved ant colony algorithm were both run 
100 times, and then we compared their average fitness value, operation time and optimal 
fitness values separately. The results are shown in Table 5.

An obstacle avoidance path shown in Fig. 7 is obtained by ant colony algorithm, whose 
optimal fitness value is 58.9486 m, and its variations of fitness is shown in Fig. 8.

The optimal obstacle avoidance path and the variations of fitness shown in Figs. 9 and 
10 are both obtained by improved ant colony algorithm.

The idea that choosing the next node with probability is similar to the greedy algo-
rithm, they all consider the local optimal, but the ant colony algorithm considers the 
distance from the next node to the target, which can avoid falling in local optimum.

The fitness obtained by improved ant colony algorithm is smaller than ant colony algo-
rithm, that is to say, the obstacle avoidance path achieved by improved ant colony algo-
rithm is shorter than ant colony algorithm; Ant colony algorithm reaches the optimal 
fitness value close to 80 iterations, while improved ant colony algorithm only need more 
than 60 iterations, which shows that the convergence rate of improved ant colony algo-
rithm is faster than ant colony algorithm; From the point of the whole running time, 
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the average time of improved ant colony algorithm is shorter than ant colony algorithm. 
The above results show that the avoidance effect obtained by the presented algorithm is 
more effective than the standard ant colony algorithm for manipulator end-effector.

Table 4  Parameters setting of improved ant colony algorithm

Size of population Decay coefficient 
of pheromone

Update coefficient 
of pheromone

Number  
of iterations

Coefficient K

20 0.9 0.2 100 100

Table 5  Comparisons between ant colony algorithm and improved ant colony algorithm

Average fitness (m) Average time (s) Optimal fitness (m)

Ant colony algorithm 62.1348 9.9841 58.9486

Improved ant colony algorithm 55.2767 9.6831 50.7498
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Conclusions
In this paper, an improved ant colony algorithm was presented and used for to plan 
the obstacle avoidance path to avoid the collisions between the space manipulator and 
obstacles when the manipulator executes the on-orbit service. The transfer rules, phero-
mone update method and search strategy of the ant colony algorithm were discussed 
and improved. Compared with the standard ant colony algorithm, experiments show 
that the presented algorithm has many advantages:  the efficiency of path planning is 
increased, and the planned path is shorter and safer. Simulation results demonstrate the 
feasibility and effectiveness of this method.

Of course, there still exist many aspects that need to be studied deeply. And, it will be 
a challenge to deal with a more complexity obstacles layout or a dynamic unstructured 
environment which will be our next most important research point.
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