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Background
Geostatistics is used to address various natural and human problems  with a spa-
tial dimension. Actually, Geomatics is one of the most important specialties because 

Abstract 

Objective:  Many parameters in environmental, scientific and human sciences investi-
gations need to be interpolated. Geostatistics, with its structural analysis step, is widely 
used for this purpose. This precious step that evaluates data correlation and depend-
ency is performed thanks to semivariogram. However, an incorrect choice of a semivar-
iogram model can skew all the prediction results. The main objectives of this paper are 
(1) to simply illustrate the influence of the choice of an inappropriate semivariogram 
model and (2) to show how a best-fitted model can be selected. This may lessen the 
adverse effect of the semivariogram model selection on an interpolation survey using 
kriging technique.

Methods:  The influence of the semivariogram model selection is highlighted and 
illustrated by thematic maps drawn using four different models (Gaussian, magnetic, 
spherical and exponential). Then, a guideline to select the most suitable model, using 
mean error (ME), mean square error (MSE), root mean square error (RMSE), average 
standard error (ASE), and root mean square standardized error (RMSSE), is proposed.

Results:  The choice of a semivariogram model seriously influences the results of a 
kriging survey at both endpoints and amplitude of the range of the estimated values. 
However, the direction of variation of the interpolated values is independent of the 
semivariogram model: different semivariogram models (with the same characteristics) 
produce different thematic maps but, the areas of minimum and maximum values 
remain unchanged. Yet, the suitable model can be selected by means of ME, MSE, 
RMSE, ASE and RMSSE.

Conclusion:  The present article illustrates how the use of an inappropriate semivario-
gram model can seriously distort the results of an evaluation, assessment or prediction 
survey. To avoid such an inconveniency, a methodical approach based on the compu-
tation and analysis of ME, RMSE, ASE, RMSSE and MSE is proposed.

Keywords:  Interpolation, Kriging, Predictive analysis, Spatial analysis, Structural 
analysis, Semivariogram
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numerous of phenomena and matters studied in Geosciences need to be mapped in 
terms of simple illustration (reprography or presentation) or in terms of assessment 
(prediction or forecasting), management and allocation of the world’s  physical  and/
or  human resources. In particular, assessing a variable is very delicate because it is 
a matter of interpolating that variable where no measurement has been conducted 
or, establishing a correlation between data of different natures. For this purpose, sev-
eral softwares have been developed including ArcGIS and Golden Surfer, and are being 
widely used by thousands of scientists worldwide for various aims.

Arétouyap et al. (2014a, b, 2015) used geostatistics to analyze the spatial distribu-
tion of climate parameters in central Africa, the groundwater quality index in the 
Adamwa-Cameroon region and to characterize aquifers in the Pan-African context; 
Binita et al. (2015) to investigate temporal and spatial assessment of climate change 
vulnerability; Chaney and Rojas-Guyler (2015) to establish the geographic variabil-
ity in adolescent drug use and to correlate factors of use; Keumseok et al. (2015) to 
build up spatial patterns of simulated obesity prevalence were compared with meas-
ures of low income and food accessibility; Mishra and Chaudhuri (2015) to character-
ize spatio-temporal trends in vegetation greenness in Uttarakhand Himalayas; Zunkel 
(2015) to establish a network of all 14 tornado sirens and examined the number of 
residents included and not included in that network, Teikeu Assatse et al. (2016) to 
assess water quality.

Most of mentioned modellings, geospatializations and interpolations are conducted 
thanks to ArcGis and Golden Surfer. The functioning of these softwares is based on 
interpolative techniques such as Minimum Curve, Inverse Distance, Spline functions, 
Trend Surface and Kriging (Sacks and Schiller 1988). Kriging is distinguished from all 
these techniques through its unbiased feature. It is so called BLUE (Best Linear Unbi-
ased Estimator). Thus, it is by far the most used method to that purpose in all domains 
of environmental sciences worldwide (Diodato et al. 2013, Arétouyap et al. 2014a, b; 
Nshagali et  al. 2015; Teikeu Assatse et  al. 2016). The use of this method is growing 
with the development of new mining platforms across the New Industrialized Coun-
tries (Cameroon, Australia, South Africa, Mexico, Ethiopia, Brazil, Turkey, Philip-
pines, etc.).

This method so efficient, effective and popular with geoscientists has a very important 
preliminary step upon which the reliability of interpolation and prediction depends: that 
is the structural analysis focused on the semivariogram. This step is so important that 
for many versions of Golden Surfer and ArcGIS, it is of the responsibility of the user to 
select the suitable model of semivariogram. For this reason, van Groenigen (2000) studied 
the influence of semivariogram parameters on optimal sampling schemes for mapping 
by kriging; Cressie (1993) advised the use of cross-validation to check the validity of a 
semivariogram model; Crujeiras et al. (2001) derived the goodness-of-fit tests with this 
aim and, Gorsich and Genton (2000) introduced the use of nonparametric derivative esti-
mation. The main objectives of this paper are (1) to simply illustrate the influence of the 
choice of an inappropriate semivariogram model and (2) to show how a best-fitted model 
can be selected. This may lessen the adverse effect of the semivariogram model selection 
on an interpolation survey using kriging technique.
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Results
Descriptive statistics

The database used is made of 50 values of aquifer resistivity ranged from 3 to 852 Ω m, 
with a mean of 228 Ω m and a standard deviation (SD) of 218 Ω m. Table 1 summarized 
the distribution of the data.

No need to plot histogram, neither QQ plot to check data normality. Indeed, above 
Table 1 shows that the median is greater than the half mean value. This indicates that 
more or less normal distribution of data.

Cross‑validation

Using the Gaussian model, the estimated resistivity rages between 195 and 267 Ωm. The 
magnetic and spherical models produce values ranged from 100 to 480 Ωm while the 
exponential model provides a range of 120–420 Ωm. In general, each model produced a 
result different from each other. The difference may be in the endpoints of the range or 
its amplitude. These differences are summarized in Table 2 and illustrated in Fig. 1.

Furthermore, to appreciate the functioning of cross-validation developed above, a 
well-known point value (200  Ω  m-value obtained at location P-30) has been hidden, 
then estimated using different semivariogram models. Results summarized in Table  3 
agree that Gaussian model provides the most accurate estimation.

Discussion
In the particular case of this study, values interpolated using spherical and magnetic 
models ranged in the same interval (100–480 Ωm). But in general, each semivariogram 
model provides distinct result. However, despite their observed differences, all thematic 
maps have the same variation trend. The gradient values are constant: the minimum and 
maximum values are almost in the same regions respectively from one map to another.

These observations are in compliance with results published by many other authors 
(Webster and Oliver 2007; Chilès and Delfiner 2012). It is therefore evident that the 
quality and the reliability of an interpolation by kriging strongly depend on the struc-
tural analysis of field data, that is to say, the semivariogram model. Predictive perfor-
mances of the fitted models are checked on the basis of cross-validation tests.

Table 4 shows that the Gaussian model is the best-fitted one. This agrees with Fig. 2 
which illustrates that the same model (Gaussian) accommodates the most with the 

Table 1  Descriptive statistics of the database

Parameter Number Min (Ω m) Max (Ω m) Mean (Ω m) Median (Ω m) SD (Ω m) Skew Kurtosis

Resistivity  
(Ω m)

50 190 280 228 166 218 1.06 0.41

Table 2  Differences from analytical analysis between the four variogram models

Gaussian Exponential Magnetic/spherical

Minimum 195 120 100

Maximum 267 420 480

Magnitude 72 300 380
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experimental semivariogram, although the serious concern the dataset is facing. Indeed, 
before you can use this statistical method based on the theory of regionalized variables, 
you must make a semivariogram model, which will determine the interpolation func-
tion. However, kriging is optimal when data are normally distributed and stationary i.e. 
mean and variance do not vary significantly in space (Isaaks and Srivastava 1989; Goo-
vaerts 1997; Kitanidis 1997; Deutsch and Journel 1998; Webster and Oliver 2007).
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Fig. 1  Thematic maps of estimation performed using different variogram models (a Gaussian model, b mag-
netic model, c spherical model, d exponential model). These maps are different each from the others

Table 3  Illustration of the cross-validation test

Model Experimental  
value, R (Ω m)

Estimated  
value R∗ (Ω m)

R
∗
−R

R
(%) Comments

Gaussian 200 201 +0.5 Almost identical

Exponential 200 132 −34 Underestimated

Magnetic 200 143 −29 Underestimated

Spherical 200 98 −51 Very underestimated

Table 4   Analytical characteristics of semivariogram models used to detect the best-fitted 
one

ME RMSE ASE MSE RMSSE

Gaussian 0.02 8.41 8.03 0.08 0.97

Magnetic 3.52 18.21 21.36 3.18 3.14

Spherical 5.24 20.07 23.21 7.01 3.20

Exponential 17.36 29.57 32.33 18.32 3.54
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In fact, as illustrated in Fig. 3, the data are not normally distributed as the histogram 
is no symmetrical. This condition can also be checked using quantile–quantile plot. To 
curb the impact of poor data distribution, we have introduced a lag tolerance of 10 km in 
order to get a reasonable number of pairs for computing statistics.

This study should have various applications and impacts on environmental and earth 
sciences. In fact, many environmental and earth deposits parameters are usually called 
to be predicted or estimated. However, one cannot carry out measurement continu-
ously. The parameter to be estimated is measured discretely and then, to obtain the 
continuous information, kriging technique is used. Nowadays, this technique based on 
semivariogram is used by so many scientists in various fields as civil protection (Zam-
ani and Mirabadi 2011), meteorology (Caridad and Jury 2013; Arétouyap et al. 2014a), 

Fig. 2  The four variogram models plotted together with the experimental one in order to highlight that the 
logarithmic model is best-fitted one

Fig. 3  Histogram of resistivity data
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geochemistry (Gorai and Kumar 2013; Méli’i et al. 2013; Arétouyap et al. 2014b; Nshagali 
et al. 2015; Arétouyap et al. 2015). If authors do not take into account the paramount 
impact of the semivariogram model in such investigations, the survey will be sketchy 
and results untruthful. This explains the importance of the present paper.

Many other studies have been carried out in order to highlight the delicateness of 
modelling and assessment. Giuseppe and Petrarca (2013) bring up the effects of scale 
in spatial interaction models; Patuelli and Giuseppe (2013) published an editorial on the 
advances in the statistical modelling of spatial interaction data. But the present paper 
tackles the issue of the selection of the suitable semivariogram model. In fact, inter-
polation softwares automatically propose a random linear or nugget model to the user 
(Fig. 4a) and the user has to select and set up the best-fitted model (Fig. 4b).

When the random linear or nugget model is automatically displayed, the user should 
select and “add” a model that is suitable for his dataset, then fit it.

Conclusion
The present paper highlighted and illustrated the adverse effect of the semivariogram 
model on a prediction or interpolation survey using kriging technique. An incorrect 
choice of a semivariogram model can skew the results of an evaluation, assessment or 
prediction survey. To avoid such an inconveniency, a methodical approach based on the 
computation and analysis of ME, RMSE, ASE, RMSSE and MSE is proposed and sum-
marized by a chart (Fig. 5). This may be very useful for scientists and researchers who 
are called to solve various environmental, social and human problems. It is therefore 
necessary to well apply during the cross-validation test in order to select the best-fitted 
semivariogram model before predictive analysis.

Methods
Data used

In this experimental analysis, we used dataset of aquifer resistivity computed using the 
vertical electrical sounding conducted in the Pan-African context of Adamawa-Came-
roon (Arétouyap et al. 2015). This field campaign was carried out in order to character-
ize local aquifers.

Fig. 4  Selection of the suitable variogram model. A randon nugget or linear model is automatically pro-
posed to the user (a), who should rationally select the appropriate one from the box (b)



Page 7 of 11Arétouyap et al. SpringerPlus  (2016) 5:549 

Semivariogram and its influence on the kriging results

Currently, kriging is the best interpolation technique because it is unbiased. Neverthe-
less, it requires data to be correlated and dependent. This structural analysis is con-
ducted by means of semivariogram.

The semivariogram is a mathematical function that is used to describe the spatial con-
tinuity of a phenomenon (Caridad and Jury 2013). In the present study, constant trend is 
observed at all locations. Data are said to be stationary. Hence, the theoretical formula-
tion of the semivariogram γ(h), using the concept of variance (Var) applied to the differ-
ence between two observations z(x) and z(x + h) separated by a distance h, is expressed 
by Eq. 1.

In practice, only the experimental semivariogram γe(r) is calculated from observations 
using Eq. 2.

where γe(h) is the estimated value of the semivariogram for lag (h); N(h), the number of 
pairs of points separated by distance h; z(xi) and z(xi + h) are values of z at positions xi 
and xi + h, respectively.

Ideally, a point of the experimental semivariogram is considered as representative if 
N(h) ≥ 30. At these point values, a suitable theoretical semivariogram model is adjusted. 
Nevertheless, theoretical models of semivariograms were adjusted in the present inves-
tigation despite the limited number of points (N(h) =  25). The main current eligible 

(1)γ (h) =
1

2
var[z(x)− z(x + h)]

(2)γ (h) =
1

2N (h)

N (h)
∑

i=1

[z(xi)− z(xi + h)]2
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Fig. 5  Illustration of the principle of a semivariogram model selection
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models are nugget effect, linear, gravimetric, cubic, pentaspherical, spherical, exponen-
tial, power, Gaussian, Cauchy and logarithmic semivariograms. A model is admissible if 
any variance calculated from the model is positive (Chilès and Delfiner 2012).

The description of a semivariogram model is based on the quantification of multiple 
parameters identified in Fig. 6. The range (length) a is the distance where the correlation 
between observations becomes zero. At this distance, the semivariogram reaches the sill 
(scale) σ2 which is the sum of the nugget variance C0 and the partial sill (variance) C. The 
nugget effect derives from various sources such as measurement errors, existence of a 
microstructure smaller than the size of the sample and/or the presence of a microstruc-
ture with a range less than the distance between the two closest observations. It may be 
impossible to quantify the contribution of each source.

To highlight the influence of the semivariogram model on the kriging results, four dif-
ferent semivariogram models (magnetic, Gaussian, exponential and spherical) with the 
same effect nugget (C0 = 200 Ω2 m2), the same sill (σ2 = 5200 Ω2 m2) and the same range 
(a = 50 m) were used to interpolate the data by kriging. These semivariogram models are 
expressed by Eqs. 3–6.

(3)Magnetic model: γ (h) = C0 + C

(

1−
a3

(

a2 + h2
)3/2

)

(4)Gaussian model: γ (h) = C0 + C

(

1− exp

(

−3

(

h

a

)2
))

(5)Spherical model: γ (h) =











C0 if h = 0

C0 + C
�

1.5 h
a − 0.5

�

h
a

��3

C if h ≥ a

for 0 < h < a

(6)Exponential model: γ (h) = C0 + C

(

1− exp

(

−3

(

h

a

)))

Fig. 6  Experimental variogram
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Cross‑validation

The semivariogram model is chosen from a set of mathematical functions that describe 
spatial relationships. The appropriate model is selected by matching the shape of the 
curve of the experimental semivariogram to the shape of the curve of the mathematical 
function. This is clearly illustrated in the “Golden Surfer” software we used in this study. 
In fact, semivariogram is used in the interpolative kriging technique at its second step. 
This step is preceded by an exploratory data analysis and followed by a prediction (Gorai 
and Kumar 2013).

During the exploratory analysis, data consistency was checked, outliers removed and 
statistical distribution identified. Normal data distribution is decided when the mean 
and the median are very similar. However, high skewness values indicate the existence 
of outliers, which are very high or low measured values comparing to the dataset. The 
outliers are caused by a bad measurement or a bad recording, and must be transformed 
when they exist.

During the prediction phase, four semivariogram models were plotted in order to 
select the best-fitted one. Predictive performances of the fitted models are checked on 
the basis of cross-validationtests. The values of mean error (ME), mean square error 
(MSE), root mean square error (RMSE), average standard error (ASE) and root mean 
square standardized error (RMSSE) are estimated to ascertain the performance of the 
developed models. If the predictions are unbiased, the ME should be almost nil. But 
because of its weaknesses due to its dependence upon the scale of the data and to its 
indifference to the wrongness of semivariogram, ME is generally standardized by the 
MSE, being ideally zero.

However, RMSE and ASE should be calculated to indicate if the prediction errors were 
correctly assessed in the case where they are close. Otherwise, if the RMSE is less than 
the ASE (or RMSSE less than 1), then the variability of the predictions is overestimated; 
and if the RMSE is greater than the ASE (or RMSSE greater than 1), then the variability 
of the predictions is underestimated. Once the best model is selected, it is used to draw 
the thematic map that provides the spatial distribution of the parameter to be estimated. 
All these errors are expressed by Eqs. (7)–(11) below (Goovaerts 1997; Gorai and Kumar 
2013).

(7)ME =
1

N

N
∑

i=1

[

Z
∗ (xi)− Z (xi)

]

(8)MSE =
1

N

N
∑

i=1

[

Z∗(xi)− Z(xi)

σ 2(xi)

]

(9)RMSE =

√

√

√

√

1

N

N
∑

i=1

[Z∗ (xi)− Z (xi)]
2

(10)
ASE =

√

√

√

√

1

N

N
∑

i=1

σ 2(xi)
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where σ2(xi) is the Kriging variance for location xi, Z*(xi) and Z(xi) are the estimated and 
the measured values of the parameter at the location xi respectively.

Abbreviations
ASE: average standard error; ME: mean error; MSE: mean square error; RMSE: root mean square error; RMSSE: root mean 
square standardized error.
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