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Background
With the advance of technology in data collection and data processing, enterprises can 
quickly store large amounts of data. In recent years, data mining has been recognized as 
a technology that can discover previously unknown and potentially useful information 
from databases (Witten et  al. 2011). Several data mining techniques have been devel-
oped, such as association rules mining (Agrawal et al. 1993; Hu and Chen 2006), classifi-
cation (Cohen 1995; Fernandez-Delgado et al. 2014; Quinlan 1993), clustering (Jain et al. 
1999), temporal pattern discovery (Hu et al. 2009; Roddick and Spiliopoulou 2002), and 
other statistical approaches (Vapnik 1999).

Classification is one of the most important technologies used in data mining. Given a 
set of data objects as a training set, classification techniques construct classifiers (mod-
els) to predict class labels of new data objects. A classifier can be used to infer that a 
new record belongs to a certain class. Thus far, classification technology has been used 
in many applications, including customer relationship management, medical diagnosis, 
and fraud prevention (Jyoti et al. 2011; Ngai et al. 2009; Yoon and Lee 2013). Researchers 
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have developed many classification techniques, which can be categorized as rule-based 
or non-rule-based approaches. The rule-based approaches, such as decision tree (Quin-
lan 1993), RIPPER (Cohen 1995), PART (Witten et al. 2011), and classification based on 
associations (CBA) (Liu et al. 1998, 2000), are typically interpretative and easy to imple-
ment. On the other hand, non-rule-based approaches, such as support vector machine 
(SVM) (Vapnik 1999) and artificial neural network (ANN) (Venkatesh and Thangaraj 
2008), have a high noise tolerance but require extensive computation.

Researchers have recently proposed several CBA-based methods, including CMAR (Li 
et al. 2001), CPAR (Yin and Han 2003), MCAR (Thabtah et al. 2005), CBC (Deng et al. 
2014), and MMAC (Thabtah et al. 2004). Experimental studies on these methods show 
that CBA-based approaches can yield higher accuracy than conventional classification 
methods. Most CBA-based methods (Li et al. 2001; Thabtah et al. 2004, 2005) adopt a 
rule selection or pruning techniques to build accurate classifiers by retaining limited but 
effective rules. These methods typically adopt a single threshold of minimum support for 
all items (i.e., “item” refers to an attribute-name associated with a valid attribute-value), 
class labels, and itemsets. However, a single minimum support restricts the applicability 
of current CBA-based methods. Different items of each rule or class label will likely have 
different levels of importance. For example, some items or class labels may appear fre-
quently in the database, while others may appear rarely. If the minimum support value is 
set at a high threshold, few items can satisfy this requirement, and rules with rare items 
cannot be found. To find rules with rare items, the minimum support value must be set 
relatively low. However, a lower value of minimum support requires extensive computa-
tion because the number of combinatorial itemsets increases exponentially; in addition, 
most of these itemsets are meaningless.

In the past, the class imbalance problem (Guo et al. 2008) has been addressed. In this 
case, the distribution of class labels is skewed, and thus, the classifiers have poor perfor-
mance on rare classes. To solve the class imbalance problem, the CBA-based methods 
(Liu et al. 2000; Janssens et al. 2005) have applied the concept of multiple minimum sup-
ports (MMSs) to differentiate class labels. That is, a different minimum class support is 
assigned for each class label. It is worth noting that the above works (Liu et  al. 2000; 
Janssens et al. 2005) only focus on the consideration of MMSs for different class labels. 
However, to the best of our knowledge, previous studies in classification have not inte-
grated the MMSs into various items. Research in association rule mining has shown that 
the rare item problem (Liu et al. 1999) produces poor-quality rules. Because the selec-
tion of a proper set of classification rules is the primary factor in determining the effec-
tiveness of associative classifiers, it is indispensable to address the rare item problem in 
CBA-based methods.

In this paper, a new approach for classification with MMSs is proposed to tackle all 
items and class labels in CBA rule generation. The proposed approach provides a user-
defined minimum support for each item and each class label. Because different classi-
fication rules appear in the corresponding minimum supports, an algorithm based on 
the established Multiple Support Apriori (MSapriori) algorithm (Thabtah 2007), called 
MMSCBA, is proposed to discover a complete set of classification rules with MMSs to 
build MMSCBA-based classifiers, four methods for classification rule selection are con-
sidered. Several experiments were conducted with six real-world datasets from the UCI 
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Machine Learning Repository (http://archive.ics.uci.edu/ml/) to evaluate the perfor-
mance of these classifiers.

The remainder of this paper is organized as follows. “Related work” section presents 
related research. “Problem definition” section presents the research problem. “The 
MMSCBA algorithm” section presents the proposed method. “Experimental evalua-
tion” section presents analysis and discussion. Finally, “Conclusion” section presents the 
conclusion.

Related work
Associative classification

Many studies have shown that associative classification (AC) achieves greater accuracy 
than other traditional approaches. Several AC-based studies have recently presented 
classification based on association (CBA) (Liu et al. 1998), classification based on multi-
ple association rules (CMAR) (Li et al. 2001), and classification based on predictive asso-
ciation rules (CPAR) (Yin and Han 2003). An AC-based approach typically consists of 
three phases: rule generation, rule pruning, and classification.

In the early stage, the CBA approach applies the concept of association rule classi-
fication. In CBA, the system initially executes the Apriori algorithm to progressively 
generate association rules that are satisfied with a user-defined minimum support and 
confidence threshold. One subset of the generated classification rules becomes the final 
classifier.

Similarly to CBA, the CMAR approach adopts the FP-Growth algorithm (Guo et al. 
2008) to generate frequent itemsets. The subset of matching rules is then used to clas-
sify a test object instead of one rule, and this, in turn, improves accuracy. The CMAR 
approach generates and evaluates rules similarly to CBA; however, CMAR uses a more 
efficient FP-tree structure. In addition, the CMAR approach considers multiple rules in 
predicting associated weights. Therefore, CMAR yields higher accuracy than CBA.

Both CBA and CMAR incur a high computation cost in rule generation and rule selec-
tion if the dataset is large. To avoid a high computation cost, the CPAR (Yin and Han 
2003) approach generates a small set of predictive rules directly from the dataset based 
on rule prediction and coverage analysis instead of generating candidate rules. The core 
of CPAR is its predictive rule mining capability, in which an object is correctly covered 
by a rule instead of being removed. The weight of this object is decreased by multiply-
ing a factor. This is essentially a greedy approach to rule generation and is more efficient 
than generating all candidate rules. The CPAR approach also uses a dynamic program-
ming approach to avoid repeating calculations during rule generation, allowing it to 
propose the best k rules in prediction. Previous studies have provided more complete 
surveys of associative classification (Thabtah 2006, 2007; Deen et al. 2010; Swami and 
Jain 2005).

Multiple minimum supports

Mining frequent patterns with a single minimum support (abbreviated as minsup) 
implicitly assumes that every item has the same property (i.e., frequency). If the minsup 
value is high, the rules involving rare items will not be found. Conversely, if the minsup 
value is low, a large number of meaningless rules will be generated. The MSapriori (Liu 

http://archive.ics.uci.edu/ml/
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et  al. 1999) approach has been proposed to extract frequent rules with rare items. In 
MSapriori, users are able to discover rare item rules without using frequent items to gen-
erate vast numbers of meaningless rules. Based on the definition in (Liu et al. 1999), each 
item in the database has a minsup that is expressed as minimum item support (MIS), and 
users can specify different values of MIS for different items. This approach makes it pos-
sible to observe the nature of the items and their frequencies. The definition of MIS is 
given as follows.

Definition 1  Let I =  {i1, i2, …, in} be a set of items, and let MIS(ip) denote the MIS 
value of item ip (ip ∈ I). The MIS value of itemset A = {i1, i2, …, ik}(1 ≦ k ≦ n) is defined as 
follows (Liu et al. 1999).

Example 1  Consider a database including three items: Milk, Granola, and Beer. The 
user-defined MIS values are described as follows:

If the support of itemset {Milk, Granola} is 0.7  %, then itemset {Milk, Granola} is 
infrequent because the MIS value of itemset {Milk, Granola} is equal to min[MIS(Milk), 
MIS(Granola)] = 1 %, which is larger than 0.7 %.

In conventional frequent pattern mining, the complete set of frequent patterns satis-
fies the downward closure property if there is only one minsup. That is, if an itemset is 
frequent, then all its subsets are also frequent. However, in the case of MMSs, the down-
ward closure property does not hold; that is, certain subsets of a frequent itemset are not 
frequent and their support values are indeterminate.

Example 2  Continuing Example 1, the itemset {Milk, Granola} is infrequent because 
the support of itemset {Milk, Granola} is 0.7 %. If the support of itemset {Milk, Granola, 
Beer} is 0.5 %, then itemset {Milk, Granola, Beer} is frequent because MIS(Beer) is only 
0.5 %. Clearly, the subset of the frequent itemset is not frequent.

To solve this problem, the sorted closure property is proposed in (Liu et al. 1999). Sup-
pose that all items in an itemset are sorted in ascending order according to their MIS 
values. The MIS value of any superset of an itemset is equal to that of the first item in 
this itemset. If an itemset is infrequent based on the MIS value of its first item (i.e., the 
smallest MIS value among all items in this itemset), then none of its supersets will be fre-
quent. Based on the above property, MSapriori (Liu et al. 1999) can decrease the search 
space to discover all frequent itemsets with MMSs. Specifically, MSapriori presorts all 
items according to their MIS values but modifies the procedure of generating candidate 
sets. Because the supports of certain subsets are indeterminate, MSapriori requires post-
processing to compute the supports of all subsets of frequent itemsets.

Several extensions of the MSapriori algorithm have been proposed. Hu and Chen 
(2006) proposed a new data structure, MIS-tree, to enhance the efficiency of MSap-
riori and to discover frequent patterns with MMSs. The procedure for constructing 

MIS(A) = min[MIS(i1),MIS(i2), . . . ,MIS(ik)]

MIS(Milk) = 3 %,MIS(Granola) = 1 %,MIS(Beer) = 0.5 %
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the MIS-tree only scans a database once. Kiran and Reddy (2010) also proposed an 
enhanced method. They designed a new method of calculating the MIS value called 
support difference. Second, they proposed an FP-growth-like algorithm to extract rare 
frequent patterns. Finally, they used an evaluation scheme called “item-to-pattern dif-
ference” to adjust the distortion if the frequency between each item varies widely. Lee 
et  al. (2005) considered a new perspective on minimum supports. They proposed the 
concept of maximum constraint, which provides a thorough explanation for certain 
domains. They also adopted the Apriori-based algorithm to discover large itemsets and 
association rules within the constraint. Chen et al. (2009) also proposed a fuzzy-based 
approach called the divide-and-conquer genetic-fuzzy mining algorithm for items with 
MMSs (DGFMMS). The DGFMMS is designed to find minimum supports, membership 
functions, and fuzzy association rules.

Problem definition
Let I = {i1, i2,…, in} denote a set of distinct items, where ip (1 ≤ p≤n) is an item presented 
in the format of a pair (attribute-name, attribute-value). An event e is a non-empty set of 
items, and each item in e follows a different attribute-name. Let Y be a set of class labels. 
A rule-item r is of the form: r = {e, y}, where y is a class label and y ∈ Y .

Definition 2  Given two rule-items α =
{

(iα1 i
α
2 . . . i

α
n ), yα

}

 and β =

{

(i
β
1 i

β
2 . . . i

β
m), yβ

}

 
where yα , yβ ∈ Y  and m ≤ n holds. The event in β, i.e., (iβ1 i

β
2 . . . i

β
m), is said to be con-

tained in α if there exist integers 1 ≤ k1 < k2 < ··· <km ≤ n such that iβ1 = iαk1, i
β
2 = iαk2, …, 

i
β
m = iαkm. Moreover, a rule-item β is contained in α if (iβ1 i

β
2 . . . i

β
m) is contained in α, and 

yα = yβ.

Example 3  Suppose there is a rule-item α =  {(a, 1)(b, 2)(c, 1)(b, 1)(d, 2), y1} and that 
the rule-item β =  {(a, 1)(b, 2)(c, 1)(d, 2), y1} is contained in α because the relationship 
between α and β is satisfied by the two conditions presented previously. As another 
example, the rule-item γ = {(a, 1) (b, 1) (d, 3), y2} is not contained in α because item (d, 3)  
is not included in α; that is, condition (1) is not true in the case of α and γ.

Definition 3  A database D consists of a set of records (id, γ), where γ is a rule-item and 
id is the identifier of this rule-item. Given a rule-item β =

{

(i
β
1 i

β
2 . . . i

β
m), yβ

}

 for rule-
item β in D, define the event support count e_supp, the class support count y_supp and 
the rule-item support count r_supp as:

Example 4  Table 1 shows all attribute-values for each attribute and the complete set 
of items. Table 2 shows the sample database D. Given a rule-item β = {(a, 1)(d, 2)(e, 1), 
y1}, the event support count of β in D, e_suppD(β), is 4 (see sid 1, 2, 4, and 5); the class 
support count of β in D, y_suppD(β), is 3 (see sid 1, 4, and 5); and the rule-item support 
count of β in D, r_suppD(β), is 3 (see sid 1, 4, and 5).

e_suppD(β) = |{(id, γ )|(id, γ ) ∈ D ∧ (i
β
1 i

β
2 . . . i

β
m) is contained in γ |

y_suppD(β) = |{(id, γ )|(id, γ ) ∈ D ∧ yβ is contained in γ |

r_suppD(β) = |{(id, γ )|(id, γ ) ∈ D ∧ β is contained in γ |
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As discussed previously, a single minimum support is inapplicable to real-life cases 
because of the rare item problem. In this paper, the concept of MMSs is introduced, 
where a user specifies the minimum support threshold of each item.

Definition 4  Let MIS(ip) denote the minimum item support of item ip, where ip ϵ I. In 
addition, MCS(y) represents the minimum class support of a class label y. Given a rule-
item β =

{

(i
β
1 i

β
2 . . . i

β
m), yβ

}

, the minimum rule-item support of rule-item β, denoted 
as MRS(β), is equal to the minimum support value among all items and MCS(yβ) (i.e., 
min(MIS(i

β
1 ),MIS(i

β
2 ), . . . ,MIS(i

β
m),MCS(yβ))).

By using differing minimum item supports for the respective items, users can effec-
tively determine the support requirements for different items. The property of MMSs 
allows higher minimum supports for the rule-items that only involve frequent items and 
lower minimum supports for the rule-items that contain rare items.

Definition 5  Given a database D and a rule-item β =

{

(i
β
1 i

β
2 . . . i

β
m), yβ

}

, we call β a 
frequent rule-item if r_suppD(β) ≥ MRS(β). Moreover, the confidence of a frequent rule-
item β is defined as follows:

Example 5  Continuing Example 4, the user-specified minimum thresholds are given as 
follows: MIS(a, 1) = 3, MIS(a, 2) = 4, MIS(a, 3) = 1, MIS(b, 1) = 3, MIS(b, 2) = 4, MIS(c, 
1) = 2, MIS(c, 2) = 1, MIS(c, 3) = 2, MIS(d, 1) = 2, MIS(d, 2) = 3, MIS(e, 1) = 2, MIS(e, 
2) = 2, MCS(y1) = 2, and MCS(y2) = 1. For a rule-item β =  {(a, 1)(d, 2)(e, 1), y1}, the 
MRS(β) is equal to min(MIS(a, 1), MIS(d, 2), MIS(e, 1), MCS(y1)) = min(3, 3, 2, 2) = 2. 
Because r_suppD(β) satisfies MRS(β) (i.e., 3 ≧ 2), we call β a frequent rule-item and

r_confD(β) =
r_suppD(β)

e_suppD(β)
.

Table 1  The attribute-name and attribute-values

Attribute-name Attribute-value Item

a {1, 2, 3} (a, 1) (a, 2) (a, 3)

b {1, 2} (b,1) (b, 2)

c {1, 2, 3} (c,1) (c, 2) (c, 3)

d {1, 2} (d, 1) (d, 2)

e {1, 2} (e, 1) (e, 2)

Table 2  The sample database D

sid Database

1 {(a, 1)(b, 1)(d, 2)(e, 1), y1}

2 {(a, 1)(b, 2)(c, 3)(d, 2)(e, 1), y2}

3 {(a, 3)(b, 2)(c, 3)(d, 1)(e, 1), y2}

4 {(a, 1)(b, 1)(c, 1)(d, 2)(e, 1), y1}

5 {(a, 1)(c, 3)(d, 2)(e, 1), y1}
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In summary, this approach discovers all frequent rule-items that are satisfied with 
their own MRS. Next, an associative classifier can be built based on the set of all fre-
quent rule-items. For example, a frequent rule-item β =

{

(i
β
1 i

β
2 . . . i

β
m), yβ

}

 indicates a 
classification rule (iβ1 i

β
2 . . . i

β
m) → yβ in which the support and confidence are equal to 

r_suppD(β) and r_suppD(β)e_suppD(β)
, respectively.

The MMSCBA algorithm
The process of discovering a complete set of frequent rule-items is illustrated in Fig. 1. 
Initially, scan the complete database D once and count the supports of each item. Given 
the lowest minimum rule-item support MRSall, prune the items not satisfying MRSall 
and then form a pruned database D’ in which the rule-items are sorted by MIS and MCS 
in ascending order. Then, divide D’ into partitions, denoted as D′

y, where each class label 
y satisfies MCS. For each partition D′

y, the Multiple supports—Classification Based on 
Associations (MMSCBA) algorithm is performed to find frequent rule-items. Next, col-
lect all frequent rule-items and their r_suppD from each partition. Because the database 
D’ is divided into separate partitions, scan the entire database to calculate the e_suppD of 
the frequent rule-items found in each partition. Finally, all frequent rule-items with their 
e_suppD and r_suppD become classification rules, forming the proposed classifier.

The following subsections depict the MMSCBA algorithm and the scoring approaches 
for class label prediction.

The MMSCBA algorithm

As Fig. 2 shows, the MMSCBA algorithm includes three functions: (1) Candidate-Gen-
C2(L1), (2) Candidate-Gen-Ck(Lk−1), and (3) Check-MRS(c).

In Line 1, scan the database D′

y to obtain the support count of each item i, denoted as r_
supp(i). In Line 2, compare r_supp(i) with the value of MRS(i) to determine whether the 
item i is frequent. Each rule-item with an r_supp(i) value greater than or equal to MRS(i) 
is inserted into frequent 1-rule-item set L1. From Lines 3 to 6, use Lk−1 to generate Ck. By 
calling Candidate-Gen-C2(L1), use L1 to generate all 2-candidate-rule-items to form C2. 

r_confD(β) =
r_suppD(β)

e_suppD(β)
=

3

4
= 0.75.

Scan D’ again to 
get e_supp

Scan

… …

Union

M-CBA

Original 
database D

Pruned 
database 

D’

1
'
yD

2
'
yD

ny
D '

Rule-items 
with label y1

Rule-items 
with label y2

Rule-items 
with label yn

Complete set 
of rule-items 
for all class 
labels 
(r_supp only)

Complete set 
of rule-items 
with both 
support and 
confidence 
information

Fig. 1  The frequent rule-item generation process
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Similarly, use Candidate-Gen-Ck(Lk−1) (k > 2) to generate all k-candidate-rule-items Ck 
from Lk−1. “Candidate-rule-item generation” section details the procedure of candidate 
rule-item generation. After generating the set of candidate-rule-items, Line 7 scans D′

y 
to obtain the support count of each candidate-rule-item c, r_supp(c). From Lines 8 to 9, 
use the check-MRS(c) function to obtain the minimum support of c, denoted as MRS(c). 
Then, in Lines 10 and 11, the candidate-rule-item c with r_supp(c) ≥ MRS(c) is inserted 
into Lk. At the end of this stage, we can identify all frequent rule-items from D′

y.

Candidate‑rule‑item generation

From the overview in “The MMSCBA algorithm” section, we can see that the basic con-
cept of the MMSCBA algorithm is similar to the traditional Apriori algorithm (Agrawal 
et al. 1993). There exists, however, a significant difference between our candidate genera-
tion functions and the traditional ones. The main reason for this is that we consider the 
concept of multiple minimum supports, and the downward closure property no longer 
holds in our approach. In other words, sub-rule-items of a frequent rule-item may not be 
frequent because the supports of a frequent rule-item and its sub-rule-items may differ. 
Therefore, to generate a complete set of candidate-rule-items, this study proposes two 
new candidate generation methods, Candidate-Gen-C2 and Candidate-Gen-Ck, which 
are based on the definition of MMSs.

Figure 3 presents the function Candidate-Gen-C2(L1). Use L1 to generate C2 in D′

y. In 
L1, each two frequent 1-rule-items are joined to form a 2-candidate-rule-item. For exam-
ple, two frequent 1-rule-items (i1, y1) and (i2, y1) can be joined as a 2-candidate-rule-
item, {(i1, i2), y1}. Because all rule-items in D′

y have the same class label, we can ignore 

Fig. 2  The MMSCBA algorithm



Page 9 of 19Hu et al. SpringerPlus  (2016) 5:528 

the class label and only consider the events in two frequent 1-rule-items in the candidate 
generation process. Note that the attribute-names of i1 and i2 cannot be the same (i.e., 
i1.attribute-name ≠ i2.attribute-name), and all items in a candidate are sorted in increas-
ing order of their MIS values.

As Fig. 4 shows, the function Candidate-Gen-Ck(Lk−1) uses Lk−1 to generate Ck. Given 
two (k−1)-rule-items p and q, two k-candidate-rule-items (k > 2) can be generated if the 
following two conditions are satisfied: (1) the first (k − 2) items of both p and q are the 
same; (2) the attribute-names of the last items in p and q are the same. Figure 5 shows 
two possible k-candidate-rule-items generated by the function Candidate-Gen-Ck(Lk−1). 
Note that if the MIS(p.itemk−1) ≥ MIS(q.itemk−1) then the k-candidate-rule-item cd1 is 
generated; otherwise, cd2 is generated.

Example 7  Continuing Example 4, consider two frequent 4-rule-items with class label 
y2, where d1 = {(i11)(i1)(i4)(i2), y2} and d2 = {(i11)(i1)(i4)(i7), y2}. Join the two 4-rule-items 
to form a new 5-candidate-rule-item in which the first three items in d1 are identical to 
those in d2, but their last items are different. Because MIS(i7) = 3, which is larger than 

Fig. 3  The function Candidate-Gen-C2(L1)

Fig. 4  The function Candidate-Gen-Ck(Lk−1)

Fig. 5  The join method in Candidate-Gen-Ck(Lk−1)
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MIS(i2) =  4, a 5-candidate-rule-item cd1 =  {(i11)(i1)(i4)(i7)(i2), y2} can be generated (as 
shown in Fig. 6).

It is essential that the complete set of frequent patterns can be discovered through the 
algorithm. Because MMSCBA adopts the candidate-generation-and-test approach to 
discover all frequent rule-items, the completeness of the candidate generation method 
needs to be clarified.

Because our approach considers the concept of MMSs, all frequent rule-items must 
satisfy the sorted closure property. That is, any sub-rule-item β of a frequent rule-item α 
is also a frequent rule-item if MRS(β) = MRS(α). If r_supp(α) ≧ MRS(α), then r_supp(β) 
also satisfy MRS(α) = MRS(β), i.e., β is also a frequent rule-item. This property ensures 
that our candidate-generation-and-test method is feasible because all possible k-candi-
date-rule-items can be generated from their (k − 1)-sub-rule-items.

Predicting class label based on classification rules

After generating all classification rules, use them to classify uncertain objects in a 
testing dataset. The prediction of the class labels in associative classification can be 
categorized into two main approaches: prediction based on the highest precedence 
single rule-item and prediction based on multiple rule-items. In this study, four pre-
diction measurements are considered: Maximum likelihood (Liu et al. 1998; Thabtah 
et al. 2005), Max χ2 (Li et al. 2001), Laplace (Yin and Han 2003), and Scoring (Hu et al. 
2007).

Maximum likelihood

Given a testing data object α and a set of classification rules, the maximum likelihood 
approach only considers the highest precedence rule that matches α. If there is no appli-
cable rule to match α, then the default class label is assigned to α. Several associative 
classification algorithms (Liu et  al. 1998; Thabtah et  al. 2005) have adopted the maxi-
mum likelihood approach for class label prediction.

Max χ2

Instead of considering a single rule in class label prediction (i.e., Maximum likelihood), 
the CMAR algorithm (Li et al. 2001) exploits a prediction method that selects a subset of 
high-confidence rules that are applicable to a class label. The prediction is made by ana-
lyzing the correlation among the rules. The correlation is measured using weighted χ2 
analysis to examine the strength of a rule-item based on its support and class frequency 
in the set of rule-items.

Following Definition 3, the weighted χ2 of a rule-item, denoted as Max χ2, is defined as 
follows:

Fig. 6  An example of the join method
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where

Laplace

Laplace accuracy (Quinlan 1986) is used to estimate the expected accuracy of a rule 
item. Given a rule-item r, Laplace accuracy can be defined as follows.

where |Y| is the number of classes.
To classify a data object, this approach first identifies all matching rule-items and 

groups them by class labels. For each rule set (i.e., rules having the same class label), the 
best k rules are chosen and then used to calculate the average Laplace accuracy of a class 
label. Finally, the class label with the highest average Laplace accuracy will be selected as 
the final prediction outcome.

Scoring

Hu et  al. (2007) proposes a scoring method to calculate the score of each class label 
based on all matching rules. Given a frequent rule-item r, the two scoring functions are 
described as follows:

The whole procedure of the scoring method can be stated as follows. Given a testing 
data object α, we first identify the complete set of classification rules satisfying α, mean-
ing that the event part of a rule-item is a subset of α. Next, we divide these rules into sets 
according to their class labels. The WeightedSupport and WeightedConfidence of a rule 
set can be accumulated by summing the score of each rule-item in the set. The class label 
with the highest WeightedConfidence value is selected as the prediction label. If there is 
more than one class label with the highest WeightedConfidence value, then we compare 
their WeightedSupport and choose the class label with the highest value of WeightedSup-
port as the prediction label.

Maxχ2 =

{

min[e_suppD, y_suppD]−
e_suppD × y_suppD

|D|

}2

× |D| × u

u =
1

e_suppD × y_suppD
+

1

e_suppD × (|D| − y_suppD)

+
1

(|D| − e_suppD)× y_suppD

+
1

(|D| − e_suppD)× (|D| − y_suppD)
.

Laplace(r) =
y_suppD(r)+ 1

e_suppD(r)+ |Y |

WeightedSupport(r) =
r_suppD(r)

MRSall

WeightedConfidence(r) = r_confD(r)×
r_suppD(r)

MRSall
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Experimental evaluation
Data collection and experimental setup

Six real-world datasets are selected from the UCI machine learning repository website 
(http://archive.ics.uci.edu/ml/). Table 3 provides a description of these datasets. 

The experiments were run on a Windows 7 PC equipped with a Intel core i5-4570 
3.2 GHz processor and 16 GB of RAM. The proposed methods were implemented using 
the JAVA language. Several well-known classification techniques were also considered in 
experimental evaluations, including C4.5, SVM, PART, ANN, RIPPER, and traditional 
CBA. Among them, C4.5 (Quinlan 1986, 1993), SVM, PART, ANN, and RIPPER were 
performed using WEKA 3.6.10 (www.cs.waikato.ac.nz/ml/weka) (Witten et al. 2011), a 
popular suite of machine learning software; the CBA algorithm was performed by adopt-
ing its implementation version in (Liu et  al. 1998). In all experiments, ten-fold cross-
validation (Burman 1989) was adopted to estimate the performance of the proposed 
method. The accuracy, defined as the proportion of the true results (i.e., both truth posi-
tive and truth negative) among the total number of samples examined, was used as the 
metric to measure the performance of the algorithms.

To easily generate MIS values on each item in MMSCBA, we adopted the method pro-
posed in Thabtah (2007), which considers the actual frequencies of items as the basis for 
MIS value assignment. The equations are stated as follows:

where f(ip) represents the number of times item ip (ip ∈ I) occurs in the database, and 
MRSall denotes the smallest MIS value among all items. σ (0 ≦  σ ≦  1) can be used to 
control the effect of the MIS value in the mining process. In the experiments, we modi-
fied the σ value from 0 to 1. If σ is set to 0, all items will have identical MIS values (i.e., 
MRSall) and will produce the same results as traditional association rule mining. If σ is 
set to 1 and M(ip) ≥ MRSall, f (ip) is the MIS value for ip.

Results

For every dataset, the value of minsup is set as follows: (1) 0.2 ≤ minsup ≤ 0.4 for 
datasets BS, BC, and BCW; (2) 0.1 ≤ minsup ≤ 0.3 for datasets M2 and TF; and (3) 
0.005 ≤ minsup ≤ 0.007 for the dataset WF.

MIS(ip) =

{

M(ip), ifM(ip) ≥ MRSall
MRSall , otherwise

M(ip) = σ × f (ip) 0 ≤ σ ≤ 1

Table 3  Detailed information of the UCI datasets

Dataset Attributes Number 
of instances

Number of  
attributes

Number  
of classes

Rare item 
problem

Balance Scale (BS) Discrete 625 4 3 No

Breast Cancer (BC) Discrete 286 9 2 Yes

Breast Cancer  
Wisconsin (BCW)

Discrete 699 9 2 Yes

Monks2 (M2) Discrete 432 6 2 No

Transfusion (TF) Discrete and  
continuous

748 4 2 No

Waveform(WF) Continuous 5000 40 3 No

http://archive.ics.uci.edu/ml/
http://www.cs.waikato.ac.nz/ml/weka
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Table 4 presents the classification results of the BS dataset using the MMSCBA with 
four rule selection methods. The best accuracy of MMSCBA with maximum likelihood, 
Laplace, scoring, and Max χ2 are 0.748, 0.593, 0.708, and 0.384, respectively. MMSCBA 
with maximum likelihood performs the best compared with the other three classi-
fication rule selection methods reported above. MMSCBA with Max χ2 has the worst 
performance.

For the BC dataset, the results in Table 5 show that the best accuracy of MMSCBA 
with maximum likelihood, Laplace, scoring, and Max χ2 at 0.705, 0.595, 0.706, and 0.624, 
respectively. MMSCBA with maximum likelihood and scoring methods performs the 
best compared with the other two methods. MMSCBA with the Laplace method has the 
worst performance.

For the BCW dataset, the results in Table 6 show that the best accuracies of MMSCBA 
with maximum likelihood, Laplace, scoring, and Max χ2 were 0.963, 0.950, 0.770, and 
0.818, respectively. MMSCBA with the maximum likelihood method performs the best 
compared with the other three methods. MMSCBA with the scoring method has the 
worst performance.

For the M2 dataset, the results in Table 7 show that the best accuracies of MMSCBA 
with maximum likelihood, Laplace, scoring, and Max χ2 are 0.657, 0.629, 0.672, and 
0.604, respectively. MMSCBA with the scoring method performs the best compared 
with the other three methods. MMSCBA with the Max χ2 method has the worst 
performance.

For the TF dataset, the results in Table 8 show that the best accuracies of MMSCBA 
with maximum likelihood, Laplace, scoring, and Max χ2 are 0.759, 0.571, 0.762, and 
0.730, respectively. MMSCBA with the scoring method performs the best compared 
with the other three methods. MMSCBA with the Laplace method has the worst 
performance.

Table 4  The experimental results of dataset BS

minsup σ

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Maximum likelihood method

 0.02 0.698 0.701 0.698 0.692 0.681 0.675 0.690 0.705 0.733 0.748

 0.03 0.698 0.701 0.698 0.691 0.681 0.678 0.694 0.710 0.742 0.748

 0.04 0.711 0.713 0.710 0.703 0.689 0.681 0.695 0.717 0.738 0.739

Laplace method

 0.02 0.434 0.436 0.443 0.445 0.446 0.434 0.432 0.405 0.356 0.296

 0.03 0.441 0.443 0.449 0.447 0.449 0.444 0.446 0.413 0.367 0.240

 0.04 0.593 0.593 0.587 0.576 0.549 0.562 0.558 0.550 0.538 0.507

Scoring method

 0.02 0.696 0.697 0.699 0.698 0.699 0.691 0.686 0.686 0.678 0.705

 0.03 0.691 0.692 0.696 0.697 0.697 0.689 0.680 0.676 0.672 0.708

 0.04 0.674 0.674 0.676 0.676 0.675 0.663 0.653 0.646 0.656 0.702

Max χ2 method

 0.02 0.269 0.266 0.270 0.271 0.289 0.314 0.327 0.364 0.359 0.369

 0.03 0.270 0.267 0.271 0.272 0.290 0.314 0.327 0.364 0.361 0.372

 0.04 0.266 0.262 0.267 0.271 0.291 0.323 0.334 0.371 0.380 0.384
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In summary, the above results of the first five datasets show that MMSCBA with the 
maximum likelihood method has the highest accuracy, and MMSCBA with the Max χ2 
method has the lowest accuracy on average. The accuracy of MMSCBA with the scoring 
method is relatively stable for various values of α and minsup. The MMSCBA with the 
Max χ2 method achieves better accuracy as the value of α decreases, but its performance 
is sensitive to α.

Table 5  The experimental results of dataset BC

minsup σ

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Maximum likelihood method

 0.02 0.644 0.659 0.689 0.693 0.708 0.699 0.707 0.698 0.705 0.704

 0.03 0.644 0.659 0.689 0.693 0.707 0.699 0.707 0.698 0.705 0.700

 0.04 0.644 0.659 0.689 0.693 0.707 0.699 0.707 0.698 0.704 0.694

Laplace method

 0.02 0.504 0.522 0.573 0.594 0.595 0.569 0.584 0.580 0.543 0.510

 0.03 0.504 0.522 0.573 0.594 0.595 0.569 0.584 0.577 0.536 0.513

 0.04 0.504 0.522 0.573 0.594 0.595 0.569 0.580 0.575 0.520 0.507

Scoring method

 0.02 0.703 0.703 0.703 0.703 0.703 0.704 0.704 0.703 0.704 0.704

 0.03 0.703 0.703 0.703 0.703 0.704 0.704 0.704 0.704 0.703 0.704

 0.04 0.703 0.703 0.703 0.703 0.703 0.704 0.704 0.704 0.706 0.706

Max χ2 method

 0.02 0.514 0.513 0.558 0.550 0.547 0.590 0.600 0.618 0.624 0.620

 0.03 0.514 0.513 0.558 0.550 0.547 0.590 0.600 0.618 0.624 0.613

 0.04 0.514 0.513 0.558 0.550 0.547 0.590 0.600 0.618 0.621 0.587

Table 6  The experimental results of dataset BCW

minsup σ

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Maximum likelihood method

 0.02 0.926 0.926 0.923 0.925 0.933 0.945 0.946 0.952 0.953 0.953

 0.03 0.948 0.947 0.943 0.942 0.948 0.959 0.959 0.962 0.963 0.963

 0.04 0.943 0.942 0.938 0.937 0.944 0.954 0.955 0.959 0.959 0.959

Laplace method

 0.02 0.808 0.823 0.852 0.885 0.916 0.914 0.930 0.944 0.950 0.945

 0.03 0.705 0.728 0.795 0.859 0.902 0.906 0.917 0.927 0.923 0.894

 0.04 0.776 0.811 0.862 0.895 0.926 0.920 0.922 0.923 0.916 0.912

Scoring method

 0.02 0.752 0.748 0.754 0.763 0.769 0.759 0.766 0.763 0.770 0.767

 0.03 0.715 0.713 0.711 0.709 0.708 0.704 0.709 0.709 0.712 0.715

 0.04 0.714 0.712 0.715 0.718 0.719 0.720 0.723 0.724 0.726 0.721

Max χ2 method

 0.02 0.700 0.688 0.704 0.715 0.737 0.787 0.790 0.795 0.793 0.802

 0.03 0.716 0.700 0.715 0.728 0.751 0.804 0.809 0.806 0.814 0.818

 0.04 0.787 0.791 0.801 0.805 0.813 0.811 0.804 0.809 0.813 0.818
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Table  9 presents the results of a comparison between non-rule-based classifiers 
(i.e., ANN and SVM) and rule-based classifiers (i.e., C4.5, PART, RIPPER, CBA, and 
MMSCBA with maximum likelihood). The results show that the performance of the 
rule-based classifiers is stable but not the best among all techniques. The accuracy of the 
non-rule-based classifiers is higher than that of the rule-based classifiers in most of the 
six datasets.

Table 7  The experimental results of dataset M2

minsup σ

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Maximum likelihood method

 0.01 0.653 0.657 0.641 0.631 0.616 0.620 0.637 0.640 0.638 0.648

 0.02 0.653 0.657 0.641 0.631 0.616 0.620 0.637 0.640 0.638 0.648

 0.03 0.653 0.657 0.641 0.631 0.616 0.620 0.637 0.640 0.637 0.645

Laplace method

 0.01 0.626 0.623 0.629 0.625 0.636 0.617 0.610 0.628 0.586 0.460

 0.02 0.626 0.623 0.629 0.625 0.636 0.617 0.610 0.628 0.586 0.459

 0.03 0.626 0.623 0.629 0.625 0.636 0.617 0.610 0.628 0.586 0.450

Scoring method

 0.01 0.671 0.671 0.671 0.671 0.671 0.671 0.671 0.671 0.672 0.671

 0.02 0.671 0.671 0.671 0.671 0.671 0.671 0.671 0.671 0.672 0.671

 0.03 0.671 0.671 0.671 0.671 0.671 0.671 0.671 0.671 0.672 0.672

Max χ2 method

 0.01 0.575 0.579 0.513 0.516 0.503 0.509 0.551 0.556 0.595 0.603

 0.02 0.575 0.579 0.513 0.516 0.503 0.509 0.551 0.556 0.595 0.604

 0.03 0.575 0.579 0.513 0.516 0.503 0.509 0.551 0.556 0.596 0.597

Table 8  The experimental results of dataset TF

minsup σ

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Maximum likelihood method

 0.02 0.759 0.759 0.759 0.759 0.757 0.758 0.758 0.758 0.758 0.759

 0.03 0.759 0.759 0.759 0.759 0.757 0.758 0.758 0.758 0.758 0.758

 0.04 0.759 0.759 0.759 0.759 0.757 0.758 0.758 0.758 0.758 0.758

Laplace method

 0.02 0.571 0.549 0.526 0.511 0.523 0.538 0.548 0.494 0.504 0.472

 0.03 0.571 0.549 0.526 0.511 0.523 0.538 0.548 0.494 0.504 0.519

 0.04 0.571 0.549 0.526 0.511 0.523 0.538 0.548 0.494 0.504 0.516

Scoring method

 0.02 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762

 0.03 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762

 0.04 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762

Max χ2 method

 0.02 0.257 0.342 0.640 0.679 0.717 0.722 0.724 0.727 0.726 0.730

 0.03 0.257 0.342 0.640 0.679 0.717 0.722 0.724 0.727 0.726 0.726

 0.04 0.257 0.342 0.640 0.679 0.717 0.722 0.724 0.727 0.726 0.726
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Table  10 presents the results of runtime for all classifiers and datasets. The results 
show that the CBA and our approach require more runtime than other classification 
techniques such as SVM, C4.5, PART, and RIPPER. The results are as expected. It is 
because the runtime of association rule-based approaches (i.e., CBA and MMSCBA) is 
affected by the minsup. That is, it may require longer execution time when minsup is set 
too low. Therefore, compared to other heuristic approaches (e.g., C4.5, PART, and RIP-
PER etc.), our approach requires more execution time for discovering all possible clas-
sification rules from the datasets.

In many real-life applications, non-rule-based classification techniques cannot be 
adopted due to low interpretability. In contrast, rule-based classification techniques can 
generate IF–THEN rules, which can be easily stored in a knowledge base. The expert 
systems can also be easily built by incorporating the rules into an expert system shell. 
Therefore, while the performance of rule-based classifiers is acceptable, most decision 
makers would select rule-based classifiers in practice.

Among all the rule-based classifiers, the experimental results also show that the pro-
posed method (i.e., MMSCBA with the maximum likelihood method) outperforms the 
traditional CBA and other rule-based techniques in three of the six datasets. Compared 
with other classification methods, the proposed method achieves remarkable accuracy 
when the dataset contains rare items, such as the BC and BCW datasets. Although 
C4.5 and CBA perform the best in datasets BC and TF, respectively, MMSCBA with the 
maximum likelihood method still has a satisfactory performance (i.e., close to the best 
classifier).

Conclusion
In CBA, it is difficult to discover rules involving rare items using a single minsup thresh-
old because of the rare item problem. This paper presented the concept of integrating 
MMSs into established classifiers. Unlike conventional multiple thresholds, the pro-
posed method uses three factors (i.e., MIS values for items, MCS values for classes, and 
MRS values for rule-items) to determine classification rules.

Experimental results involving six real-world datasets demonstrate that MMSCBA 
with a maximum likelihood classifier achieves higher accuracy than traditional CBA, 
especially when the dataset contains a rare item. In addition, the MMSCBA method can 
resolve the inadequacy of class imbalance and the rare item problem.

Table 10  Runtime (s) for all classification techniques

Dataset Non-rule-based Rule-based

ANN SVM C4.5 PART RIPPER CBA (minsup) MMSCBA (minsup)

BS 1.30 0.04 0.01 0.01 0.02 0.42 (0.4) 1.24 (0.4)

BC 1.14 0.03 0.01 0.01 0.01 5.35 (0.4) 7.40 (0.4)

BCW 24.22 0.15 0.02 0.01 0.11 6.78 (0.4) 21.42 (0.4)

M2 0.53 0.01 0.01 0.01 0.01 0.36 (0.3) 1.18 (0.3)

TF 0.27 0.01 0.01 0.01 0.01 0.47 (0.3) 1.87 (0.3)

WF 189.09 7.39 0.03 0.28 0.55 20.90 (0.007) 195.68 (0.007)
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Two related issues are worthy of future research. The first is the applicability of this 
approach to other types of datasets. Previous studies have proposed varied factors that 
are useful in specific cases; however, these factors are often impractical for analyzing 
new (or unknown types of ) data. The second issue concerns efficiency. Instead of using 
the Apriori-like algorithm, the proposed method should be extended to other effi-
cient pattern discovery approaches, such as the FP-growth and distributed computing 
algorithms.
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