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Introduction
Electromyography has a great important in pathological diagnostic, of patients suffer-
ing of neuromuscular disorders and for the prevention of premature births; well many 
data are recorded and stored in the hospitals. These data can be sent to another health 
center for diagnosis by a specialist; and thus arises the problem of storage and transmis-
sion. With the development of telemedicine, the storage problem and transmission of 
biomedical signals has become a top priority. Compression is an alternative to solve this 
problem. In the literature, we have two types of compression: lossless compression that 
gives a good signal reconstruction but which hardly yields high compression ratio and 
lossy compression which often includes quantification stage to improve the compres-
sion ratio. Compression of EMG signals already been the subject of some work and we 
have the development of new techniques and compression formats. According to the 
works of Sana and Kaïs (2009) a recording of an electrocardiogram (ECG) per day at a 
resolution of 12 bits/sample requires to average of over 100 megabytes of memory. These 
numbers far exceed the capabilities of traditional systems of storage and transmission. 
The literature of EMG signals compression (especially surface EMG) echoes several 
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techniques and methods. The compression of EMG signals using the Embedded Zero 
Tree Wavelet has been studied with compression Factor in the range 60–95 % by Norris 
et al. (2001). The algorithms for EMG signal compression using wavelet transform, and 
a scheme for the dynamic allocation of the bits that represent wavelet coefficients have 
been proposed by Berger et al. (2006, 2007). In the works of Carotti et al. (2005), we have 
the EMG signal compression technique based on autoregressive (AR) modeling. This 
technique provides a high compression factor (over 97 %) but it is not applicable if the 
shape of the signal waveform has to be preserved after compression. Discrete wavelet 
packet transform with optimization of the mother wavelet and wavelet packet basis were 
used for compression of biomedical signals (Brechet et al. 2007). The same year, Jain and 
Vig (2007) proposed EMG compression method based on vector quantization combined 
with wavelets. The year 2008 was marked by the work of Paiva et al. (2008) who pro-
posed adaptive EMG compression using optimization wavelet filters. The work of Filho 
et  al. (2008) adopted the multiscale multidimensional parser algorithm. The works of 
Carotti et al. (2008) and Marcus et al. (2009) applied to the EMG signals, techniques for 
image compression and gets a compression factor of the order of 80 % with a PRD from 
3.82 to 4.43 %. In the more recent work of literature, we can found the works of Trabuco 
et al. (2013), such as “Compression of EMG signals by Transforms and Spectral Profile 
for Bit-Allocation” and “S-EMG signal compression based on domain transformation 
and spectral shape dynamic bit allocation” (Trabuco et al. 2014). In this paper, we make 
a comparative study between DCT and DWT for compression of EMG signals, using 
vector quantization which are associated SPIHT coding and arithmetic coding. In this 
work, lossy compression is exploited. We propose a new algorithm for the EMG signal 
compression. The performances of this method under study are determined by the PRD, 
signal to noise ratio, the compression factor and the subjective criteria.

Background
Compression systems which can guarantee high compression ratios operate according 
to Fig. 1.

These compression systems concern lossy compression methods; that exploit at best 
the redundancy in the signal. Most of these compression systems are using transformed 
methods, which allow switching from spatial domain to a transform domain where the 
coefficients are low correlation. This step is carried out by a mathematical transforma-
tion followed by quantization step. The final step of these systems is entropy coding 
which produces the bit stream representing the compressed data.

Two transforms were used by the new compression approach proposed: the discrete 
cosine transform and the discrete wavelet transform. These transforms are used at the 
decorrelation. The decorrelation extracts the relevant signal information and reduces 
redundancy in the signal. Most decorrelators are based on reversible transformation. 
The principle of these decorrelators, consist to focus the information on a small number 
of values, the other being near zero.

Input 
signal decorrelation Quantification Entropy 

coding 
compressed 

signal 

Fig. 1  Lossy compression scheme
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The purpose of processing is to project the signal on a basis function whose proper-
ties are adapted to the nature and characteristics of signal to be analyzed. The projection 
is orthogonal in order to guarantee a decorrelation of obtained coefficients (Gaudeau 
2006).

Theory of wavelet transform and discrete cosine transform

The wavelet transform of a signal x(t) can be defined as the projection on the basis of 
wavelet functions:

The functions Ψa,b(t) are obtained from the dilation and translation of the mother wave-
let Ψ (t). The functions Ψa,b(t) are sometimes called wavelets girls.

The wavelet transform is reversible.

Ψ̃ (ω) is the Fourier transform of Ψ (t).

The wavelet function must check the eligibility requirement:
If Ψ (t) ∈ L2, then:

This condition helps analyze and reconstruct the signal without loss of information. A 
method for calculating the wavelet transform is to convolve the signal with a pair of 
quadrature mirror filters selected for a sub-sampling factor of 2 or decimation. These 
filters that decompose the signal consist of a low-pass filter h and a high pass filter g. 
They thus divide the bandwidth of the signal exactly in the middle. The coefficients are 
recombined to synthesize the signal x(t) by the inverse wavelet transform. It is obtained 
using an over-sampling operation.

Here, the EMG signal is converted into a two-dimensional signal to undergo the image 
decomposition into sub-bands with different filters (low pass h and high pass g). This 
requires the use of a separable two-dimensional DWT (lines +  columns). The input 
image is decomposed each time into four sub-images (Image approximated, horizon-
tal detail, vertical detail and diagonal detail) with different low-pass filters and high 
pass. Reconstruction will be done using quadrature mirror filters, represented by their 
impulse responses (h and g).
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The discrete cosine transform is an orthogonal linear transformation. It is considered 
a simplified version of the discrete Fourier transform. The transform coefficients are not 
complex, but real; which is advantageous for the coding and quantization.

The two dimensional discrete cosine transform an image Syx is defined by:

and the inverse transform is defined by:

This transform uses a fixed transform matrix whose bases vectors are close to the class 
of matrices to which belongs the Karhunen–Loeve transform (KLT) (Allen and Bellian 
1993).

The compression method of the EMG signal is based on the two-dimensional discrete 
cosine transform. The 2D DCT is of great interest that has already shown its effective-
ness. It is widely used and popular for image coding, as shown its adoption by the JPEG 
international standard for still image compression.

Quantization and coding

To quantify the coefficients from the decorrelation, vector quantization has been 
exploited.

Vector quantization is a generalization of the scalar quantization. It can be seen as a 
combination of two functions: an encoder and a decoder. The encoder is for any vector 
Y of the input signal, to look in the codebook vector Y to the nearest code. It is only the 
address of the vector Y and the selected code which will be transmitted. The decoder has 
a replica of the codebook and consults it to provide the code vector index corresponding 
to the received address. Vector quantization is represented by Fig. 2.

A codebook plays an important role in Vector Quantization, which consists of collec-
tion of code vectors. The literature presents many algorithms for generating the code-
book: Linde, Buzo and Gray (LBG) (Jain and Vig 2007; Shaou et al. 2002; Gronfors and 
Paivinen 2005; Gronfors et al. 2006), K-Means, Kohonen and the learning algorithm to 
competition (AC). In this article, we use the algorithm of K-means. The codebook size 
used is a power of 2. In our work, we tested the size of codebook 25, 26, 27, 28 on EMG 
signals. All these codebooks tested, only the codebook size 25 presented a faithful recon-
struction of the EMG signals.

The coding has an important place in the compression. The SPIHT coding and the 
arithmetic coding are operated. The SPIHT coding algorithm is one of the most widely 
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used algorithms in the field of compression. It has been proposed by Said and Pearlman 
(1996) for encoding the wavelet coefficients; and has been used for the compression of 
other types of data such as ECG signals (Tai et al. 2005; Lu et al. 2000) and video sig-
nals (Pearlman et  al. 1998). The SPIHT algorithm (Said and Pearlman 1996) instructs 
partially information while adding some extra information. This algorithm provides an 
improvement of the EZW algorithm (Shapiro 1993) while retaining the properties which 
are:

• • good performance;
• • if the product bit stream is interrupted or truncated, the reconstruction of the image 

is partially possible.

SPIHT is based on a partial ordering by amplitude via a sorting algorithm of parti-
tions, and exploiting similarity present at different levels of the image wavelet transform.

In the SPIHT algorithm, three symbols, namely zerotree (ZT), insignificant pixel (IP) 
and significant pixel (SP) are used to code the wavelet coefficients of an image, which 
are stored in the list of insignificant sets (LIS), list of insignificant pixels (LIP) and list of 
significant pixels (LSP), respectively. The SPIHT coding (Said and Pearlman 1996; Gut-
zwiller et al. 2009) that we used has been slightly modified on its value Sn(Yi).

With n = |log2(maxi|Yi|)| where 0 ≤ i ≤ n,, the number of coefficients to encode and Sn 
the importance of pixel Yi as approximation or detail and the profit is that each part of 
our image can be considered as a detail or not according to threshold value.

The Arithmetic coding allows, from the probability of occurrence of the symbols of a 
source to create a single code word that is associated with a sequence of arbitrary length 
symbols. This differs from the Huffman encoding that assigns code words to variable 
lengths to each source symbol. The associated code with a sequence is a real number 
in the interval [0, 1]. This code is built by recursive subdivision of intervals. A range 
is divided for each new symbol belonging to the sequence. Is obtained, ultimately, a 
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Fig. 2  General scheme of a vector quantization



Page 6 of 18Ntsama et al. SpringerPlus  (2016) 5:444 

subinterval of the interval [0, 1] such that every real number belonging to this interval 
represents the sequence to coded. The arithmetic coding principle can be found in Wit-
ten et al. (1987).

Compression approach method

The new compression approach is proposed through the Fig. 3.
It is composed of a preprocessing block, a decorrelation block, of the vector quantiza-

tion, a SPIHT coding block and followed by another arithmetic coding block.
The first function used is a separating wavelet whose purpose is to divide the EMG 

signal into two sub signals. These two sub signals correspond to samples of even indexes 
and odd indexes. The oversampling of the difference of even and odd index is associated 
with the even index samples. This step can be regarded as a sub-sampling of input signal 
and allows us to remove correlation on EMG signal. The operation is done on a part of 
the input signal. This is to reduce redundancy.

The resulting signal is converted into a 2D signal. For the transformation of EMG sig-
nal coefficients in two dimensions, the work of Marcus et al. (2009), Costa et al. (2009), 
Ntsama et  al. (2013) have been exploited, where the coefficients of the EMG signal is 
divided in Mi sequences multiple of 128, then align each after other and completed 
with zeros if necessary. The objective is to achieve a 2D matrix. The two-dimensional 
EMG signal coefficients obtained is divided into 32 × 32 block, in order to reduce noise 
and errors over a large portion of the signal. The 2D DWT and 2D DCT are used at 
the decorrelation. We have two compression schemes. Namely: a compression scheme 
with 2D DWT and another compression scheme with 2D DCT. The different coefficients 
from the decorrelation are quantified by a vector quantization. The quantized coeffi-
cients are encoded doubling by the SPIHT coding and arithmetic coding. This way of 
proceeding allows increasing the compression ratio.

Performance parameters used to evaluate compression

The performance of compression algorithms are evaluated from three objective param-
eters: the compression factor (CF) defined by Eq. (9), the percentage root mean square 
difference (PRD) given by Eq. (10) and the signal to noise ratio (SNR) given by Eq. (11). 
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Fig. 3  Compression scheme
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These criteria were used in most of the compression articles EMG signals (Norris et al. 
2001; Berger et  al. 2006, 2007; Paiva et  al. 2008; Filho et  al. 2008; Marcus et  al. 2009; 
Ntsama et al. 2013; Trabuco et al. 2013, 2014).

where EMGorig and EMGcom are the original and the compressed file lengths, 
respectively.

where EMGorg [n] is the original signal and EMGrec[n] is the reconstructed signal and k is 
the length of the EMG signal.

where σ 2
org is power of original signal and σ 2

err is power of error between the original 
EMG signal and the reconstructed EMG signal.

EMG signals were collected from the biceps muscle of 4 male subjects (Age: 
23–28 years). All subjects were placed in an isometric brace and the forearm was fixed 
at 90°, maintaining 60 % of their maximum voluntary contraction. All signals were sam-
pled at 2048 Hz, quantized with 12 bits. The EMG signals were amplified (−3 dB, band-
width: 5–512 H) with a gain of 2000. The duration of the signals varies from 3 to 5 min. 
Four EMG signals called Kheir1, Kheir2, Jouve3 and EMG_Healthy were used. In the 
quantization phase, and to find the optimal size of the codebook, we tested each code-
books previously built on the four EMG signals. It emerges from this experiment that 
the size 25 of the codebook gives a good EMG signal reconstruction. However, the sec-
ond experiment consisted in looking for a codebook able to encode and decode all four 
signals effectively. It occurs that the codebook built with the EMG_Healthy signal is able 
to reconstruct “faithfully” the four EMG signals.

Results
Figure 4 shows the variation of the PRD as a function of the compression factor for dif-
ferent methods transform (DCT and DWT) and for different EMG signals.

Figure 5 give the signal to noise ratio (SNR) as a function of the compression factor for 
different methods transform (DCT and DWT) and for different EMG signals.

The Figs. 6, 7, 8, 9, 10 and 11 present examples of segments of the original signal, of 
the reconstructed signal and the error signal obtained (difference between original and 
reconstructed signals) for different methods transform and different EMG signals.

The Tables 1, 2, 3, 4, 5 and 6 show the results obtained on three actuals EMG signals 
called Kheir1, Kheir2 and Jouve3 for different methods transform and Table 7 shows the 

(9)CF =
EMGorig − EMGcom

EMGorig
× 100 %

(10)PRD =

√

∑k
n=1

(

EMGorg [n]− EMGrec[n]
)2

√

∑k
n=1

(

EMGorg [n]
)2

(11)SNR = 10log

(

σ 2
org

σ 2
err

)



Page 8 of 18Ntsama et al. SpringerPlus  (2016) 5:444 

comparison of our new compression approach method using wavelet transform or dis-
crete cosine transform and other methods in the literature.

Discussion
The two compression approach methods using DCT and DWT have been implemented. 
The aim in this article is finding the best transform (DWT or DCT) which is adapted to 
vector quantization to compress the EMG signals for our new compression approach. 
About Fig.  4, it appears that PRD increases with compression factor while SNR 

Fig. 4  Compression factor as a function of the PRD

Fig. 5  Compression factor as a function of the SNR
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decreases. Reconstruction quality is good if the PRD is close to zero. This figure shows 
that wavelet transform whatever the EMG signal, produces an error rate (PRD) maxi-
mum of 1.60  %, whereas the discrete cosine transform gives maximum PRD of about 
3.4 %.

From Fig. 5, the method by discrete wavelet transform is found to be more efficient 
than the method through discrete cosine transform.

About Table 1, 2, 3, 4, 5 and 6, we note that the discrete cosine transform gives a com-
pression factor slightly above the discrete wavelet transform. However, the discrete 
wavelet transform gives smaller PRD. Table 7 shows the comparison of our method and 
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Fig. 6  Reconstruction of EMG signal called Kheir1 by DWT; CF = 73.77; PRD = 0.38; SNR = 48.42
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other methods in the literature. We note that, the proposed algorithms give the smaller 
PRD. We can conclude that, our algorithms provide an improvement in terms of PRD.

About the Figs. 6, 7, 8, 9, 10 and 11, we note that, each figure shows the superposition 
of the original signal and the reconstructed signal for a better assessment of the power of 
reconstruction of EMG signals by our algorithm. Then the original signal, reconstructed 
signal and error between original signal and reconstructed signal are represented. The 
reconstruction of different EMG signals is represented at compression factor of about 
74  % for the discrete wavelet transform and the order of 75  % for the discrete cosine 
transform. But according to the reconstruction error rate, the wavelet transform keep 
the lowest error rate.

In telemedicine, the challenge is to have higher compression factor while providing 
a faithful reconstruction (very small error rate) and avoid any deterioration which may 
cause a fatal error during the diagnosis of the patient (Istepanian and Petrosian 2000).
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Fig. 7  Reconstruction of EMG signal called Kheir1 by DCT; CF = 74.85; PRD = 0.59; SNR = 44.46
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Although the discrete cosine transform has brought good results, it is less adequate to 
compress EMG signals by vector quantization compared to the discrete wavelet trans-
form. About this, we note that the discrete wavelet transform is better suited for com-
pression of EMG by vector quantization.

Conclusion
In this article, we showed that despite of the good results provided by the discrete cosine 
transform, it is less suitable for compression of EMG by vector quantization compared 
to the discrete wavelet transform. The wavelet transform remains appropriate for com-
pression of EMG by vector quantization. This laborious demonstration joined the work 
of Sana and Kaïs (2009) and Guerrero and Mailhes (1997) which also concluded that the 
compression method through discrete wavelet transform is found to be significantly bet-
ter than transform discrete cosine. The proposed algorithms for different signals ensured 
acceptable quality and also the considerable information retention after reconstruction 
(CF, PRD and visual observation). In this work we have oriented our choice on vector 
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Fig. 8  Reconstruction of EMG signal called Kheir2 by DWT: CF = 73.63; PRD = 0.41 %; SNR = 47.79
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Fig. 9  Reconstruction of EMG signal called Kheir2 by DCT; CF = 74.80; PRD = 0.59; SNR = 44.61
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Fig. 10   Reconstruction of EMG signal called Jouve3 by DWT; CF = 73.82; PRD = 0.10 %; SNR = 59.72
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Fig. 11  Reconstruction of EMG signal called Jouve3 by DCT; CF = 75.04; PRD = 0.20; SNR = 53.93

Table 1  Obtained results for Kheir1 (with DCT)

CF (%) PRD (%) SNR (dB)

87.35 3.22 29.84

81.15 1.30 37.72

74.85 0.59 44.46

68.55 0.30 50.19

62.15 0.16 55.68

55.76 0.08 61.55

49.36 0.042 67.36

43.07 0.02 73.74

36.71 0.01 79.42

11.42 0.0006 103.65
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Table 2  Obtained results for Kheir2 (with DCT)

CF (%) PRD (%) SNR (dB)

87.20 3.01 30.43

80.95 1.28 37.86

74.80 0.59 44.61

68.31 0.30 50.34

61.86 0.16 55.94

55.51 0.08 61.82

49.21 0.04 67.41

42.87 0.02 73.62

36.47 0.01 79.50

11.23 0.0006 103.52

Table 3  Obtained results for Jouve3 (with DCT)

CF (%) PRD (%) SNR (dB)

87.35 1.30 37.71

81.20 0.42 47.51

75.04 0.2 53.93

68.60 0.10 59.67

62.25 0.04 65.32

55.71 0.026 71.46

49.41 0.013 77.20

43.01 0.0066 83.55

36.71 0.0033 89.53

11.32 0.0002 113.22

Table 4  Obtained results for Kheir1 (with DWT)

CF (%) PRD (%) SNR (dB)

86.23 1.45 36.80

80.02 0.71 43.00

73.77 0.38 48.42

67.52 0.20 54.01

61.23 0.10 59.89

54.88 0.051 65.80

48.53 0.02 71.86

42.23 0.012 77.80

35.93 0.0061 84.16

10.74 0.0003 108.11
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Table 5  Obtained results for Kheir2 (with DWT)

CF (%) PRD (%) SNR (dB)

86.08 1.58 36.02

79.83 0.77 42.31

73.63 0.41 47.79

67.43 0.21 53.49

61.13 0.11 59.37

54.88 0.05 65.46

48.53 0.02 71.56

42.23 0.01 77.40

35.92 0.006 83.63

10.74 0.0004 107.80

Table 6  Obtained results for Jouve3 (with DWT)

CF (%) PRD (%) SNR (dB)

86.13 0.4 47.85

79.98 0.18 54.61

73.82 0.10 59.72

67.48 0.052 65.62

61.18 0.027 71.27

54.88 0.013 77.41

48.58 0.0069 83.16

42.23 0.0034 89.13

35.93 0.0016 95.45

10.79 0.0001 119.57

Table 7  Comparison of the results (CF, PRD)

Compression factor (%) 70 75 80 85

Norris et al. (2001) for Kheir1 3.90 4.12 5.20 8.02

Berger et al. (2006) for Kheir1 2.57 2.63 3.85 7.01

Berger et al. (2007) for Kheir1 1.79 1.80 2.24 3.13

Filho et al. (2008) for Kheir1 1.21 1.75 2.64 4.18

Trabuco et al. (2014) for Kheir1

 DEA – – 3.83 4.82

 DLA 2.00 2.29 2.91 4.40

 DSR 1.90 2.05 2.39 3.58

 RHT 1.85 2.10 2.22 3.31

Proposed method

 Kheir1

  DCT 0.30 0.59 1.30 3.22

  DWT 0.20 0.38 0.71 1.45

 Kheir2

  DCT 0.30 0.59 1.28 3.01

  DWT 0.21 0.41 0.77 1.58

 Jouve3

  DCT 0.10 0.2 0.42 1.30

  DWT 0.05 0.10 0.18 0.4
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quantization on K-means algorithm. It would be wise to use other algorithms of vector 
quantization combined with wavelet transform.
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