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Background
In the last few decades, the problems that consist of nonlinear terms have grabbed the 
interest of many researchers because of its challenging to handle. Many efforts have been 
made by many researchers to investigate the concrete solutions to such problem of non-
linear differential equations. Due to the fact that, many nonlinear problems do not have 
a small parameter, so this is what has confined many analytical techniques, among which 
we have a perturbation technique, and other traditional methods which require the pres-
ence of a small parameter in the equation (Nayfeh and Mook 1979). We consider the 
two-dimensional incompressible laminar boundary layer equations, which are expressed 
in the form of nonlinear third-order ordinary differential equations as follows.

subject to the boundary conditions

This equation was first stated by Falkner and Skan (1931). Though, later on their solu-
tions and dependency on the parameter β were investigated by Hartree (1937). The solu-
tions of Falkner–Skan equation have been analytically investigated by many scholars. 
Abbasbandy and Hayat (2009) studied the solution of the magnetohydrodynamic (MHD) 
Falkner–Skan flow by homotopy analysis method (HAM). They found that the value of 
skin friction increases with the increase of magnetic field parameter, while the bound-
ary layer thickness decreases. Yao (2009) investigated the temperature distribution in 

(1)f ′′′ + ff ′′ + β

(

1− f ′2
)

= 0,

(2)f (0) = 0, f ′(0) = 0, f ′(+∞) = 1.

Abstract 

In this paper, a revised optimal homotopy asymptotic method (OHAM) is applied to 
derive an explicit analytical solution of the Falkner–Skan wedge flow problem. The 
comparisons between the present study with the numerical solutions using (fourth 
order Runge–Kutta) scheme and with analytical solution using HPM-Padé of order [4/4] 
and order [13/13] show that the revised form of OHAM is an extremely effective analyti-
cal technique.
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the Falkner–Skan wedge flow using HAM. Analytical solutions of momentum and heat 
transfer of the Falkner–Skan flow with algebraic decay have been studied by Fang et al. 
(2012). They observed that the value of the flow controlling parameter, b decreases 
with the decrease of the wall movement parameter, λ. Although, the value of the wall 
mass transfer, γ first decreases and then increases, while the wall temperature gradi-
ent increases with the decrease of pole number, n and the increase of Prandtl number, 
Pr. Hayat et  al. (2011) studied the porous medium and mixed convection of Falkner–
Skan wedge flow of a power-law fluid using HAM, their results show that dimensionless 
velocity distribution decreases with the increase in Pr. It was observed that the velocity 
profile increases when the Reynolds number, Re is increased. Yao and Chen (2009) found 
the series solution to the Falkner–Skan equation with stretching boundary using HAM 
and compared their results numerically by fourth-order Runge–Kutta method combined 
with Newton–Raphson technique. A good agreement was found between both approxi-
mate analytical solution and numerical result. A numerical method for the solution of 
the Falkner–Skan equation was investigated using a shooting method by Asaithambi 
(1997). Asaithambi (1997) was able to obtain the accelerating, constant, decelerating, 
and reverse flows numerically. The solution of the Falkner–Skan equation for wedge 
using Adomian decomposition method (ADM) by Alizadeh et al. (2009) indicated that 
the percentage of error decreases by increasing the number of the ADM terms. Rajago-
pal et al. (1983) investigated the Falkner–Skan boundary layer flow of a homogeneous 
incompressible second grade fluid past a wedge placed symmetrically with respect to the 
fluid flow direction. Moreover, many researchers devoted themselves on investigating 
the problem of Falkner–Skan flow (Kuo 2005; Pantokratoras 2006; Ishak et al. 2009; Zhu 
et al. 2009; Rosales-Vera and Valencia 2010; Hsiao 2011; Yacob et al. 2011; Parand et al. 
2011; Abdulhameed et al. 2015).

The aim of this paper is to obtain an explicit analytical solution of the Falkner–Skan 
equation by using a revised OHAM which introduces another function in the auxiliary 
function in the original OHAM (Marinca and Herisanu 2008, 2014) which is quite good 
enough to handle the strong challenges in nonlinear differential equations. Recently, 
Herisanu et al. (2015) studied an analytical approach to non-linear dynamical model of 
a permanent magnet synchronous generator using OHAM. They studied four different 
cases at various moments of inertia and electrical resistances specific to sudden short 
circuit produced at the generator terminals and sudden change of load. They found very 
promising results when validated with numerical solutions. However, this study will be 
compared with the numerical solution as well as the solutions by Bararnia et al. (2012) 
for the acceleration flow (β > 0) and Rajagopal et al. (1983).

Basic idea of revised OHAM (Marinca and Herisanu 2008, 2014)
Here OHAM to the differential equation as follows:

where L is a linear operator, z is an independent variable, f (z) is an unknown function, 
g(z) is a known function, N

(

f (z)
)

 is a nonlinear operator and B is a boundary operator.

(3)L
(

f (z)
)

+ g(z)+ N
(

f (z)
)

= 0, B

(

f ,
df

dz

)

= 0



Page 3 of 8Madaki et al. SpringerPlus  (2016) 5:513 

By means of OHAM one first constructs a family of equations:

where p ∈ [0, 1] is an embedding parameter, L is a linear operator which depends on the 
boundary operator B and on the initial approximation f0, H(p, z) is a nonzero auxiliary 
function for p �= 0, here H(0, z) = 0 and φ(z, p) is an unknown function, respectively. 
Obviously, when p = 0 or p = 1 it holds

As p increases from 0 to 1, the solution φ(z, p) varies from f0(z) to the solution f (z), 
where f0(z) is obtained from Eq. (4) for p = 0:

Instead of written the auxiliary function as H(p) = pC1 + p2C2 + · · ·, we choose the 
auxiliary function H(p, z) in the form

where h1, h2, . . . , hm are functions depending on the variable z and convergence-control 
parameters C1i,C2i, . . . ,Cmi for i = 1, 2, . . . , which can be determined later. Let us con-
sider the solution of Eq. (4) is in the form

Substituting Eq. (8) into Eq. (4) and equating the coefficients of like powers of p, we 
obtain the governing equation of f0(z) given by Eq.  (6) and the governing equation of 
fk(z), as follows:

where Nm

(

f0(z), f1(z), . . . , fm(z)
)

 is the coefficient of pm, obtained by expanding 
N (φ(z, p, hi)) in series with respect to the embedding parameter p:

where φ(z, p, hi) is given by Eq. (8).

(4)

(1− p)[L(φ(z, p))+ g(z)] = H(p, z)[L(φ(z, p))+ g(z)+ N (φ(z, p))],

B

(

φ(z, p),
∂φ(z, p)

dz

)

= 0,

(5)φ(z, 0) = f0(z), or φ(z, 1) = f (z).

(6)L
(

f0(z)
)

+ g(z) = 0, B

(

f0,
df0

dz

)

= 0.

(7)H(p, z) = ph1(z,C1i)+ p2h2(z,C2i)+ · · · + pmhm(z,Cmi),

(8)
φ(z, p, hi) = f0(z)+

∑

k≥1

fk(z, hi)p
k , i = 1, 2, . . . ,

(9)L
(

f1(z)
)

= h1N0

(

f0(z)
)

, B

(

f1,
df1

dz

)

= 0,

L
(

fk(z)− fk−1(z)
)

= hkN0

(

f0(z)
)

+

k−1
∑

i=1

hi
[

L
(

fk−i(z)
)

+ Nk−i

(

f0(z), f1(z), . . . , fk−i(z)
)]

,

(10)B

(

fk ,
dfk

dz

)

= 0, k = 2, 3, . . . ,

(11)
N (φ(z, p, hi)) = N0

(

f0(z)
)

+
∑

k≥1

Nk

(

f0, f1, . . . , fk
)

pk , i = 1, 2, . . . ,
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It should be emphasized that fk for integer k ≥ 0 are governed by the linear Eqs. (6), 
(9), and (10) with the linear boundary conditions that came from origin problem, which 
can be solved easily.

The convergence of the series (8) depends upon the auxiliary functions h1, h2, . . .. If it 
is convergent at p = 1, one has

Generally, the solution of Eq. (3) can be determined approximately in the form:

Substituting Eq. (13) into Eq. (3) it gives the following residual

If R(z, hi) = 0, then f (m)(z, hi) happens to be the exact solution. However, such case 
will not occur for problems that consists of nonlinear, though we can minimize the 
functional

where a and b are two values, depending on the given problem. The unknown conver-
gence-control parameters Cij , i = 1, 2, . . . ,m; j = 1, 2, . . . can be optimally identified 
from the conditions

With these convergence-control parameters known, the approximate solution (of 
order m) (13) is well-determined. Furthermore, the convergence-control parameters Cij 
can be obtained using the methods such as Galerkin, Ritz, least square or collocation.

It is easy to observe that so-called homotopy perturbation method (HPM) is a special 
case of Eq. (4) when H(p) = −p, and on the other hand, HAM is another special case of 
Eq.  (4) when H(p) = −ph (where the parameter h is chosen from so-called h-curves), 
and they can all be used to determine the parameters Cij. While an important feature of 
the OHAM is that using Eq. (16), a minimization of errors is obtained.

Analytical solution of Falkner–Skan equation
The auxiliary function H(p, z), can be chosen as many ways as possible. Using the condi-
tions given in (2), we choose the initial approximation f0(z) as

(12)
f (z, hi) = f0(z)+

∑

k≥1

fk(z, hi).

(13)f (m)(z, hi) = f0(z)+

m
∑

k=1

fk(z, hi), i = 1, 2, . . . ,m.

(14)R(z, hi) = L
(

f (m)(z, hi)+ g(z)+ N
(

f (m)(z, hi)
))

, i = 1, 2, . . . ,m.

(15)J
(

Cij

)

=

b
∫

a

R2(z, hi)dz, i = 1, 2, . . . ,m; j = 1, 2, . . .

(16)
∂J

∂Cij
= 0.

(17)f0(z) = z −
1

βk
+

1

βk
e−βkz ,



Page 5 of 8Madaki et al. SpringerPlus  (2016) 5:513 

where k is a positive convergence parameter. Then from Eqs. (2), (6) and (17), the linear 
operator L was chosen as follows:

while, the nonlinear operator N  takes the form:

From Eq. (19) we equate the coefficients of like powers of p to obtain

Now substituting Eq. (17) into Eq. (20), we obtain:

Choosing m = 1 into Eq.  (7) and by applying Eq.  (23), the auxiliary function H(p, z) 
can be written in the form, H(p, z) = ph1(z,C1i) where ph1(z,C1i) is chosen in such a 
way that N0 and N0h1 can be in the same form, and hence we can consider:

where C11,C12,C13 and k are convergence-control parameters to be determined.
Here, Eq. (9) becomes:

From now on, for simplification we will write C1,C2 and C3 instead of C11,C12 and C13 , 
respectively.

Now the solution of Eq. (25) takes the form:

(18)L
(

f (z)
)

= f ′′′ + kf ′′.

(19)

N (z, p) = f ′′′0 + f0f
′′
0 + β

(

1− f ′20

)

+ p
[

f ′′′1 + f0f
′′
1 + f1f

′′
0 − 2β

(

f ′0 f
′
1

)]

+ p2
[

f ′′′2 + f0f
′′
2 + f1f

′′
1 + f2f

′′
0 − 2β

(

f ′0 f
′
2 + f ′21

)]

+ · · ·

(20)p0 : N0

(

f0
)

= f ′′′0 + f0f
′′
0 + β

(

1− f ′20

)

,

(21)p1 : N1

(

f0, f1
)

= f ′′′1 + f0f
′′
1 + f1f

′′
0 − 2β

(

f ′0 f
′
1

)

,

(22)p2 : N2

(

f0, f1, f2
)

= f ′′′2 + f0f
′′
2 + f1f

′′
1 + f2f

′′
0 − 2β

(

f ′0 f
′
2 + f ′21

)

.

(23)N0

(

f0
)

=

(

kβz − k2β2 + 2β − 1

)

e−kβz + (1− β)e−2kβz .

(24)H(p, z) = p
(

C11 + C12e
−kβz + C13e

−2kβz
)

,

f ′′′1 + kf ′′1 =

(

C11 + C12e
−kβz + C13e

−2kβz
)[(

kβz − k2β2 + 2β − 1

)

e−kβz + (1− β)e−2kβz
]

,

(25)f1(0) = f ′1(0) = f ′1(∞) = 0.

(26)

f1(z) =
1

108k3
�

k3 − 12
�





− 1296k5C1 − 324k5C2 − 144k5C3 + 3888k3C1 + 648k3C2 + 240k3C3

+

�

−6k4zC3 + 72kzC3 + 6k5C3 − 13k3C3 − 72k2C3 + 156C3

�

e−3kz




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The first-order approximate solution (13) is

Substituting Eqs. (17) and (26) into Eq. (27) we obtain:

The residual (14) becomes in this case:

From Eq. (16), this becomes ∂J
∂Ci

= ∂J
∂k

= 0, i = 1, 2, 3 we obtain:

Sequel to the presentations made in Figs.  1 and 2, where the results for this study 
appears perfectly matched that of Bararnia et al. (2012) from which the increasing order 
of Padé approximation on the velocity profile shows a significant effect, as depicted in 
Fig. 1. While Fig. 2, has indicated the good agreements between the present studies with 
numerical solution. 

Conclusions
In this study, a new analytical technique is proposed to get a solution of Falkner–Skan 
equation. The method gives a desired analytical solution of the 2D laminar, incom-
pressible viscous fluid flow over a semi-infinite wedge. The validation of this study with 
numerical and Bararnia et al. (2012), as shown in Figs. 1 and 2, show the excellence and 

(27)f (1)(z) = f0(z)+ f1(z).

(28)

f (1)(z) =
1

108k3
�

k3 − 12
�





− 1296k5C1 − 324k5C2 − 144k5C3 + 3888k3C1 + 648k3C2 + 240k3C3

+

�

−6k4zC3 + 72kzC3 + 6k5C3 − 13k3C3 − 72k2C3 + 156C3

�

e−3kz





+ z −
1

βk
+

1

βk
e−βkz

(29)R(z,C1,C2,C3, k) = f (1)
′′′

(z)+ f (1)(z)f (1)
′′

(z)+ β

(

1− f (1)
′2

(z)
)

.

(30)
C1 = 0.00186322166, C2 = 0.4026020376, C3 = −0.02385423487,

k = 1.231562651244.

Fig. 1  Comparison of OHAM solution with HPM-Padé solution and the effect of increasing the order of its 
approximation, on the velocity profile for β = 1.
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capability of OHAM towards handling both linear and nonlinear problems. However, 
an excellent agreement between those methods has achieved, because the values we 
obtained for f ′′(0) = 1.23140046 at β = 1, agreed with f ′′(0) = 1.23150 (Bararnia et al. 
2012) and f ′′(0) = 1.2325 (Rajagopal et al. 1983) all at β = 1. Despite the fact that only 
first-order approximation been generated.
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