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Background
Blind signal classification of communication signals plays a pivotal role in both civilian 
and military applications, such as electronic warfare, radio surveillance, civilian spec-
trum monitoring, and cognitive radio systems (Axell et  al. 2012; Dobre 2015; Dobre 
et al. 2005, 2007). The research on signal classification for multiple input multiple out-
put (MIMO) scenarios is at an incipient stage. Regarding space–time block code (STBC) 
classification algorithms, they can be divided into several general categories: likelihood-
based (Choqueuse et al. 2010), subspace-based (Swindlehurst and Leus 2002; Zhao et al. 
2014), second-order statistics based (Via and Santamaria 2008a, b), cyclostationarity 
based (DeYoung et al. 2008; Shi et al. 2007; Marey et al. 2012), higher-order based (Cho-
queuse et al. 2008a, b, 2011; Eldemerdash et al. 2013a, b) and correlation function based 
(Marey et al. 2014; Mohammadkarimi and Dobre 2014).

The likelihood-based algorithm evaluate the likelihood function of the received sig-
nal  ,and employ the maximum likelihood criterion for decision making. However, the 
likelihood-based algorithm need channel estimation and signal imformation (Cho-
queuse et  al. 2010). To avoid the drawbacks of likelihood-based algorithm, several 
authors have investigated the use of subspace (Swindlehurst and Leus 2002; Zhao et al. 
2014) and second-order statistics (SOS) (Via and Santamaria 2008a, b) algorithm. How-
ever excluding some specific low-rate codes, these approaches fail to extract the channel 
in a full-blind contex (Swindlehurst and Leus 2002; Zhao et al. 2014; Via and Santamaria 
2008a, b). These semi-blind methods cannot be employed in a non-cooperative scenario 
since they require modification of the transmitter. To avoid the drawbacks above, the 
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cyclostationarity-based and higher-order based algorithms are proposed. Most of the 
paper formed with more than a single antenna (Choqueuse et al. 2008a, b; Eldemerdash 
et al. 2013b; Choqueuse et al. 2011). Some of the articles study the classification of spa-
tial multiplexing (SM) and Alamouti STBC (DeYoung et al. 2008; Shi et al. 2007; Elde-
merdash et al. 2013b), and others study a large pool (Marey et al. 2012; Choqueuse et al. 
2008a, b, 2011). Literature (Marey et  al. 2014) and literature (Mohammadkarimi and 
Dobre 2014) performe under frequency-selective channels and impulsive noise respec-
tively . However, few articles illustrate the STBC classification when a single antenna is 
employed at the receiver (Eldemerdash et al. 2013a; Mohammadkarimi and Dobre 2014). 
Since in reality the requirement cannot always be met, blind classification for STBC are 
of interest when a single receive antenna is available.

This paper proposed an efficient algorithm based on Higher-order cumulants for clas-
sification of STBC. We use the properties of higher-order cumulants to avoid the effect 
of noise. We exploit features based on fourth-order cumulants, and divide the STBCs 
with an interval detector. The proposed algorithm performs well in the simulation and 
does not need channel estimation and signal information.

Signal model and assumption
Signal model

We consider a wireless communication system which employs linear space–time block 
coding with multiple transmit antennas. Each symbol is encoded to generate nt paral-
lel signal sequences of length L. The sequences are transmitted simultaneously with nt 
antennas in L consecutive time periods. The kth nt × L matrix can be denoted by C(Sk), 
from a block of n symbols denoted s = [s1, s2, . . . , sn]

T.
The received signal is assumed to be encoded by one of the following STBCs1:SM 

(Choqueuse et  al. 2008a) with nt = 1 and L =  1, Alamouti STBC (Al for short) code 
(Alamouti 1998) with nt = 2 and L = 2 (orthogonal with rate 1), ST3 (Choqueuse et al. 
2008a) with nt = 3 and L =  8 (orthogonal with rate 34), ST4 (Tarokh et  al. 1999) with 
nt = 4 and L = 8 (orthogonal with rate 34).

The matrix of each STBC is defined as

1  We choose Al and SM as they are the most commonly used in wireless standards, and ST3 and ST4, as being com-
monly referred codes.
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We consider a receiver with a single antenna, and assume that the length and time 
alignment of the STBC blocks are unknown. Without loss of generality, we assume the 
first received symbol ,denoted by Y0, intercepts the (k1 + 1)th column, 1 ≤ k1<L, of the 
bth transmitted block, denoted by Gk1(Xb). Under these assumptions, the kth received 
symbol, Yk can be described as (Choqueuse et al. 2008a)

where C(Sk) = Gp(Xq), with p = (k + k1) mod L, q = b+ (K + k1) div L, and z mod L 
and z div L denoting respectively the remainder and the quotient of the division z/L. 
H = [h1, . . . , hnt ] denotes the vector of the fading channel coefficients, which are con-
sidered to be constant over the observation period. Bk represents the complex additive 
white Gaussian noise (AWGN).

Main assumptions

In this study, the following conditions are assumed to hold.
(AS1) The data symbols are assumed to belong to an M-PSK or M-QAM signal con-

stellation , and consist of independent and identically distributed random variables with 
zero mean and E[|s|2] = E[|s|4] = 1, E[s2] = E[(s∗)2] = 0, and E[s4] = E[(s∗)4] = −1 
Eldemerdash et al. (2013b).

(AS2) The received signal is affected by a frenquency-flat Nakagami-m fading chan-
nel Beaulieu and Cheng (2005), with m = 3, and E[|hi|2] = E[|hi|

4] = 1, E[h2i ] = i, and 
E[h4i ] = −1, where i = 1, . . . , nt.

(AS3) The noise vector Bk is a complex stationary, and ergodic Gaussian vector pro-
cess, independent of the signals, with zero mean and variance σ 2. It implies that: 
E[BkB

H
k ] = σ 2L. The SNR is defined as 10 log10

(

nt
σ 2

)

 (Swami and Sadler 2000).
AS4) The received signal intercepts a whole number Nb of space–time blocks 

Y = [Y1, . . . ,YNb
], i.e., the first and last intercepted samples correspond to the start and 

the end of a space–time block, respectively.

Classification based on HOS
In this section, we exploit the feature by using Higher-order cumulants. We will first 
define the fourth-order cumulants which we propose to use, discuss how they can be 
estimated from the data, and then give the theoretical values for various STBCs.

Definitions

For a complex-valued stationary random process y(n), second-order moments can be 
defined in two different ways depending on placement of conjugation (Swami and Sadler 
2000)

(5)Yk = HC(Sk)+ Bk

(6)
C20 = E

[

y(n)2
]

C21 = E
[

y(n)y(n)∗
]

= E
[

|y(n)|2
]
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Fourth-order moments and cumulants can be written in two way2

The statistics in Eqs. (6) and (7) are the zeroth lags of the correlations and fourth-order 
of y(n). For zero-mean random variable w, x, y, and z, the fourth-order cumulants can be 
written as

Sample estimates

We assume the complex-valued stationary random process y(n) is zero-mean. In prac-
tice, the sample mean is removed before cumulants estimation. The correlations of N 
samples are given by

Where the superscript ˆ denote a sample average. The fourth-order cumulants can be 
written as

In particular, the higher-order (higher than 2nd) cumulants of zero-mean Gaussian sym-
bols is zero. We assume the cumulants of noise is Ĉxy,g, then Ĉxy,g = 0(x>2). The analysis 
of higher-order statistic of received symbol is actually analysis of non-Gaussian signal. 
When evaluate the fourth-order cumulants of received signal, we can ignore the effect 
of AWGN (Zhang 2000). The fourth-order cumulants of received signal can be write as

where, Ĉ4x,y represents the sample estimate of the fourth-order cumulants of received sig-
nal, Ĉ4x,HC(S) represents the sample estimate of the fourth-order cumulants of received 
signal without noise, Ĉ4x,g represents the estimate of fourth-order cumulants of noise.

Theoretical values

Here, we consider the theoretical values of the fourth-order cumulants in Eq. (7) for var-
ious STBCs. The theoretical values are obtained by computing the ensemble averages 

2  In this article, we do not consider C41 (Swami and Sadler 2000).

(7)
C40 = cum(y(n), y(n), y(n), y(n))

C42 = cum(y(n), y(n), y∗(n), y∗(n))

(8)
cum(w, x, y, z) = E(wxyz)− E(wx)E(yz)

− E(wy)E(xz)− E(wz)E(xy)
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21
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over the ideal noiseless transmitted signal. We define XSTBC = HCSTBC(S) as the noise-
less transmitted signal, where HSM, HAl, HST3, HST4 can be expressed by [h0], [h0 h1], 
[h0 h1 h2], [h0 h1 h2 h3] respectively, CSTBC is corresponding to Eqs. (1)–(4). The fourth-
order cumulants for various STBCs are respectively defined as

Since the derivation of the fourth-order cumulants for ST3 and ST4 is too long, we do 
not give the detailed derivation. They are similar to the derivation of SM and Al.
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The theoretical values are described in Table 1. Column 2 shows C40 of STBCs, and 
column 3 shows C42. We can see that, The theoretical values of cumulants are different 
in various STBCs. The specific algorithm to be used depends upon the difference.

Threshold analysis
In this section, we develop thresholds for the tests in the hierarchical classification 
scheme. In order to do this, we need to derive expressions for the variance of the sample 
estimates of the cumulants in Eq. (10). The variance expressions are estimated by 1000 
Monte Carlo trail for each ξ ∈ {SM,Al, ST3, ST4}.

From Table 1, we note that the value of C40 or C42 and their sample variances are dif-
ferent for different STBCs. Consider a statistic S, Which is Gaussian with mean µi and 
variance σ 2

i  under hypothesis Hi, i = 0, 1. Assume wlog that σ 2
0 < σ 2

1 . Then the likeli-
hood ratio test (LRT) for achieving minimum probability of error, assuming equal priors, 
is an interval detector, which can be written as Srinath et al. (1996)

where

and

if σ 2
0 = σ 2

1 , we have a threshold detector; thus, if µ0<µ1, we decide H0 if S<(µ0 + µ1)/2 . 
From Table 1, we see that the variances of Ĉ40 and Ĉ42 are approximately the same for 
members of the STBCs, thus justifying the use of the threshold detector. The variances 
of Ĉ42 are more approximate to each other than Ĉ40, we tend to choose Ĉ42 as the thresh-
old detector.

We define a four-class problem based on the STBCs given by

(16)decide H0 if S ∈ [µ− a,µ+ a]

(17)µ :=

(

µ0

σ 2
0

−
µ1

σ 2
1

)

σ 2
0 σ

2
1

σ 2
1 − σ 2

0

(18)α2 :=
σ 2
0 σ

2
1

σ 2
1 − σ 2

0

[

ln
σ 2
1

σ 2
0

+
(µ1 − µ0)

2

σ 2
1 − σ 2

0

]

(19)�4 = {SM, Al, ST3, ST4}

Table 1  Theoretical cumulants statistics C40 and  C42 for  various STBCs, and  variances 
of their sample estimates

STBC C40 C42 Nvar(Ĉ40) Nvar(Ĉ42)

0 dB 5 dB 10 dB 0 dB 5 dB 10 dB

SM 1 −1 0.12 0.01 0.00 0.02 0.00 0.00

Al 2 −2 0.14 0.08 0.08 0.02 0.01 0.01

ST3 3 −3 0.81 0.71 0.41 0.10 0.08 0.05

ST4 4 −4 2.93 2.85 2.55 0.19 0.19 0.15
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For a given SNR, one can compute the optimal threshold under the assumption that Ĉ42 
is Gaussian. Let µk and σ 2

k  denote the mean and variance of the statistic, S, under the kth 
hypothesis; From Table 1, we see µ1<µ2 < µ3 < µ4. A simplifying approximation is to 
consider that the variances are all equal: in this case, the detection rule is to choose

with µ0 = ∞ and µ5 = −∞, We assume that the variances is equal; thus, regardless of 
the actual noise variance, the decision rule can be written as Swami and Sadler (2000)

The average probability of correct classification is Eldemerdash et al. (2013b)

One thousand of Monte Carlo trails is performed to calculate P(ξ |ξ), where ξ ∈ �4.

Simulation results
In this section, a variety of simulation experiments are presented illustrating the perfor-
mance of the proposed classification schemes. For each Monte Carlo trial, the appropri-
ate normalized statistics Ĉ42 is estimated via Eqs. (9) and (10), based on N data samples, 
and the additive noise is complex White Gaussian, via QPSK modulation. All results are 
based on 1000 Monte Carlo trials.

Simulation 1 Mean of the fourth-order cumulants for different received signals. 
Figure  1 presents the mean of the fourth-order cumulants with respect to the differ-
ent four STBCs over Nakagami-m fading channel with m = 3 at SNR = 10 dB. In order 
to observe the change of the cumulants of the samples and compare with the theoreti-
cal values, we give a large number of received samples. We decide the sample number 
N = 8192. In the figure, the ordinate represents the value of fourth-order cumulants of 
the four STBCs. We can see that under a large number of received samples, the value of 
fourth-order cumulants of STBCs tend to four different steady-state value correspond-
ing to the theoretical values, {−1,−2,−3,−4}. The specific algorithm makes use of the 
character to classify different STBCs.

Simulation 2 Comparative performance of the four coding schemes. Figure 2 presents 
the performance of the four STBCs over Nakagami-m fading channel with m = 3. In the 
figure, the probability of correct classification for SM is almost 1 and the probability for 
STBC3 is the worst. However, the four STBCs can easily be classified.

Simulation 3 Influence of fading channel. Figure  3 shows the Pc achieved with 
the proposed algorithm over Nakagami-m fading channel with m  =  1, 3, 5, 10. As 
expected, the performance improves as m increases. For example, at SNR  =  5  dB, 

(20)Hk :
µk−1 + µk

2
< S <

µk + µk+1

2

(21)

Ĉ42 > −1.5 ⇒ SM

−1.5 ≥ Ĉ42 > −2.5 ⇒ Al

−2.5 ≥ Ĉ42 > −3.5 ⇒ ST3

−3.5 ≥ Ĉ42 ⇒ ST4

(22)Pc =
1

4

∑

ξ∈�4

P(ξ |ξ)
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Pc = 0.25, 0.9685, 0.9772, 0.9915 for m =  1, 3, 5, 10, respectively, while it reaches 1 at 
+∞. This can be easily explained, as the variance of the channel coefficients increases 
for lower m values, which affects the value of the discriminating peaks, thus, leading to 
erroneous decisions.

Simulation 4 Influence of received samples. Figure 4 shows the effect of the received 
samples on the Pc. The performance enhanced by increasing the number of samples N, 
as this results in an increase of the peak values and reduction of the effect of the noisy 
components. A large number of samples is required for accurate estimation of the dis-
criminating feature, since the proposed algorithm depends on fourth-order cumulants.

Simulation 5 Influence of modulation. Figure  5 shows the effect of the modulation 
on the Pc. We have evaluated the behavior of our algorithm for 4 complex modulation: 
QPSK, 8PSK, 16-QAM and 64-QAM. These modulations are mandatory for most of the 
wireless standards. A better performance is showed for M-PSK signals when compared 
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Fig. 1  Mean of the fourth-order cumulants for different received signals with 1000 Monte Carlo trails, versus 
SNR and N = 8192 over Nakagami-m fading channel, m = 3
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with M-QAM signals. The explanation is that the cumulants is constant for M-PSK, 
whereas it is not for M-QAM.

Simulation 6 Influence of time offset. Figure 6 shows the effect of time offset and the 
performance of the algorithm in Eldemerdash et al. (2013a). The timing offset is normal-
ized to the sampling period, 0 ≤ µ ≤ 1. For the case of rectangular pulse shaping, after 
the matched filtering, the timing offset µ translates into a two path channel [1− µ,µ] 
(Swami and Sadler 2000). The performance of the proposed algorithm is more sensitivity 
to timing offsets than the algorithm in Eldemerdash et al. (2013a).

Simulation 7 Influence of impulsive noise and frequency-selective channels. Figure 7 
shows the performance over impulsive noise and frequency-selective channels. The 
impulsive noise is characterized by a two-term Gaussian mixture given in Swami and 
Sadler (2000), and the frequency-selective channels is given in Marey et  al. (2014). 
From the figure, we can see that the performance is worse with non-Gaussian noise and 
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frequency-selective channels. When SNR ≥ 5 dB, the probability of correct classification 
is almost 1.

Simulation 8 Performance comparison. Figure  8 shows the comparison among the 
proposed algorithm, the optimal likelihood-based algorithm in Choqueuse et al. (2010), 
the second-order correlation-based algorithm in Choqueuse et al. (2008a), and the dis-
crete Fourier transform (DFT)-based algorithm in Eldemerdash et al. (2013a).

The performance of the optimal likelihood-based algorithm is best, but it require 
estimation of the channel, noise information of the transmitted signal. The proposed 
algorithm does not need these estimation and more suitable to reality system. The per-
formance of the proposed algorithm greatly outperforms the algorithm in Choqueuse 
et al. (2008a), which achieves a Pc = 0.5 even for high SNR. This can be explained as the 
second-order correlation provides a discrimination feature for SM, ST3, and ST4 only. 
For Al, it equals zero, leading to the mis-classification. Algorithm (Eldemerdash et  al. 
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Fig. 5  Average probability of correct classification, Pc, versus SNR with N = 8192 and Nakagami-m fading 
channel, m = 3 for diverse modulation
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Nakagami-m fading channel, m = 3 for timing offset
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2013a) has a little better performance than the proposed algorithm when SNR > 8 dB, 
but in low SNR, it is on the contrary. The probability of classification of proposed algo-
rithm researches 0.97 at 0 dB, when algorithm (Eldemerdash et al. 2013a) at 8 dB.

Complexity comparison
The complexity of the proposed algorithm is O(N logN ). which is the same with algo-
rithms in Choqueuse et al. (2008a), Marey et al. (2014), Mohammadkarimi and Dobre 
(2014) and Eldemerdash et al. (2013a).

Conclusion
This paper proposed an algorithm for blind classification of STBC using a single antenna 
based on high-order cumulants. We have shown that simple HOS are useful for classi-
fication of STBC. The algorithm was evaluated through simulations in terms of average 
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Fig. 7  Average probability of correct classification, Pc, versus SNR with QPSK modulation and N = 8192 over 
Nakagami-m fading channel, m = 3 for impulsive noise and frequency-selective channels
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probability of correct classification. The proposed algorithm, with the advantages that it 
does not require channel estimation and noise information, performed better than any 
other classification algorithms using a single antenna in low SNR. Moreover, it can ben-
efit from spatially correlated fading.

The decision thresholds were on the conservative side because they were obtained by 
assuming that the sample estimates of the test statistics C40 and C42 have equal variances 
under different hypotheses, and ignored the effects of additive noise. The performance 
could be improved by taking these issues into account.
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